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Abstract With the rapid development of mechanical

equipment, the mechanical health monitoring field has

entered the era of big data. However, the method of manual

feature extraction has the disadvantages of low efficiency

and poor accuracy, when handling big data. In this study,

the research object was the asynchronous motor in the

drivetrain diagnostics simulator system. The vibration

signals of different fault motors were collected. The raw

signal was pretreated using short time Fourier transform

(STFT) to obtain the corresponding time-frequency map.

Then, the feature of the time-frequency map was adap-

tively extracted by using a convolutional neural network

(CNN). The effects of the pretreatment method, and the

hyper parameters of network diagnostic accuracy, were

investigated experimentally. The experimental results

showed that the influence of the preprocessing method is

small, and that the batch-size is the main factor affecting

accuracy and training efficiency. By investigating feature

visualization, it was shown that, in the case of big data, the

extracted CNN features can represent complex mapping

relationships between signal and health status, and can also

overcome the prior knowledge and engineering experience

requirement for feature extraction, which is used by tra-

ditional diagnosis methods. This paper proposes a new

method, based on STFT and CNN, which can complete

motor fault diagnosis tasks more intelligently and

accurately.

Keywords Big data � Deep learning � Short-time Fourier

transform � Convolutional neural network � Motor

1 Introduction

Motors have been widely used as key machine compo-

nents for the production of torque. Any motor failure

will cause unwanted downtime, expensive repair proce-

dures, and even human casualties. As an effective

component of condition-based maintenance, fault diag-

nosis has gained much attention to guarantee safe motor

operations [1].

Motor conditions can be reflected by vibratory [2],

acoustic [3], thermal [4], and electrical [5] measure-

ments, among others. To fully inspect the health condi-

tion of motors, condition monitoring systems are used to

collect real-time data from machines, therefore, high

amounts of data are acquired after prolonged motor

operation [6]. As the data is generally collected faster

than diagnosticians can analyze it, there is an urgent

need for diagnosis methods that can effectively analyze

massive amounts of data and provide accurate diagnosis

results automatically. These types of methods are called

intelligent fault diagnosis methods. Glowacz [7] pro-

posed a motor fault analysis technique for acoustic sig-

nals using the Coiflet wavelet transform and K-nearest

neighbor classifier. Zhao, et al. [8] used the wavelet

analysis method for decomposing the vibration
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acceleration signal of the motor, to obtain the energy

ratio of each sub-frequency band. Then, they used the

energy ratio to train the optimized support vector

machine (SVM). Li, et al. [9] proposed a fault diagnosis

method for an asynchronous motor, which was based on

kernel principal component analysis and particle swarm

SVM. For other diagnostic objects, Pandya, et al. [10]

utilized multinomial logistic regression and wavelet

packet transform to diagnose bearing faults. Khazaee,

et al. [11] developed a fault classifier using the fusion of

vibration data and acoustic signals for planetary gear-

boxes based on the Dempster-Shafer evidence theory.

However, some obvious deficiencies were discovered by

carrying out a literature review. The features input to the

classifiers were extracted and selected by diagnosticians

from measured signals largely depending on prior

knowledge about signal processing techniques and

diagnostic expertise. In addition, manual feature extrac-

tion often makes raw signals lose a certain part. Thus, it

is necessary to adaptively mine the characteristics hidden

in measured signals to reflect the different health con-

ditions of the machinery, instead of manually extracting

and selecting features.

Deep learning has the potential to overcome the

aforementioned deficiencies in current intelligent diag-

nosis methods. In 2006, Hinton, et al. [12] proposed a

deep learning method for the first time, and it set off a

wave of interest in deep learning, in the academic and

industrial fields. Presently, deep learning shows a clear

advantage in processing large data volumes of images

and speech [13]. Krizhevsky, et al. [14] developed a

DNN-based method, in a large-scale visual recognition

challenge, which involved millions of labeled images,

and obtained the best results. In 2012, Hinton, et al. [13]

made significant progress in speech recognition using

deep neural networks, and the training data reached 3000

h. The aforementioned applications prove that deep

learning is a promising tool in dealing with massive

amounts of data. Deep learning has also been applied in

the field of mechanical fault diagnosis. Li, et al. [15]

