
REVIEW

Methods for Force Analysis of Overconstrained Parallel
Mechanisms: A Review

Wen-Lan Liu1
• Yun-Dou Xu1,2

• Jian-Tao Yao1,2
• Yong-Sheng Zhao1,2

Received: 1 March 2017 / Revised: 5 June 2017 / Accepted: 12 October 2017 / Published online: 10 November 2017

� The Author(s) 2017. This article is an open access publication

Abstract The force analysis of overconstrained PMs is

relatively complex and difficult, for which the methods

have always been a research hotspot. However, few liter-

atures analyze the characteristics and application scopes of

the various methods, which is not convenient for

researchers and engineers to master and adopt them prop-

erly. A review of the methods for force analysis of both

passive and active overconstrained PMs is presented. The

existing force analysis methods for these two kinds of

overconstrained PMs are classified according to their main

ideas. Each category is briefly demonstrated and evaluated

from such aspects as the calculation amount, the compre-

hensiveness of considering limbs’ deformation, and the

existence of explicit expressions of the solutions, which

provides an important reference for researchers and engi-

neers to quickly find a suitable method. The similarities

and differences between the statically indeterminate prob-

lem of passive overconstrained PMs and that of active

overconstrained PMs are discussed, and a universal method

for these two kinds of overconstrained PMs is pointed out.

The existing deficiencies and development directions of the

force analysis methods for overconstrained systems are

indicated based on the overview.

Keywords Redundantly actuated PM � Passive
overconstrained PM � Statically indeterminate problem �
Force analysis � Weighted generalized inverse

1 Introduction

Compared with parallel mechanisms (PMs) with six

degrees of freedom (DoFs), lower mobility PMs have

increasingly drawn attention from researchers and engi-

neers in the robotics community in recent years, since 100

percent flexibility (i.e., six DoFs) is not required in many

instances [1]. In terms of the relationship between the

number of constraints and that of DoFs possessed by the

moving platform of a PM, the lower mobility PMs can be

divided into two categories: PMs in which the moving

platform suffers exactly 6–n (n represents the number of

DoFs) constraints, for example, the 3-RPS PM [2], 3-UPU

PM [3–5], 3-RCC PM [6], and so on [7], and those in

which the moving platform suffers more than 6–n con-

straints supplied by all supporting limbs, for example, the

3-RRC PM [8], 2UPR ? SPR PM [9–11], and 3-PRC PM

[12, 13]. The latter category of lower mobility PMs are

called overconstrained PMs [14, 15], and they contain

common or redundant constraints that can be removed

without changing the kinematics of the mechanisms

[16, 17]. The overconstrained PMs have the merits of

higher stiffness and larger loading capacity with respect to

general lower mobility PMs, which are also called passive

overconstrained PMs, as the joint reactions are related to

system stiffness [18].

It is well known that redundantly actuated PMs [19–21]

have been investigated and utilized extensively, since

redundant actuations can avoid kinematic singularities

[22–27], enlarge load capability [28–30], improve dynamic
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characteristics [31, 32], and eliminate backlash [33, 34] of

the mechanisms. The distribution of driving forces/torques

of a redundantly actuated PM belongs to the statically

indeterminate problem. From this view, the multi-robot

cooperation system [35, 36], walking machines with mul-

tiple legs [37, 38], and mechanical hands grasping an

object [39, 40] can also be regarded as redundantly actu-

ated PMs to some extent. As an actuator redundancy can

transform a mechanism into an overconstrained mecha-

nism, the redundantly actuated PMs are also overcon-

strained PMs. These kinds of PMs are called active

overconstrained PMs, since the driving forces/torques can

be distributed arbitrarily according to different optimiza-

tion goals [18].

Redundant constraints exist in both active overcon-

strained and passive overconstrained PMs. Although they

have no effect on the kinematics [41], they increase the

complexity and difficulty of the force analysis of these two

kinds of overconstrained PMs. The objective of force

analysis of passive overconstrained PMs is to determine the

driving forces/torques and constraint forces/moments that

balance the external loads. In the case that only driving

forces/torques are required, the methods for force analysis

of non-overconstrained PMs are applicable to this kind of

mechanisms, such as, the Newton–Euler formulation

[42, 43], the virtual work principle [44, 45], the Lagrangian

formulation [9, 46], and so on [47, 48]. In many cases, for

example, when we want to take the influence of friction in

joints into consideration, the constraint forces/moments

need to be calculated. Bi et al. [10], built a complete and

solvable dynamic model of a passive overconstrained PM

by extending the Newton–Euler formulation. This method

is computationally intensive because of the high-rank

coefficient matrix of the simultaneous equations. Wojtyra

et al. [17, 49–52], proposed several mathematical and

simulation methods to find the reactions for which joints

can be uniquely determined. The corresponding physical

interpretation is not considered in those methods. Vertechy

et al. [53], Wang et al. [54], Yao et al. [55], and Hu et al.

