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Abstract Induction motors (IMs) are commonly used in

various industrial applications. To improve energy con-

sumption efficiency, a reliable IM health condition moni-

toring system is very useful to detect IM fault at its earliest

stage to prevent operation degradation, and malfunction of

IMs. An intelligent harmonic synthesis technique is pro-

posed in this work to conduct incipient air-gap eccentricity

fault detection in IMs. The fault harmonic series are syn-

thesized to enhance fault features. Fault related local

spectra are processed to derive fault indicators for IM air-

gap eccentricity diagnosis. The effectiveness of the pro-

posed harmonic synthesis technique is examined experi-

mentally by IMs with static air-gap eccentricity and

dynamic air-gap eccentricity states under different load

conditions. Test results show that the developed harmonic

synthesis technique can extract fault features effectively for

initial IM air-gap eccentricity fault detection.

Keywords Air-gap eccentricity � Current signal � Fault
detection � Induction motor

1 Introduction

Induction motors (IMs) are commonly used in various

industrial applications. Furthermore, IMs consume about

50% of the generated electrical energy in the world [1]. IM

defects will lead to low productivity and inefficient energy

consumption. Endeavors have been put, for decades, to

improve IM operation accuracy and IM driven industrial

process efficiency. In industrial maintenance applications,

for example, an efficient and reliable IM condition monitor

is very useful to detect an IM defect at its earliest stage to

prevent malfunction of IMs and reduce maintenance cost.

In general, air-gap eccentricity is classified as static

eccentricity, dynamic eccentricity, as well as mixed

eccentricity of these two types [2]. In static air-gap

eccentricity, geometric axis of rotor rotation is not the

geometric axis of the stator, and position of the minimal

radial air-gap length is fixed in space. In dynamic air-gap

eccentricity, the rotor rotates around the geometric axis of

the stator, where the position of the minimum air-gap

length rotates with the rotor. In a particular case of static

air-gap eccentricity, rotor geometric axis is not parallel to

stator geometric axis; the degree of eccentricity gradually

changes along stator axis, which is inclined static eccen-

tricity [3]. IM air-gap eccentricity defects could result in

unbalanced magnetic pull, bearing damage, excessive

vibration and noise, and even stator-rotor rub failure [4].

Correspondingly, this work will focus on initial IM fault

detection of static eccentricity and dynamic eccentricity.

Recently, many research efforts have been undertaken to

diagnose IM air-gap eccentricity fault using stator current

signals due to their low cost and ease of implementation

[5, 6]. For example, Blödt et al. [7] presented a Wigner

distribution method to analyze stator current signals and

diagnose IM eccentricity fault. Akin et al. [8] conducted
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real-time eccentricity fault detection using reference frame

theory. Bossio et al. [9] employed additional excitation to

reveal information about air-gap eccentricity fault. Alarcon

et al. [10] applied notch finite-impulse response filter and

Wigner-Ville Distribution to study rotor asymmetries and

mixed eccentricities. Faiz et al. [11] employed instanta-

neous power harmonics to detect mixed IM eccentricity

defect. Huang et al. [12] applied an artificial neural net-

work for the detection of rotor eccentricity faults. Esfahani

et al. [13] utilized the Hilbert-Huang transform to detect

IM eccentricity fault. Nandi et al. [14] studied the eccen-

tricity fault related harmonics with different rotor cages.

Riera-Guasp et al. [15] applied Gabor analysis for transient

current signals to detect eccentricity fault. Park and Hur

[16] analyzed specific frequency patterns of the stator

current to detect dynamic eccentricity fault. Mirimani et al.

[17] presented an online diagnostic method for static

eccentricity fault detection. Some intelligent tools based on

soft computing and pattern classification were also used for

motor fault diagnosis in Refs. [18–20], in order to explore

patterns of the features. These aforementioned techniques,

however, cannot thoroughly explore the relations among

massive fault harmonic series in the current spectrum,

which may degrade fault detection accuracy.