utilized singular value decomposition and deep belief

networks in building a fault diagnosis system for rolling

bearings. The system achieved a satisfactory result. Feng,

et al. [16] proposed a new method for gear fault diag-

nosis. Using this method, they established a stacked auto-

encoder network and then utilized the frequency domain

as input, to train the network and realize gear fault

diagnosis. Considering the similarity between the health

states of complex rotary machinery components and

heterogeneous data, in image pattern classification prob-

lems with high-dimensionality, deep learning methods

may show considerable potential in system fault diagno-

sis, with respect to the advantage of a dominant training

mechanism and deep learning architecture [17]. In addi-

tion, deep learning is thought capable of discovering

useful high-order feature representations, as well as the

relevance of raw signals, which motivate the emergence

of promising applications for addressing, effectively and

accurately, diagnosis problems encountered during clas-

sification tasks with complex and mixed system health

states [18]. Recent theoretical studies have also explored

the concept of deep hierarchical architectures needing to

yield a new point for complex distributions, to achieve a

better and more robust generalization performance in

challenging recognition tasks [19, 20]. However, although

there exists considerable potential, as well as a crucial

need to address these challenges by utilizing the advan-

tages of deep learning techniques, these are still rarely

applied incurrent fault diagnosis research of electrome-

chanical systems [21].

In this study, a deep learning method based on short-

time Fourier transform (STFT) [22] and a convolutional

neural network (CNN) is proposed with respect to complex

sensory signals and ambient influence. The raw signal was

converted into a time frequency map using STFT. Subse-

quently, the time frequency map was used as input to the

CNN, where it utilized these preprocessed samples for

carrying out supervised training to realize motor fault

diagnosis. The proposed deep learning methods were val-

idated using testing datasets. The fault diagnosis accuracy

of the proposed deep learning method can be used to form a

knowledge base for determining if the approach is appli-

cable to detecting and classifying the health states of

complex systems with inevitable interference. Existing

health state classification methods, such as SVM, were

used for comparison.

This paper is organized as follows: CNN methods are

introduced in Section 2. In Section 3, a description of data

preprocessing and model design is provided. In Section 4,

the proposed model is validated using test datasets col-

lected from the drivetrain diagnostics simulator system.

Moreover, in this section, an investigation of parameter

selection and feature visualization is discussed, and a

comparison to other methods is made. In Section 5, the

paper is concluded.

2 Convolutional Neural Network

A CNN is a recently developed and highly effective

recognition method, which has attracted much attention.

A CNN can input the original image directly and avoid its

complicated pretreatment. Additionally, a CNN is highly

invariant to image information in the form of translation,

scaling, inclination, or other deformation, owing to its local

receptive field, weight sharing, and down sampling.
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Therefore, it has been widely used because of the above

mentioned advantages.

A CNN comprises multiple sub-convolutional neural

networks (sub-CNNs, as shown in Figure 1). The network

consists of a set of layers, each of which contains one or

more planes. In the first sub-CNN, pre-processed images

are entered in the input layer. To other sub-CNNs, the

output feature map of the previous layer will be the input of

the next sub-CNN. The output feature map of the last sub-

CNN is connected to the fully connected layer and the

classifier, which is used for the recognition of images,

speech, and so on.

2.1 Convolutional Layer

Natural images have inherent features, such as features

obtained from an image sub-block, after learning. These

features can be applied as a filter to all sub-blocks. Then, we

can obtain the activation values of different sub-blocks. The

convolution in a CNN uses these inherent image features.

There are two important basic concepts in convolutional

computation; namely, local receptive fields and shared

weights. In the CNN, we take the input layer as a two-

dimensional matrix, such as the input in Figure 1. Each

unit in a plane receives input from a small neighborhood in

the planes of the previous layer. The weights forming the

receptive field for a plane are forced to be equal at all

points in the plane. Each plane can be considered a feature

map with a fixed feature detector convolved with a local

window, which is scanned over the planes in the previous

layer. Multiple planes are usually used in each layer so that

multiple features can be detected. These layers are called

convolutional layers [23].

In Figure 1, eight 3 9 3 convolutional kernels are used

to convolute the 10910 input feature map. Eight feature

maps, with a size of 8 9 8, were obtained. The general

form of the convolution operation is as expressed by

Eq. (1).

x ¼ f
X

x � wij þ b
� �

; ð1Þ

where, * stands for the operator of the two-dimensional

discrete convolution, b is the bias vector, wij and x denote

the convolution kernel and the input feature map, respec-

tively. f �f g represents the activation function.