[56], studied the force analysis of passive overconstrained

PMs under the condition that the deformations along dif-

ferent axes generated at the end of each supporting limb by

the corresponding driving forces/torques and constraint

forces/moments are independent of each other. The cou-

pled deformations of each limb generated by the driving

forces/torques and constraint forces/moments within the

same limb are ignored. Based on the screw theory, Huang

et al. [57], presented an approach for the kinetostatics of

passive overconstrained PMs with collinear constraint

forces or coaxial constraint moments. However, this

approach is not suitable for the passive overconstrained

PMs with general constraints. Xu et al. [58], defined the

stiffness matrix of the limb’s constraint or overconstraint

wrenches, based on which a general method was proposed

for the force analysis of passive overconstrained PMs. This

method requires an accurate judgment of the overconstraint

wrenches and the non-overconstraint wrenches. On the

basis of the work shown in Ref. [58] the weighted gener-

alized inverse method was proposed for solving the stati-

cally indeterminate problem of passive overconstrained

PMs by the authors [59], in which the gravity of limbs was

not considered. Besides, there are several other approaches

presented in Refs. [60–64].

In theory, there are an infinite number of possible

solutions to the statically indeterminate problem of active

overconstrained PMs. At present, a variety of optimization

goals have been proposed to distribute the driving for-

ces/torques of active overconstrained PMs, such as mini-

mizing the driving forces/torques [29, 65], energy

consumption [36, 66, 67], potential energy of the system

[37, 68, 69], internal forces [18, 40, 70], and improving the

traction/load sharing [71]. In essence, the driving for-

ces/torques distribution of active overconstrained PMs

under different optimization goals is just a constrained

optimization problem, however, the existing methods have

not formed a unified one. The pseudo-inverse method is

widely applied when the minimum driving forces/torques

are selected as the objective [30, 33, 72]. A weighted

coefficient method was proposed by Huang et al. [73], to

solve the load distribution of a redundantly actuated

walking machine, in which the values of the weighted

coefficients can be given arbitrarily according to different

optimization goals. Afterwards, the weighted coefficient

method [73] was further developed into a weighted gen-

eralized inverse method in Ref. [59]. In addition to the

abovementioned methods, there are other approaches for

force analysis of active overconstrained PMs [74–76].

The force analysis of overconstrained PMs presents

research difficulties. At present, the approaches proposed to

solve this problem have different characteristics. It is dif-

ficult to quickly find a suitable method for force analysis of

the corresponding overconstrained system. In this paper,

the methods for force analysis of both active overcon-

strained and passive overconstrained PMs are reviewed and

discussed in detail, to provide an important reference for

researchers and engineers who would like to solve the

statically indeterminate problem of overconstrained

systems.

2 Methods for Force Analysis of Passive
Overconstrained PMs

The schematic of a general passive overconstrained PM

with n DOFs is shown in Fig. 1. Assume that the t sup-

porting limbs supply m constraint forces/moments to the
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moving platform in total. For a passive overconstrained

PM, there exists m[ 6–n. Let At, Bt, Ct, …, denote the

joints of the tth (t = 1, 2, …, t) supporting limb from the

moving platform to the base in sequence. Assume that the

friction in the kinematic joints is ignored, and the stiffness

of the moving platform is much greater than that of the

supporting limbs.

Owing to the existence of redundant constraints, the

force and moment equilibrium equations of a passive

overconstrained PM are insufficient to determine all the

driving forces/torques and constraint forces/moments.

Hence, a certain number of supplementary equations are

required. The typical methods for force analysis of passive

overconstrained PMs can be divided into six categories.

2.1 Traditional Method

Main ideas: The force and moment equilibrium equations

of all movable bodies are established based on the New-

ton–Euler formulation in sequence. Then, a certain number

of compatibility equations of deformation are supple-

mented to obtain a set of complete and solvable equations.