To tackle the aforementioned problems with IM fault

detection using current signals, a harmonic synthesis (HS)

technique is proposed in this work for incipient IM

eccentricity fault detection. The contributions of the pro-

posed HS technique lie in the following aspects: 1) a novel

synthesis approach is proposed to integrate several fault

harmonic series to recognize fault related features; 2) fault

indicators are properly derived from local spectra for IM

health condition monitoring. The effectiveness of the pro-

posed HS technique for IM eccentricity defect detection is

verified experimentally under different IM conditions.

The remainder of this paper is organized as follows. The

proposed HS technique is discussed in Section 2. Effec-

tiveness of the HS technique for IM air-gap eccentricity

fault detection is examined experimentally in Section 3.

Finally, some concluding remarks of this study are sum-

marized in Section 4.

2 The Proposed HS Technique for IM Eccentricity
Fault Detection

The proposed HS technique is composed of two proce-

dures: harmonic series processing (HSP) and local spectra

analysis (LSA). The HSP is to synthesize the fault related

features in the spectrum, whereas LSA is to extract fault

indicators for incipient IM air-gap eccentricity fault

detection.

2.1 Harmonic Series Processing

In stator current signal based IM fault detection, the

characteristic frequency components fe in Hz used to detect

static and dynamic eccentricity defects [21] are given by

fe ¼ fs kR� að Þ 1� s

p
� b

� �

¼ kR� að Þfr � bfs

ð1Þ

where fs is the supply frequency in Hz; R is the number of

rotor slots; s is the slip; fr is the rotor rotating speed; k = 1,

2, 3, …; p is the number of pole pairs; b ¼ 1; 3; 5; . . . is
the order of the stator time harmonics; a is the eccentricity

order: a ¼ 0 denotes static eccentricity and a ¼ 1 denotes

dynamic eccentricity.

The Kth order fault harmonic series fe_K will be

fe K ¼ fo K þ bfs; b ¼ 1; 3; 5; . . . ð2Þ

where the Kth order origin frequency component fo K is

fo K ¼ kR� að Þfr ð3Þ

To explore the relationship among different fault har-

monic series, the fault harmonic series of interest are

synthesized to reveal fault characteristic features. If the

first P fault harmonics (b = 1, 3, 5, …, 2P–1) are con-

sidered for synthesis, the harmonic frequency band corre-

sponding to the Kth fault harmonic series will be extracted

as

qK ¼ fo K ; fo K þ 2Pfs½ � ð4Þ

and the bandwidth in Hz is 2Pfs ?1.

To synthesize fault harmonic series, the frequency bands

are converted to a discrete-point domain representation.

The discrete-point closest to fo K is considered as the first

discrete-point in qK, defined as Dk{1}. Suppose uf discrete

data points represent unit frequency distance in the spec-

trum, the bandwidth of Eq. (4) in discrete-point domain

will be formulated as

Bw ¼ 2Pfs þ 1h iuf ð5Þ

where �h i denotes the integer function. Then the harmonic

frequency band of Eq. (4) in the discrete-point domain will

be

DKfig; i ¼ 1; 2; 3; . . .;Bw ð6Þ

The root-mean-square (RMS) operation is applied to

synthesize harmonic frequency bands. Given the harmonic

frequency bands of M interested fault harmonic series, the

ith component in the synthesized spectrum v will be

derived as

v if g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j¼1 Dj if g2

M

s
i ¼ 1; 2; 3; . . .;Bw ð7Þ
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2.2 Local Spectra Analysis

The mth harmonic (b = 2 m–1) of the Kth order fault

harmonic series will be derived from Eq. (2),

fK;m ¼ fo K þ 2m� 1ð Þfs ð8Þ

Through the synthesis operation in Eq. (7), the mth fault

harmonic over all M harmonic frequency bands is synthe-

sized to form a new fault frequency component. Then the

mth synthesized fault frequency component in the discrete-

point domain will be derived in the synthesized spectrum

by the following representation:

v 1þ 2m� 1ð Þfsuf
� �

ð9Þ

The local spectra encompassing the mth synthesized

fault frequency component will be

v 1þ 2m� 1ð Þfsuf � duf
� �

; v 1þ 2m� 1ð Þfsuf þ duf
� �� �

ð10Þ

where d is the half bandwidth of the local spectra in the

frequency domain. The mean value of this local spectrum

is the fault indicator regarding the mth synthesized fault

frequency component, denoted by Fm.