2.2 Pooling

After the processing of the convolutional layer, the number

of feature images is increased, making the feature dimen-

sion very large. This makes it easy to cause the curse of

dimensionality. Therefore, to solve this problem, we used

aggregate statistics for the feature maps obtained by the

convolutional layer. Accordingly, it became more conve-

nient to describe the high dimensional image. This aggre-

gation operation is called pooling. The pooling operation

reduces the resolution of the output feature map, and can

still better retain the features extracted from the high-res-

olution feature maps. The general form of the down sam-

pling is expressed by Eq. (2).

x = f (bdown(x) + b), ð2Þ

where, b is the multiplicative bias term, down(x) is the

pooling function, b is the additive bias vector, and f ð�Þ is

the activation function.

As shown in Figure 1, the eight 898 feature maps are

obtained by the convolution of input feature maps. The

eight 4 9 4 feature maps are obtained after pooling so that

the dimension of the feature maps is reduced.

2.3 Fully Connected Layer

All the neurons in the fully connected layer are connected

to all neurons in the feature maps of the upper layer, whose

output is expressed by Eq. (3).

h(x) = f (wx + b), ð3Þ

where, x is the input of the fully connected layer, hðxÞ
represents the output of the fully connected layer, w and

b denote the weight and the additive bias term, and

f ð�Þ represents the activation function.

To prevent over fitting in the classification, the ‘‘dropout’’

method, in the fully connected layer, is usually introduced. In

the training, we normally let some neurons in the hidden layer

stop working, with a certain probability P, to improve the

generalization ability and prevent over fitting.

2.4 Classifier

Softmax [24] is the generalization of the logistic classifier,

mainly for solving the multi-classification problem. If we

suppose that the input sample in the training data is x and that

the corresponding label is y, it will determine the sample

j probability for the category pðy ¼ jjxÞ. Thus, for a class

K classifier, the output will be a vector of the K-dimension

(the sum of elements in a vector is 1), as shown by Eq. (4).

Input 
10×10

After convolution
8×8×8 After pooling

8×4×4

Convolution Pooling

Convolution 
kernel 

Figure 1 Sub-convolutional neural network
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where, h1; h2; � � � ; hk;2 <nþ1are the parameters of our

model. Note that the term 1Pk

j¼1
e
hT
j
xðiÞ

normalizes the distri-

bution, so that it sums to one.

In the training, after using the gradient descent method,

the cost function of Softmax can be minimized by several

iterations, to complete network training. The cost function

JðhÞis expressed by Eq. (5).

JðhÞ ¼ � 1

m

Xm

i¼1

Xk

j¼1

1 yi ¼ j
� �

log
eh

T
j x

ðiÞ

P
k
l¼1e

hTj x
ðiÞ

" #
; ð5Þ

where 1 �f g is an indicative function, which means that,

when the value of the braces is true, the result is 1;

otherwise, the result is 0.

When training the CNN, the most common approach is

to use the back-propagation rule and supervised training

methods. The error term is generated based on comparison

between the given label and the classifier’s output.

According to the concept of back-propagation, the error

can be transferred to each node, layer by layer, and we can

also update the weight (the specific weight updating

equation is thoroughly explained in Ref. [25]). The error

Figure 2 Pretreatment of

original signal

Input
100×100×3

Convolution
16×98×98

Convolution
16×96×96

Convolution
32×46×46 Fully connected

64
Softmax

7

Convolution
32×44×44

Pooling
32×22×22

C1 C2 C3 C4 P2

Pooling
16×48×48

Fully connected
256

P1 F1 F2 Softmax

Figure 3 Convolutional neural network

Start

Signal collecting

Obtain the time frequency 
diagram by short time Fourier 

transform

Sample pretreatment

Set up network
initialization parameters

Forward propagation 
computation the error

Back propagation
modify the weights

convergence?

Meet the 
requirements?

Output network for motor fault 
diagnosis

N

N

Y

Y

End

Figure 4 Flow chart of motor fault diagnosis

Figure 5 Drivetrain diagnostics simulator system
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term becomes smaller and smaller, through repeated iter-

ation, and the weights also become increasingly more

stable, for the network to be trained.