Thus, the driving forces/torques and constraint forces/mo-

ments can be solved by combining the force and moment

equilibrium equations and the compatibility equations of

deformation [10], which is explained briefly in the fol-

lowing paragraphs.

Based on the Newton–Euler formulation the force and

moment equilibrium equations of the moving platform of a

passive overconstrained PM can be established as

Fþ
Pt

t¼1

O
otRf t þ mO

O
g Rg ¼ hO;

M þ
Pt

t¼1

O
otRtt þ rOt � O

otRf t
� �

¼ nO;

8
>><

>>:
ð1Þ

where F andM denote the three-dimensional external force

and moment vectors exerted on the moving platform

expressed in the coordinate system {O} attached at the

moving platform, respectively, ft (t = 1, 2, …, t) and tt
represent the three-dimensional reaction force and moment

vectors of joint At connecting the moving platform and the

tth limb, respectively, which are expressed in the local

coordinate system {ot} of the t-th limb, O
otR is the rota-

tional transformation matrix of {ot} with respect to {O}, g

is the gravity vector expressed in the global coordinate

system, O
g R is the rotational transformation matrix of the

global system with respect to {O}, mO is the mass of the

moving platform, rOt is the position vector from origin O to

the center of joint At expressed in {O}, and hO and nO
denote the inertia force and moment vectors of the moving

platform expressed in {O}, respectively.

The force and moment equilibrium equations of the link

AtBt close to the moving platform in the tth limb can be

built as

fBt � f t þ mt1
ot
g Rg ¼ ht1;

tBt � tt þ roB � fBt � roA � f t ¼ nt1;

�

ð2Þ

where fBt and tBt represent the three-dimensional reaction

force and moment vectors of joint Bt, respectively,
ot
g R is

the rotational transformation matrix of the global system

with respect to {ot}, mt1 is the mass of the link AtBt, roA
and roB are the position vectors from the origin ot to the

centers of the joints At and Bt, respectively, and ht1 and nt1
denote the inertia force and moment vectors of the link

AtBt, respectively. fBt, tBt, roA, roB, ht1 and nt1 are

expressed in the local coordinate system {ot}.

Similarly, the force and moment equilibrium equations

of other links of the t limbs can be formulated. It should be

noted that, for different types of joints, the number of

unknown reactions is different, for example, one of the

three reaction moments of a rotational joint (R) is zero,

while for a translational joint (P), one of the three reaction

forces is zero.

Assuming that the moving platform is rigid, the defor-

mations of supporting limbs have to be compatible with

each other to satisfy the geometric constraints. Hence, the

compatibility equations of the deformations generated in

the axes of redundant constraint forces and moments can be

expressed as [10]

du;t ¼ du;tþ1;
wv;t ¼ wv;tþ1;

�

ð3Þ

where du,t and du,t?1 denote the linear deformations gen-

erated at the ends of the tth and the (t ? 1)th limbs in the

axis of the uth redundant constraint force, respectively, and

wv,t and wv,t?1 represent the angular deformations

Figure 1 Schematic of a general passive overconstrained PM
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generated at the ends of the tth and (t ? 1)th limbs in the

axis of the vth redundant constraint moment, respectively.

Then all driving forces/torques and constraint

forces/moments can be solved by combining Eqs. (1), (2),

and (3).

Discussion: This is a traditional method applicable to the

statically indeterminate problem of general passive over-

constrained PMs. However, it is computationally intensive

because of the high-rank coefficient matrix of the simul-

taneous equations. Furthermore, it is difficult to obtain the

explicit expressions of the solutions by this method.

2.2 Method Based on the Judgment of Constraint

Jacobian Matrix

Main ideas: The judgments of the independent and

dependent rows of the constraint Jacobian matrix are used

to find which joint reactions of a mechanism with redun-

dant constraints can be uniquely determined [17, 49–52].

Generally, a kinematic joint imposes a certain number of

constraints on the relative motion between the two bodies it

connects. If a mechanism is described by N coordinates, the

constraint conditions imposed by the bth kinematic joint

can be expressed as

Ub qð Þ ¼ Ub q1; q2; � � � ; qNð Þ ¼ 0; ð4Þ

where q1, q2, …, qN denote the N coordinates.

Then the equations describing the l constraints imposed

by all the joints of the mechanism can be arranged as

U qð Þ ¼

U1 qð Þ
U2 qð Þ

..