To illustrate the operation of the proposed HSP and LSA

processes, a simulated current spectrum with three air-gap

eccentricity frequency harmonic series is illustrated in

Figure 1. It is normalized by deducting mean and then

being divided by its standard deviation. In Figure 1, the

black arrow points 50 Hz supply frequency; magenta

arrows with number 1, green arrows with number 2 and

yellow arrows with number 3 denote three fault harmonic

series respectively. The origin frequency components fo K

are 114.1 Hz, 142.4 Hz, and 170.7 Hz, respectively. The

harmonics of defect features are computed using Eq. (2)

with fs = 50 Hz and b = 1, 3, 5, 7, 9. Figure 1 shows that

some fault characteristic frequency components are buried

in the spectrum, and it is difficult to predict which char-

acteristic frequency components will protrude in the

spectrum. The extracted frequency bands represented in

Eq. (6) of three fault harmonic series, and synthesized

spectrum represented in Eq. (7) with fault related local

spectra are demonstrated in Figure 2. The dashed vertical

lines indicate the boundaries of local spectra encompassing

synthesized fault frequency components. Figures 2(a), 2(b)

and 2(c) represent three frequency bands computed by

Eq. (4) with staring frequencies fo K being 114.1 Hz,

142.4 Hz, and 170.7 Hz, respectively. Figure 2(d) shows

results of the synchronization of spectra in Figures 2(a),

2(b) and 2(c) using root-mean-square calculation using

Eq. (7). It is seen from Figure 2(d) that the fault charac-

teristic features can be highlighted in the spectrum after the

HSP operation, which could be used for IM fault detection.

In this simulation, the supply frequency fs = 50 Hz; fo K is

the starting point of the spectrum in Figure 2(d). Based on

Eqs. (2) and (3), the fault frequencies in Figure 2(d) should

appear at 50 Hz, 150 Hz, 250 Hz, 350 Hz and 450 Hz. The

frequency components outside the boundaries of local

spectra are usually caused by the modulation of load

variation and supply frequency, and the synchronization of

different harmonic series local bands.

Figure 1 Simulated current spectrum with three air-gap eccentricity

characteristic harmonic series

Figure 2 The frequency bands: (a) the magenta-arrowed harmonic

series; (b) the green-arrowed harmonic series; (c) the yellow-arrowed

harmonic series; (d) the synthesized spectrum of the frequency bands

in (a), (b), and (c)
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If both static and dynamic eccentricities occur simulta-

neously, the following characteristic frequency compo-

nents could also be excited [22], given by

f 0e ¼ kfr � fsj j; k ¼ 1; 2; 3; . . . ð11Þ

The related harmonic series can be expressed as

f 0e1 ¼ kfr þ fs; k ¼ 1; 2; 3; . . . ð12Þ

f 0e2 ¼ kfr � fs; k ¼ 2; 3; . . . ð13Þ

The local spectra of the first Q harmonics in Eq. (12)

will be transformed to the discrete-point domain, and then

synthesized into one spectrum in RMS form using Eq. (7).

The mean value of the synthesized spectrum is considered

as a fault indicator denoted by Fd1. The fault indicator

derived from Eq. (13) will be denoted by Fd2.

3 Performance Evaluations

3.1 Overview

To examine the effectiveness of the proposed HS tech-

nique, a series of tests will be conducted for IM air-gap

eccentricity fault diagnosis using stator current signals.

This work focuses on both static and dynamic eccentricity

fault detection. The parameters of the proposed HS tech-

nique used in the following tests are given in Table 1. To

thoroughly analyze fault information, the first 20 fault

harmonic series (i.e., M = 5) are synthesized and the first

eight harmonics (P = 8) in the synthesized spectrum are

utilized to generate fault indicators Fm, m = 1, 2, …, 8.

The frequency band [0, 8000] Hz is used for analysis. To

analyze more informative fault features in harmonic series

in Eqs. (12) and (13), the first ten harmonics are used to

derive fault indicators Fd1 and Fd2. To capture the fault

features and exclude the interference nearby, the half

bandwidth of the local spectra is selected as 2 Hz.