3 Data Preprocessing and Model Design

Under this method, we have to pre-process the raw signal

and convert it to an image format. The input of the CNN

should be a matrix of type [m, n, k]. In the field of image

processing, the k value is usually 3 and represents the three

channels of the color image. To deal with the one-dimen-

sional signal using the CNN method, it is necessary to carry

out data preprocessing and convert the signal into an [m, n,

k] matrix. Therefore, the conversion of a signal into a time-

frequency map is an alternative approach. The general

time-frequency analysis method includes STFT, wavelet

transformation, and so on. In this paper, STFT is used for

time-frequency analysis. In the comparative analysis sec-

tion, another pretreatment method called wavelet transform

[26] is compared to STFT. The specific operation is as

shown below.

First, the STFT is used to convert the signal, shown in

Figure 2(a), into a time-frequency map, as shown in

Figure 2(b). Subsequently, we can obtain the rectangle,

shown in Figure 2(b). To reduce the amount of calcu-

lation and facilitate the training of the CNN, the map is

compressed into a 100 9 100 square, as shown in

Figure 2(c).

After simple pretreatment, the time-frequency map can

be used to train the neural network. In the CNN model, as

shown in Figure 3, C1, C2, C3, and C4 are convolutional

layers (the convolution kernel size used in the convolu-

tional layer is 3 9 3); P1 and P2 are down sampling layers

(the down sampling layer uses the maximum down sam-

pling method, with the sampling unit being 2 9 2). F1 and

F2 are the fully connected layers and Softmax is the clas-

sification layer.

The motor fault diagnosis process is shown in Figure 4.

4 Experiment and Analysis

4.1 Data Description

The motor data used in these experiments were collected

from the asynchronous motor in the drivetrain diagnostics

simulator system (Figure 5). It contains a two-stage plan-

etary gearbox, two-stage fixed-axis gear box, 3-hp motor

for driving the gearboxes, and magnetic brake for loading.

The acceleration sensor was installed on the motor and

used to acquire vibration signals at a sampling frequency of

5.12 kHz.

Seven experiments were carried out under different

motor health conditions (given in Table 1). These condi-

tions involve normal, built-in rotor imbalance, stator

winding faults, built-in faulted bearing, built-in bowed

rotor, built-in broken rotor bars, and voltage imbalance and

single phasing. In each experiment, a damaged motor was

installed inside the test rig and the other components were

normal.

Rotor imbalance was achieved by taking a balanced

rotor from the manufacturer and intentionally removing the

balance weights and/or by adding weight. The balance

weights were attached to small aluminum pins protruding

from both rotor ends. The bowed rotor motor consisted of a

motor with an intentionally bent rotor in the center. The

faulted bearing motor consisted of a motor with inten-

tionally faulted bearings: one bearing with an inner race

fault and one bearing with an outer race fault. The broken

Table 1 Seven motor states

Motor state CNN sample

number

Label One hot

coding

Normal 2000 1 1000000

Built-in rotor imbalance 2000 2 0100000

Stator winding faults 2000 3 0010000

Built-in faulted bearing 2000 4 0001000

Built-in bowed rotor 2000 5 0000100

Built-in broken rotor bars 2000 6 0000010

Voltage imbalance and

single phase

2000 7 0000001

Table 2 Loss and accuracy under different learning rates

Learning rate Train-loss Test-loss Train-acc Test-acc

0.00001 1.3525 1.3109 0.5709 0.5562

0.00005 0.0625 0.0442 0.98 0.9962

0.0001 0.0137 0.0107 0.9996 0.9998

0.0002 0.0031 0.0033 0.9999 1

0.0003 0.0018 0.0016 1 1

0.0004 0.0012 0.0012 1 1

0.0005 0.00091 0.00056 1 1

0.0006 0.0015 0.00045 0.9995 1

0.0007 0.00065 0.0004 1 1

0.0008 0.00038 0.00035 1 1

0.0009 0.0003 0.00022 1 1

0.001 0.00026 0.00028 1 1

0.0015 0.00018 0.00018 1 1

0.005 0.000048 0.00018 1 1

0.007 1.6101 1.6097 0.2042 0.1994

0.009 1.6109 1.611 0.2002 0.1962

0.01 1.6101 1.6114 0.2072 0.2
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rotor bar motor consisted of a motor already fitted with an

intentionally broken rotor bar. Enough material was

removed to expose three rotor bars. The motor had two

windings, with a voltage difference ranging from 4 V to 5

V, which was tapped to allow the addition of an extra load

to the winding, via an external control box. The control box

consisted of a 0–4 X variable resistor. The variable resistor,

or rheostat, was used to introduce varying amounts of

resistance, in the turn-to-turn short, between the windings.