.

Ul qð Þ

0

B
B
B
@

1

C
C
C
A

¼

U1 q1; q2; � � � ; qNð Þ
U2 q1; q2; � � � ; qNð Þ

..

.

Ul q1; q2; � � � ; qNð Þ

0

B
B
B
@

1

C
C
C
A

¼ 0l�1:

ð5Þ

The constraint Jacobian matrix of the constraint equa-

tions can be obtained on the basis of Eq. (5):

Uq qð Þ ¼

oU1

oq1

oU1

oq2
� � � oU1

oqN
oU2

oq1

oU2

oq2
� � � oU2

oqN

..

. ..
. ..

.

oUl

oq1

oUl

oq2
� � � oUl

oqN

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

¼

U1ð Þq
U2ð Þq
..
.

Ul
� �

q

0

B
B
B
@

1

C
C
C
A
: ð6Þ

For a mechanism with redundant constraints, the rank of

matrix Uq qð Þ must be less than l. That is to say, one or

more rows of Uq qð Þ can be expressed as a linear combi-

nation of other rows. The independent rows of Uq qð Þ can
be identified by a variety of mathematical methods

[17, 49–52], such as the concept of direct sum, the singular

value decomposition, the QR decomposition. For an

overconstrained rigid body mechanism, the reaction

forces/moments corresponding to the independent con-

straint equations are unique, despite that all joint reactions

cannot be uniquely determined. In order to obtain the

unique solutions to all joint reactions, it is necessary to

consider the flexibility of passive overconstrained mecha-

nisms. Wojtyra et al. [52], discussed which parts should be

modeled as flexible bodies to guarantee unique joint reac-

tions in overconstrained mechanisms.

Discussion: Based on the constraint Jacobian matrix of a

passive overconstrained mechanism, several methods were

proposed to isolate the joint reactions that can be uniquely

determined. Those methods were proposed from a purely

mathematical perspective, i.e., the corresponding physical

interpretation was not considered. Besides, the analytical

expressions of joint reactions cannot be obtained by this

kind of method.

2.3 Method under the Condition of Decoupled

Deformations

Main ideas: Assuming that the tth (t = 1, 2, …, t) sup-

porting limb of a passive overconstrained PM contains Nt

driving forces/torques and constraint forces/moments in

total, as shown in Fig. 1, the elastic deformations generated

at the end of the tth limb by the Nt driving forces/torques

and constraint forces/moments are considered to be

decoupled to each other [53–56]. In this case, the stiffness

of each supporting limb can be expressed as a scalar

quantity or a diagonal matrix. The steps of this method can

be summarized as follows:

The force and moment equilibrium equations of the

moving platform of a passive overconstrained PM can be

formulated as

6SFð Þ6�1¼ G6� nþmð Þf nþmð Þ�1; ð7Þ

where 6SF denotes the six-dimensional external load

imposed on the moving platform, G is the coefficient

matrix mapping the driving forces/torques and constraint

forces/moments to the external loads, and f is the vector

composed of the magnitudes of the n driving forces/torques

and m constraint forces/moments.

Let kj be the stiffness between the jth driving for-

ce/torque or constraint force/moment and the elastic

deformation generated at the end of the corresponding limb

under the action of the jth driving force/torque or constraint

force/moment. There exists

fj ¼ kjdj; j ¼ 1; 2; � � � ; nþ m; ð8Þ

where fj denotes the magnitude of the jth driving for-

ce/torque or constraint force/moment, and dj represents the
elastic deformation generated at the end of the corre-

sponding limb by fj.
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Rearranging Eq. (8) in the form of matrix yields

f nþmð Þ�1 ¼ K nþmð Þ� nþmð Þd nþmð Þ�1; ð9Þ

where

f nþmð Þ�1 ¼ f1 f2 � � � fnþmð ÞT;
K nþmð Þ� nþmð Þ ¼ diag k1 k2 � � � knþmð Þ;
d nþmð Þ�1 ¼ d1 d2 � � � dnþmð ÞT:

The relationship between the elastic deformations gener-

ated at the end of supporting limbs and the six-dimensional

micro-displacement X of the moving platform as the result

of external loads can be derived as

dj ¼ GT
:; jX: ð10Þ

Rearranging Eq. (10) in the form of matrix leads to

d ¼ GTX: ð11Þ

From Eqs. (7) to (11) we can get

f ¼ KGT GKGT
� ��1 6SF; ð12Þ

from which the n driving forces/torques and m constraint

forces/moments can be obtained.