To derive Fm for eccentricity fault detection, the coef-

ficient a = 0 in Eq. (3) is set for static eccentricity detec-

tion and a = 1 for dynamic eccentricity analysis. To

evaluate the effectiveness of the HS technique, the power

spectral density (PSD) is used for comparison. To imple-

ment PSD, the mean values of ten local bands are used as

fault indicators, whose half bandwidth is set as 2 Hz. Eight

of ten center frequencies of the local bands are calculated

using Eq. (1) with k = 1 and b = 1, 2,…, 8. The other two

center frequencies are computed using f 0e1 with k = 1 and

Table 1 Factors and their levels

fs/Hz P uf Q M d/Hz

50 8 3 10 5 2

Figure 3 IM experiment setup. 1. Tested IM; 2. Speed controller; 3.

Gearbox; 4. Load system; 5. Current sensors; 6. Data acquisition

system; 7. Computer

Table 2 Motor specifications

Phase Poles HP Connection Rotor bars Stator slots

3 2 1/3 Y 34 24

Table 3 Averaged successful rates (SR) of ten runs three-fold cross

validation in terms of static air-gap eccentricity fault diagnosis using

SVM (%)

Load level 0 20 50 70 100

PSD training SR 69.71 65.84 68.23 65.38 60.46

PSD test SR 65.97 61.49 65.52 61.66 53.57

HHT training SR 99.26 72.30 53.20 52.20 77.27

HHT test SR 98.41 71.59 48.76 51.20 74.99

CHS training SR 96.18 81.47 96.68 96.14 96.17

CHS test SR 94.54 78.92 95.79 94.73 95.77

HS training SR 100 100 99.56 100 97.87

HS test SR 100 100 99.20 100 97.28

Table 4 Averaged successful rates (SR) of ten runs three-fold cross

validation in terms of static air-gap eccentricity fault diagnosis using

LDA (%)

Load level 0 20 50 70 100

PSD training SR 73.09 69.41 68.37 71.07 68.47

PSD test SR 71.63 67.95 66.60 69.88 66.32

HHT training SR 93.13 72.94 66.87 67.92 77.96

HHT test SR 92.42 71.62 66.05 66.50 77.15

CHS training SR 95.98 80.79 96.69 94.47 93.57

CHS test SR 95.78 79.05 95.90 93.97 92.83

HS training SR 99.99 100 99.41 100 95.73

HS test SR 99.83 100 99.10 100 95.17

An Intelligent Harmonic Synthesis Technique for Air-Gap Eccentricity Fault Diagnosis in… 1299

123



f 0e2 with k = 2. In addition, a variant of the HS technique is

employed for comparison, in which the center character-

istic frequencies in the synthesized local spectra rather than

the mean values are utilized as fault indicators, and is

denoted by CHS. The frequency components in Eq. (9)

with m = 1, 2, …, 8, and the two center frequencies of the

synthesized local spectra derived from Eqs. (12) and (13),

respectively, are used as fault indicators of the CHS

method. The Hilbert-Huang transform (HHT) based fault

indicators [13] will be used for comparison. Since this

work focuses on the analysis of the current signal based

fault indicators, only the current signal related fault indi-

cators provided in Ref. [13] will be used for comparison.

The HHT is applied to current signal analysis to generate

fault indicators. The mean values of four local bands

centered at f 0e1 with k = 1, 2, and f 0e2 with k = 2, 3, and

averaged Hilbert marginal spectrum in local bands centered

at f 0e1 with k = 1, and f 0e2 with k = 2, in the first two

intrinsic mode functions (IMF), and averaged instanta-

neous amplitudes of the first two IMFs are used as fault

Figure 4 The score plots of

SVM and LDA with respect to

the HS static eccentricity fault

indicators for static eccentricity

diagnosis. The training data

score distribution with different

load conditions: (a) 0%,

(c) 20%, (e) 50%, (g) 70% and

(i) 100%, and test data score

distribution in different

conditions: (b) 0%, (d) 20%,

(f) 50%, (h) 70% and (j) 100%

load conditions. The green

circles and the red triangles

represent two different class

samples respectively
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indicators. The half bandwidth of these local bands in HHT

is set as 2 Hz.