High resistance simulated an insulated winding, while low

resistance simulated a shorted winding. Phase loss and

voltage imbalance was achieved by switching phases on

and off, and by introducing resistance using a control box,

by simply connecting the wire from the motor controller to

the control box, and then by connecting the control box to

the machinery fault simulator. The phase loss switch

opened the circuit to the first phase; the voltage control

switch introduced a variable resistor of 0–25 X to the

second phase; the third phase wiring remained untouched.

Samples amounting to 2000 were collected for each

fault in the CNN method, with the length of each signal

being 5 s. We randomly selected 20% of them as test

samples, and the rest as a training samples.

4.2 Selection of CNN Parameters

When training the CNN, it is important to choose the right

parameters. The parameters are different for different

sample sets. Adjusting the parameters to find the appro-

priate parameters of the corresponding sample set is an

important link in the CNN training process.

4.2.1 Learning rate

In the process of training the CNN, the gradient descent

method was used for optimization. The learning rate is an

important parameter, which influences the adjustment of

weights and error convergence. To improve the efficiency

of network training, it is very important to select a suit-

able learning rate. In this experiment, different learning

rates were used to train the CNN, and we obtained different

loss and accuracy as shown in Table 2.

From Figures 6 and 7, we can see that, if the learning

rate is too large or too small, training and testing accuracy

will be reduced with the CNN method. On the contrary, by

choosing an appropriate learning rate, we can speed up the

convergence of the CNN network and improve its accu-

racy. In this experiment, the optimized learning rate was

determined as 0.005.

4.2.2 Batch-size

When training the CNN, we can not let all the samples

be used for network training concurrently, due to the

large size of sample data, restrictions on computer

configuration, and other conditions. Therefore, it is

Figure 6 Loss under different learning rates; b is the enlargement of

the dotted line in (a)
Figure 7 Accuracy under different learning rates; b is the enlarge-

ment of the dotted line in (a)
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usually preferable to divide the sample into blocks of

moderate size. The size of this block is called batch-size

[27]. In this experiment, we used different batch-sizes to

train the CNN. The other parameters were the same, and

the iteration was 1. The loss, accuracy, and time cost are

shown in Table 3.

From Figures 8, 9, and 10, it can be seen that when the

batch-size is very small, the network training and testing

accuracy is very high. However, it takes a longer time to

carry out one iteration. As the batch-size becomes larger

(especially when the batch-size is greater than 20), training

and testing accuracy is progressively reduced; however, the

time required for one iteration is also progressively

reduced. By carrying out a comprehensive comparison with

regard to the above situation, we found that when the

batch-size is 20, we could not only ensure accuracy, but

also reduce training time.

Finally, the pre-processed time-frequency map is input

into the CNN model (learning rate is 0.005, and batch-size

is 20) as shown in Figure 3. Figure 11 shows the training

loss and accuracy after many iterations. Diagnostic accu-

racy becomes 100%. This shows that the STFT method

combined with CNN, can effectively identify motor faults

and achieve diagnose them intelligently.

4.3 Investigation of Feature Visualization

To further clarify the advantages of the CNN, we carried

out feature visualization with the input samples of different

faults using the trained network. Here, we selected done

sample for each fault, as shown in Figure 12. Then, we put

these seven samples into the trained CNN to make a

prediction.

4.3.1 Investigation of Convolutional Layer

The first convolutional layer filters the 100 9 100 9 3

input image with sixteen 3 9 3 9 3 sized kernels, with a

stride of 1 pixel (this is the distance between the receptive

field centers of neighboring neurons in a kernel map). We

printed the 16 kernels in the first convolutional layer

(Figure 13). Due to the smaller size of the convolution

kernel, it is difficult to find practical significance; therefore,

we printed the feature maps exported from the first con-

volutional layer. As shown in Figure 14, each feature map

corresponds to a different fault; therefore, it was easy to

find the difference between these maps. Consequently, the

16 convolution kernels can effectively extract different

features of different faults. In addition, we also printed the

feature maps obtained by the second convolutional layer

(Figure 15). From these 7 maps, we can clearly find their

differences. It is obvious that the convolution kernels (fil-

ters), which were obtained by network training, are

Table 3 Loss, accuracy and time cost under different batch-size

Batch-size Train-

loss

Test-loss Train-

acc

Test-acc Time cost(s)