It should be noted that the driving force/torque or con-

straint force/moment along an arbitrary direction can be

decomposed along or perpendicular to the axis of the

corresponding limb.

Discussion: This method gives the analytical expression

of the solutions of the driving forces/torques and the con-

straint forces/moments of passive overconstrained PMs.

However, the coupled deformations generated at the ends

of the supporting limbs by the driving forces/torques and

constraint forces/moments are ignored.

2.4 Method Based on Resultant Constraint

Wrenches

Main ideas: The resultant forces/moments of the collinear

constraint forces or coaxial constraint moments are dealt

with first. Then, the constraint forces/moments can be

obtained by distributing the resultant forces/moments

according to the stiffness proportion of the supporting

limbs with collinear constraint forces or coaxial constraint

moments [57].

Assume that a passive overconstrained PM has p colli-

near constraint forces and q coaxial constraint moments,

and the remaining (m–p–q) constraints are independent.

Based on the screw theory, the force and moment equi-

librium equations between the actuation wrenches, the

resultant constraint wrench of the p collinear constraint

forces and that of the q coaxial constraint moments, and the

remaining constraint wrenches can be built as

Xn

i¼1

wi 6 Ŝa;i þ
Xm�p�q

k¼1

fk 6 Ŝr;k þ fp 6 Ŝr;F þ fq 6 Ŝr;M

¼ Gbð Þ6�6 f bð Þ6�1¼ 6SFð Þ6�1; ð13Þ

where

f b ¼ w1 � � � wn f1 � � � fm�p�q fp fqð ÞT;

Gb ¼ 6 Ŝa;1 � � � 6 Ŝa;n 6 Ŝr;1 � � � 6 Ŝr; m�p�qð Þ 6 Ŝr;F 6 Ŝr;M
� �

;

6 Ŝa;i i ¼ 1; 2; . . .; nð Þ; 6 Ŝr;k k ¼ 1; 2; . . .;m�p�qð Þ:

6 Ŝr;F and 6 Ŝr;M denote the unit screws of the ith actuation

wrench, the kth independent constraint wrench, the resul-

tant constraint wrench and the resultant constraint couple,

respectively, wi, fk, fp and fq represent the magnitudes of the

ith actuation wrench, the kth independent constraint

wrench, the resultant constraint wrench and the resultant

constraint couple, respectively. All screws are expressed in

the global system.

If Gb is non-singular, the magnitudes of the actuation

wrenches, the independent constraint wrenches, the resul-

tant constraint wrench, and the resultant constraint couple

can be solved from Eq. (13) as

f b ¼ G�1
b 6SF : ð14Þ

According to the hypothesis given in Ref. [57], we

assume that the stiffness proportion of the (c ? 1)th and

the cth supporting limbs with collinear constraint forces is

gc, and that of the (k ? 1)th and the kth supporting limbs

with coaxial constraint moments is gk. In view that the

constraint forces and moments are in direct proportion to

the stiffness of the corresponding limbs, the complemen-

tary equations can be given as

fp;cþ1 ¼ gcfp;c c ¼ 1; 2; � � � ; p� 1ð Þ;
fq;kþ1 ¼ gkfq;k k ¼ 1; 2; � � � ; q� 1ð Þ;

(

ð15Þ

where fp,c and fq,k are the magnitudes of the cth collinear

constraint force and the kth collinear constraint moment,

respectively.

The magnitudes of the resultant constraint forces and

moments have been solved from Eq. (14) as

fp ¼ Gbð Þ�1
5;: 6SF ¼

Xp

c¼1

fp;c;

fq ¼ Gbð Þ�1
6;: 6SF ¼

Xq

k¼1

fq;k:

8
>>>><

>>>>:

ð16Þ
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Combining Eqs. (15) and (16), the magnitudes of each

collinear constraint force and coaxial constraint moment

can be solved. Thus, the reactions of the joints connecting

the moving platform and supporting limbs can be easily

determined based on the relationship between them and the

actuation and constraint wrenches. The reactions of other

joints can be solved by establishing the force and moment

equilibrium equations of the corresponding link one by one.