The HHT, CHS and the proposed HS technique generate

fault indicators from the PSD spectrum. To examine if the

fault indicators could be used for different classifiers, both

the support vector machine (SVM) [23] and linear dis-

criminant analysis (LDA) [24] are utilized to test the

accuracy of different fault detection techniques. A series of

tests have been conducted for this verification; however,

the test results corresponding to five load conditions (i.e., 0,

20%, 50%, 70% and 100% load levels) will be used for

demonstration. In data preparation, 200 data sets are col-

lected for each IM condition (healthy, static air-gap

eccentricity fault, and dynamic air-gap eccentricity fault) in

each of five load conditions. The sampling frequency is

fp = 20000 Hz and the time span of each data set is 3 s.

The fault indicators of PSD, HHT, CHS and the proposed

HS are extracted from these totally 3000 data sets.

3.2 Experiment Setup

Figure 3 shows the experiment setup used in this test. The

tested IMs are 3-phase, 1/3 hp motors made by Marathon

Electric. Its speed is controlled by a speed controller (VFD-

B) with output frequency 0.1–400 Hz. A magnetic clutch

system (PHC-50) is used as the dynamometer to provide

external loading, with torque ranging from 1 to 40 N�m. A

gearbox (Boston Gear 800) is used to adjust the speed ratio

of the dynamometer. An encoder (NSN-1024-2 M-F) is

used to measure the shaft speed. Phase current signals are

measured by the use of current sensors (LTS 6-NP). A data

acquisition board (Quanser Q4) is used for signal mea-

surement. Motor specifications are given in Table 2. The

static air-gap eccentricity is implemented by introducing a

0.025 inch horizontal travel of the bearing housing of end

bells in the IM. The dynamic air-gap eccentricity is

implemented by intentionally bending rotor in the center

0.0127 cm to 0.0254 cm, while making sure the rotor does

not bind the stator in the IM [25]. Based on the motor

specification, the introduced air-gap eccentricity faults are

considered to be at the early stage of the IM fault.

3.3 Static Air-gap Eccentricity Fault Detection

Static air-gap eccentricity fault detection is considered as a

binary classification problem; the data sets collected from a

healthy IM and an IM with the dynamic air-gap eccen-

tricity defect belong to one class; the data sets collected

from the IM with the static air-gap eccentricity defect

belong to the other class. The averaged successful rate of

ten runs three-fold cross validation in terms of static air-

gap eccentricity fault diagnosis using SVM and LDA for

classification is summarized in Tables 3 and 4,

respectively. It is seen from Tables 3 and 4 that the pro-

posed HS technique has the highest averaged successful

rates in both training and testing. The proposed HS tech-

nique outperforms PSD under all five load levels, because

it could explore more fault information and enhance fault

features using HSP. The HS outperforms the CHS in all

five scenarios, because the mean value of the local band is

a more representative feature for fault detection. HS is

superior to the HHT in that more effective fault features are

extracted and employed for fault detection.

The score plots of SVM and LDA with respect to the HS

static eccentricity fault indicators for static eccentricity

diagnosis are illustrated in Figure 4. Totally 600 samples

are shown in each plot. The scores of SVM classification

and LDA classification are normalized over [–1, 1]. In each

axis (x-axis or y-axis), –1 and 1 denote two different classes

respectively. The closer the sample is to the –1 or 1, the

Table 5 Averaged successful rates (SR) of ten runs three-fold cross

validation in terms of dynamic air-gap eccentricity fault diagnosis

using SVM (%)

Load level 0 20 50 70 100

PSD training SR 84.14 63.21 60.68 65.44 61.28

PSD test SR 81.82 60.13 57.11 60.94 58.41

HHT training SR 82.60 64.22 58.73 56.52 60.38

HHT test SR 79.99 60.23 53.67 52.66 59.30

CHS training SR 94.02 91.14 85.97 78.27 75.92

CHS test SR 92.30 88.66 85.71 75.23 74.66

HS training SR 99.47 97.69 98.50 94.74 93.72

HS test SR 98.96 97.13 97.73 94.53 92.47

Table 6 Averaged successful rates (SR) of ten runs three-fold cross

validation in terms of dynamic air-gap eccentricity fault diagnosis

using LDA (%)