1 0.0597 0.000074 0.9788 1 828

2 0.1105 0.000076 0.9552 1 484

4 0.1369 0.000076 0.9477 1 278

5 0.1585 0.000085 0.9391 1 240

10 0.2468 0.0031 0.9123 1 154

20 0.7756 0.0306 0.7314 0.999 123

40 0.7718 0.0456 0.7632 0.9774 77

50 1.1889 0.3048 0.59 0.9732 73

80 1.3441 0.8301 0.5319 0.7982 62

100 1.5499 1.4332 0.3985 0.5704 60

200 1.5572 1.48 0.421 0.556 52

400 1.5767 1.5119 0.3995 0.6136 48

500 1.593 1.5536 0.3446 0.548 50

Figure 8 Loss under different batch-size

Figure 9 Accuracy under different batch-size

Figure 10 Time cost under different batch-size
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effective, and that they learned the features in the input

images. They were able to map different feature maps for

different faults.

4.3.2 Investigation of Fully Connected Layer

To study the features extracted by the fully connected

layer, we took out the output of the first fully connected

layer, which had 256 neurons, under the seven samples,

and obtained seven 1 9 256 vector sets, corresponding to

seven types of faults. Then, we sought the Pearson corre-

lation coefficient between any two of these 7 vectors. The

result is shown in Table 5, and the Pearson correlation

coefficient [28] is expressed by Eq. (6).

r ¼
P

X � X
� �

Y � Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X � X
� �2P

Y � Y
� �2q

							

							
; ð6Þ

where X and Y represent the two vectors used for com-

parison. To facilitate observation, we obtain the absolute

value of the correlation coefficient.

From Table 4, we excluded the correlation coefficient

between the same diagonal samples. The maximum cor-

relation coefficient is only 0.42 and represents moderate

correlation. Next, we drew a heat-map (Figure 16) using

the data in Table 4. By combining the color distribution in

the heat-map, it can be seen that the Pearson correlation

coefficients are generally lower than 0.3, and that a

Figure 11 Training loss and accuracy

1 2 3 4 5 6 7

Figure 12 The 7 fault samples

Figure 13 16 convolutional 3 9 3 9 3 sized kernels learned by the

first convolutional layer on the 100 9 100 9 3 input images

Figure 14 Feature maps of C1

Figure 15 Feature maps of C2
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significant part of them is lower than 0.1. Obviously, there

is a considerable gap between the output features, if dif-

ferent faults exist in this fully connected layer.

Finally, because the training set label used one-hot

coding, and the sample classification number was 7, in the

1� 7 vector of the fully connected layer output, the posi-

tion of the maximum component is the result of network

output. Therefore, we took out the output feature of the last

fully connected layer with 7 samples. Then, we drew the

heat-map of each sample (Figure 17). It is obvious that the

position of the maximum component corresponds the cor-

rect sample classification result.

4.4 Comparative Analysis

Feature extraction and pattern recognition are the two main

processes of motor fault diagnosis. Presently, the main

methods of feature extraction are wavelet analysis,

empirical mode decomposition, and principal component

analysis. We can also carry out feature extraction by ana-

lyzing the average motor signal variance, kurtosis, peak

value, and energy ratio. The methods commonly used in

motor fault diagnosis are BP neural network and SVM.

In this study, for comparison to traditional intelligent

methods, we used empirical mode decomposition (EMD)

? SVM [29], PCA ? SVM [30], and diagnosis features ?

Table 4 Pearson correlation coefficient with output of 7 fully con-

nected layer samples

Sample 1 2 3 4 5 6 7

1 1.00 0.15 0.19 0.04 0.06 0.42 0.16

2 0.15 1.00 0.31 0.12 0.03 0.30 0.09

3 0.19 0.31 1.00 0.03 0.05 0.01 0.13

4 0.04 0.12 0.03 1.00 0.24 0.21 0.41

5 0.06 0.03 0.05 0.24 1.00 0.05 0.08

6 0.42 0.30 0.01 0.21 0.05 1.00 0.14

7 0.16 0.09 0.13 0.41 0.08 0.14 1.00

Figure 16 Pearson correlation coefficient with output of 7 fully

connected layer samples (0.0–0.2: extremely weak correlation or no

correlation; 0.2–0.4: weak correlation; 0.4–0.6: moderate correlation;

0.6–0.8: strong correlation; 0.8–1: extremely strong correlation)

Figure 17 The 7 output features of the last fully connected layer

with 7 samples
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SVM, to carry out motor fault diagnosis. Moreover, the

stacked de-noising auto-encoder [21] (SDAE) may also be

used, for contrast, and as a common time-frequency anal-

ysis method, the wavelet transform ? CNN method may

also be used for comparison. The results are given in

Table 5.