Discussion: In general, a kinematic joint possesses more

than one constraint reaction, for example, there exist 5, 4, 4

and 3 constraint reactions for an R joint, universal joint

(U), cylindrical joint (C), and spherical joint (S), respec-

tively. If we adopt traditional methods to build the force

and moment equilibrium equations of all movable bodies

and complementary equations, the rank of the coefficient

matrix of those equations will be very large. This method,

which is based on resultant constraint wrenches, can avoid

the high-rank matrix, reduce a certain number of

unknowns, and ensure that the number of simultaneous

equilibrium equations is not more than six each time.

However, it is only suitable for solving the driving for-

ces/torques and constraint forces/moments of passive

overconstrained PMs with collinear constraint forces or

coaxial constraint moments.

2.5 Method Based on the Stiffness Matrix of Limb’s

Overconstraint or Constraint Wrenches

Main ideas: Based on the characteristics of the elastic

deformations generated at the ends of supporting limbs, the

passive overconstrained PMs are classified into two clas-

ses: the limb stiffness decoupled and coupled overcon-

strained PMs. Stiffness matrices of the limb’s

overconstraint and constraint wrenches that correspond to

the two types of mechanisms are defined, which help to

establish the compatibility equations about the deforma-

tions generated at the ends of supporting limbs and the

micro-displacements of the moving platform [58]. Then,

the driving forces/torques and constraint forces/moments of

the two kinds of overconstrained PMs are solved by

combining the force and moment equilibrium equations

and the compatibility equations of deformation.

A brief review of the methods for force analysis of the

limb stiffness decoupled and coupled overconstrained PMs

follows.

For a limb stiffness decoupled overconstrained PM, the

force and moment equilibrium equations of the moving

platform can be expressed as

6SF ¼ wa;1 6 Ŝa;1 þ � � �wa;n 6 Ŝa;n þ fr;1 6 Ŝr;1 þ � � � fr;l 6 Ŝr;l þ f er;1 6 Ŝ
e

r;1

þ � � � þ f er;d 6 Ŝ
e

r;d ¼ Gcf c;

ð17Þ

where

Gc ¼ 6 Ŝa;1 � � � 6 Ŝa;n 6 Ŝr;1 � � � 6 Ŝr;l 6 Ŝer;1 � � � 6 Ŝer;d
� �

;

f c ¼ wT
a fTr;non fTe

� �T
;

wa ¼ wa;1 � � � wa;nð ÞT;
f r;non ¼ fr;1 � � � fr;lð ÞT;

f e ¼ f er;1 � � � f er;d
� �T

;

6 Ŝa;i(i = 1, 2,…, n), 6 Ŝr;e(e = 1, 2,…, l), and 6 Ŝer;r (r = 1,

2,…, d) represent the unit screws of the ith actuation wrench,

eth non-overconstraint wrench, and rth equivalent constraint
wrench of the (m–l) overconstraint wrenches, respectively.

wa,i, fr,e, and f er;r are the magnitudes of the ith actuation

wrench, eth non-overconstraint wrench, and rth equivalent

constraint wrench, respectively. Details about the non-over-

constraint wrenches, overconstraint wrenches, and equivalent

ones of overconstraint wrenches are given in Ref. [58].

Then the magnitudes of the actuation wrenches, the non-

overconstraint wrenches, and the equivalent constraint

wrenches can be solved from Eq. (17) as

f c ¼ wT
a fTr;non fTe

� �T
¼ G�1

c 6SF: ð18Þ

Assume that the (m–l) overconstraint wrenches are dis-

tributed in 1 supporting limbs. The relationship between the

magnitudes of the equivalent constraint wrenches and those

of the overconstraint wrenches can be expressed as

f e ¼ f er;1 � � � f er;d
� �T¼ J1f

1
over þ J2f

2
over þ � � � þ J1 f

1
over:

ð19Þ

According to the definition of the stiffness matrix of the

supporting limb’s overconstraint wrenches [58], we can

know that

f sover ¼ Ksds; s ¼ 1; 2; � � � ; 1: ð20Þ

The elastic deformations generated at the end of the sth

supporting limb in the axes of overconstraint wrenches can

be formulated as

ds ¼ JTs Xe; ð21Þ

where Xe is the vector composed of the elastic deforma-

tions in the axes of equivalent constraint wrenches.