Load level 0 20 50 70 100

PSD training SR 83.95 66.93 67.17 68.22 66.40

PSD test SR 82.73 64.75 65.02 66.87 63.45

HHT training SR 79.40 67.89 67.57 68.24 68.06

HHT test SR 78.75 60.30 65.73 65.42 65.20

CHS training SR 93.51 89.00 89.45 80.79 79.59

CHS test SR 92.88 87.73 88.82 79.67 78.17

HS training SR 99.02 95.99 96.27 94.67 91.78

HS test SR 98.98 95.43 95.47 93.87 91.35
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more probably the sample belongs to the class denoted by

–1 or 1. The zero-vertical line and zero-horizontal line are

the separating hyper-planes to differentiate two classes

using SVM and LDA respectively. From Figures 4(a)–4(d),

4(g), and 4(h), it is seen that the two classes could be

separated using either SVM or LDA under 0, 20% and 70%

load levels. It is seen in Figures 4(e) and 4(f) that there is

one sample misclassification in both training and testing in

50% load state. The samples in Figures 4(i) and 4(j) are a

bit scattered because heavy load condition weakens fault

features, however, the samples could still be correctly

classified mostly in 100% load level. Therefore, the pro-

posed HS technique is a useful tool to detect IM static air-

gap eccentricity fault in different load conditions.

3.4 Dynamic Air-gap Eccentricity Fault Detection

For dynamic air-gap eccentricity fault diagnosis, the data

sets corresponding to healthy IM condition and static air-

gap eccentricity condition will belong to one class; the data

Figure 5 The score plots of

SVM and LDA with respect to

the HS dynamic eccentricity

fault indicators for dynamic

eccentricity diagnosis. The

training data score distribution

with different load conditions:

(a) 0%, (c) 20%, (e) 50%,

(g) 70% and (i) 100%, and test

data score distribution in

different conditions: (b) 0%,

(d) 20%, (f) 50%, (h) 70% and

(j) 100% load conditions. The

green circles and the red

triangles represent two different

class samples respectively
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sets corresponding to dynamic air-gap eccentricity condi-

tion belong to the other class. The averaged successful

rates of ten runs three-fold cross validation in terms of

dynamic air-gap eccentricity fault diagnosis using SVM

and LDA for classification is given in Tables 5 and 6,

respectively. From Tables 5 and 6, it is seen that the pro-

posed HS technique has the highest accuracy in both

training and testing. HS technique outperforms PSD in all

five scenarios because of the extensive fault information

exploration and fault features enhancement. The proposed

HS is superior to the CHS in all five cases because of its

effective local fault information analysis. HS outperforms

HHT because more effective fault features are extracted for

fault analysis.

The score plots of SVM and LDA with respect to the

HS dynamic eccentricity fault indicators for dynamic

eccentricity diagnosis are shown in Figure 5. From Fig-

ures 5(a)–5(d), it is seen that the two classes could be

separated using either SVM or LDA under 0% and 20%

load levels. It can be seen from Figure 5(f) that there is

one sample misclassification in testing by LDA in 50%

load condition. The samples in Figures 5(g)–5(j) have

larger variance due to interference of the heavy load

condition; however, most samples could still be correctly

classified in 70% and 100% load conditions. It demon-

strates that the proposed HS technique is a useful tool to

detect IM dynamic air-gap eccentricity fault in different

load conditions.

4 Conclusions

A harmonic synthesis (HS) technique is proposed in this

work for initial IM air-gap eccentricity fault detection. In

the HS, the fault harmonic series are synthesized to

enhance fault characteristic features. The local spectra

statistical analysis is employed to extract representative

features. The SVM classifier and the LDA classifier are

utilized to evaluate the performance of different fault

detection techniques. The effectiveness of the proposed HS

technique is verified by a series of experimental tests under

five load conditions: 0%, 20%, 50%, 70% and 100%. Test

results show that the proposed HS technique is an effective

fault detection tool, and it outperforms the other techniques

in all five load conditions. It is able to process massive fault

related information, analyze fault features statistically, and

enhance representative features for static eccentricity and

dynamic eccentricity fault diagnosis based on the current

signals. Future research will be undertaken on classification

of health state, static eccentricity state and dynamic

eccentricity state altogether, as well as the analysis of

stochastic resonance based fault detection.
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