PCA is essentially a linear method, which is weak in

dealing with nonlinear problems. Therefore, the PCA and

SVM method had an unsatisfactory effect and its diag-

nostic accuracy was only 30.52%. EMD can adaptively

decompose signals. The diagnostic accuracy of

EMD ? SVM, and diagnostic features ? SVM, were

93.67% and 95.05%, respectively. In the above methods,

the radial basis function (RBF) was used. In the field of

deep learning, SDAE is a popular unsupervised network

model. We used different fault frequency domain signals as

input samples and the length of each input was 2000. The

SDAE network structure was [2000, 100, 100, 50, 7], with

three hidden layers, the number of nodes in each layer was

100, 100, and 50, respectively. The used batch-size was 35,

the sparsity criterion was 0.1, and the learning rate was 0.5.

Due to the deep learning model’s strong representation

capability, the accuracy of the SDAE in the data set was

also very high, reaching up to 99.9048%. We also used the

wavelet transform, using the Morlet wavelet with a band-

width parameter and a center frequency of 4, to transform

the original signal into a time spectrum diagram. Then, we

used these pre-processed data to train the same CNN net-

work. The test set classification results also reached 100%.

Thereby, we proved the effectiveness of the method in

converting the one-dimensional signal to a time spectrum

diagram.

The running time of the algorithm is an important

parameter. For traditional feature extraction methods, the

process of feature extraction often consumes a lot of time.

Thanks to the low dimensionality of the extracted features,

the training time of the traditional classifier was very short.

However, in deep learning methods, the input data of the

network usually performs only simple pretreatment, and,

therefore, the dimension was very large. Moreover, the

network has a lot of weight; therefore, The SDAE method

takes 1030 s for 300 iterations. Due to using a GPU for

training the CNN, the training time of the CNN was

reduced to an acceptable value.

4.5 Industrial Implementation Plan

In this paper, a method for offline fault diagnosis was

described. The object of this experiment was the drivetrain

diagnostics simulator system. When the diagnostic object

was changed to other motors, the signal of the motor under

different faults was required. Then, these data were used as

the input to fine-tune the trained CNN. If we can obtain

different fault signals from different types of motors, and

put this huge amount of data into a deeper and more

complex network, then the network model will be more

meaningful. Due to the huge amount of data, the training of

the CNN may be time-consuming; however, it is worth-

while to invest a significant amount of time in the training

of an excellent network model. Moreover, when using the

trained model to classify the unknown signal, only one

forward operation is required. Under our experimental

environment, it takes only 2 s to complete the classification

of the 2800 test samples. Therefore, the trained network

can be used in industrial applications.

5 Conclusions

In this paper, we reported a deep learning method for motor

fault diagnosis using a CNN. Prior to network training, we

preprocessed the original signal and converted it to a time-

frequency map by STFT. By selecting different training

parameters, an optimal one could be obtained to achieve a

test set accuracy of up to 100%. Through the diagnosis

results of comparative experiments, we found that the

proposed deep learning method was able to adaptively

mine salient fault characteristics and effectively identify

Table 5 Results of different fault diagnosis methods for motors

Method Sample Sample number Diagnostic accuracy

PCA ? SVM Time domain signal 9100 30.52%

EMD ? SVM Time domain signal 9100 93.67%

Diagnostic Features ? SVM Time domain signal 9100 95.05%

SDAE Frequency signal 9100 99.9048%

STFT ? CNN Time spectrum diagram 14000 100%

Wavelet ? CNN Time spectrum diagram 14000 100%
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the health states with high diagnosis accuracy. After

investigating feature visualization and carrying out a

comparison against traditional diagnosis algorithms, the

main advantage of the proposed method was found to be

that the fault features were learned via a general-purpose

learning procedure, instead of being hand-engineered or

having prior knowledge of signal processing techniques,

which is easy to apply to diagnosis issues.

Future work will include more experimental tests to

further understand the limitations of the SFFT and CNN

methods, particularly regarding some more complex faults,

such as rolling bearings, gears, and even composite faults.

Additionally, in this study, we used a fixed network

architecture. However, this is still an open problem for

optimal parameter determination, particularly when a

deeper architecture is employed, or another completely

different fault is investigated.
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