Then, the magnitudes of the overconstraint wrenches

can be solved by combining Eqs. (19), (20) and (21) as

f sover ¼ KsJ
T
s J1K1J

T
1 þ J2K2J

T
2 þ � � � þ J1K1J

T
1

� ��1

f e:

ð22Þ

So far, Eqs. (18) and (22) give the analytical expressions

of the magnitudes of all actuation wrenches, non-over-

constraint wrenches, and overconstraint wrenches.
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For a limb stiffness coupled overconstrained PM,

assuming that the tth supporting limb supplies Nt con-

straint wrenches (including actuation wrenches) to the

moving platform, the force and moment equilibrium

equations of the moving platform can be expressed as

6SF ¼ f 11 6 Ŝ
1

1 þ f 12 6 Ŝ
1

2 þ � � � f 1N1 6 Ŝ
1

N1 þ f 21 6 Ŝ
2

1 þ f 22 6 Ŝ
2

2

þ � � � f 2N2 6 Ŝ
2

N2 þ � � � f t1 6 Ŝ
t

1 þ f t2 6 Ŝ
t

2 þ � � � f tNt 6 Ŝ
t

Nt

¼ Gd f d; ð23Þ

where

Gd ¼ G1 G2 � � � Gtð Þ;
Gt ¼ 6 Ŝt1 6 Ŝt2 � � � 6 ŜtNt

� �
; t ¼ 1; 2; . . .; t;

f d ¼ fT1 fT2 � � � fTt
� �T

;

f t ¼ f t1 f t2 � � � f tNtð ÞT:

According to the definition of the stiffness matrix of the

supporting limb’s constraint wrenches [58] there exists

f t ¼ Ktdt: ð24Þ

The compatibility equation about the elastic deforma-

tions generated at the end of each limb in the axes of

constraint wrenches and the six-dimensional micro-dis-

placement of the moving platform is

dt ¼ GT
tX: ð25Þ

Thus, the magnitudes of all the constraint wrenches

(including the actuation wrenches) can be solved by com-

bining Eqs. (23), (24) and (25) as

f t ¼ KtG
T
t G1K1G

T
1 þ G2K2G

T
2 þ � � � þ GtKtG

T
t

� ��1 6SF;
ð26Þ

which is just the general expression of the magnitudes of

all actuation and constraint wrenches.

Then, the actual reactions of all kinematic joints can be

easily obtained according to the relationship between them

and the magnitudes of the actuation and constraint wren-

ches shown in Ref. [58].

Discussion: It can be seen from Eqs. (18), (22), and (26)

that, for the statically indeterminate problem of the limb

stiffness decoupled overconstrained PMs, only the elastic

deformations generated at the end of supporting limbs in

the axes of overconstraint wrenches need to be considered,

while for that of the limb stiffness coupled overconstrained

PMs, the elastic deformations generated at the end of

supporting limbs in the axes of all constraint wrenches,

including actuation wrenches, should be taken into

account. This method has clear steps, few computational

requirements, and gives the explicit analytical expressions

of the solutions to the statically indeterminate problem of

general passive overconstrained PMs.

2.6 Weighted Generalized Inverse Method

Main ideas: A simple method is proposed in Ref. [59] by

resorting to the definition of the weighted generalized

inverse of a non-square matrix [77], which is suitable for

solving the statically indeterminate problem of both the

limb stiffness decoupled and coupled passive overcon-

strained PMs.

Based on the weighted generalized inverse of the matrix

mapping the driving forces/torques and constraint

forces/moments to the external loads, the solutions of the

statically indeterminate problem of a general passive

overconstrained PM can be derived as [59]

f ¼ Gþ
B 6SF ¼ B�1GT GB�1GT

� ��1 6SF ; ð27Þ

where the weighted matrix B is the inverse matrix of a

block diagonal matrix composed of the stiffness matrices

of each limb’s constraint wrenches.

In the case that each supporting limb only supplies one

driving force/torque or constraint force/moment, the stiff-

ness of each limb is just a scalar quantity, and the weighted

matrix B becomes a diagonal matrix, which is consistent

with the work done in Refs. [53, 54].

Discussion: The method based on the weighted gener-

alized inverse supplies a simpler and more effective way to

solve the statically indeterminate problem of passive

overconstrained PMs. Moreover, it can be seen from

Eq. (27) that the elements of the weighted matrix B are the

stiffness matrices of the limbs’ constraint wrenches, which

shows that the solutions of the driving forces/torques and

constraint forces/moments of passive overconstrained PMs

are unique.

In addition to the above mentioned methods, there are

other approaches of handling redundant constraints of a

passive overconstrained PM, for example, the pseudo-in-

verse method [60] and the augmented Lagrangian formu-

lation [61, 62]. Furthermore, Zahariev et al. [63], proposed

a method for dynamic analysis of multibody systems in

overconstrained and singular configurations, in which some

closed chains are transformed into open branches and the

missing links are substituted by stiff forces.

3 Methods for Force Analysis of Active
Overconstrained PMs

The schematic of a general active overconstrained PM with

n DOFs and f actuated joints is shown in Fig. 2, where

f[ n. Assume that the active overconstrained PM shown

in Fig. 2 contains t supporting limbs and the tth supporting

limb contains lt links. Without loss of generality, each limb

can possess more than one actuator.
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As there are theoretically infinite sets of solutions to the

statically indeterminate problem of active overconstrained

PMs, the key to the force analysis of this kind of over-

constrained PMs is to find the optimal distribution of all

driving forces/torques. The typical methods for solving this

problem fall into four categories.

3.1 Pseudo-inverse Method

The force and moment equilibrium equations of an active

overconstrained PM can be written in the form [40, 42, 72]

Gact f act ¼ Fextr; ð28Þ

where fact consists of f driving forces/torques, Gact is the

coefficient matrix, and Fextr is the generalized external

force vector composed of inertia forces/moments, weight,

and external loads encountered in the components of the

mechanism.

As the matrix Gact is singular, the pseudo-inverse of Gact

is used to find the minimum norm of fact in some situations

[27, 30, 72]:

f act ¼ Gþ
actFextr: ð29Þ

In this way, the minimum driving forces/torques of an

active overconstrained PM can be obtained.

3.2 Weighted Coefficient Method

The distribution of the driving forces/torques of an active

overconstrained PM under different optimization goals

[65–69] can be viewed as a constrained optimization

problem, i.e., the minimum set of solutions of the objective

function under the constraints of force and moment balance

need to be solved. The weighted coefficient method pro-

posed by Huang et al. [73] and Zhao et al. [78], can achieve

a variety of optimization goals. It is taken as representative

of this method and is briefly reviewed in the following

paragraphs:

Select n joints among the f actuated joints as the gener-

alized coordinates. The driving forces/torques of the (f–n)
actuated joints, external loads, inertia forces/moments, and

gravity applied on the moving platform and each supporting

link can be expressed with respect to the generalized coor-

dinates. Thus, the dynamic equilibrium equations of an

active overconstrained PM can be rearranged as [73, 78]

snon ¼ �
Xt

t¼1

Xlt

h¼1

Gnon
h

� �t 6StF;h þ Gnon
F 6SF þ Gnon

oversover

 !

;

ð30Þ

where snon is composed of the driving forces/torques of the

generalized joints, i.e., the n non-redundant driving for-

ces/torques, and sover consists of the driving forces/torques

of the non-generalized joints, i.e., the remaining (f–n)
redundant driving forces/torques. 6StF;h and 6SF denote the

resultant force vectors of the external loads, gravity, and

inertia force/moment acted on the h-link of the tth limb

and the moving platform, respectively. They are expressed

in the corresponding local coordinates. Gnon
h

� �t
, Gnon

F , and

Gnon
over represent the transformation matrices of 6StF;h, 6S

t
F;h,

and sover from the corresponding local coordinates to the

generalized coordinates, respectively.

In order to obtain the optimal distribution of all driving

forces/torques, the objective function of optimization can

be constructed as [73, 78]

fobj ¼
Xn

i¼1

W2
i s

2
i þ

Xf

n¼nþ1

W2
n s

2
n ¼ sTnonWnonsnon þ sToverWoversover;

ð31Þ

where

Wnon ¼ diag W2
1 ;W

2
2 ; � � � ;W2

n

� �
;

Wover ¼ diag W2
nþ1;W

2
nþ2; � � � ;W2

f

� �
;

in which Wi and Wn (n = n?1, n ? 2, …, f) are weighted

coefficients.

By solving the minimum values of the objective func-

tion shown in Eq. (31) under the constraint condition of

Eq. (30) we get

sover ¼ � Wover þ Gnon
over

� �T
WnonG

non
over

� ��1

Gnon
over

� �T
Wnon 6SF;M;

ð32Þ

where 6SF;M ¼
Pt

t¼1

PMt

h¼1

Gnon
h

� �t 6StF;h þ Gnon
F 6SF

� �

.

Substituting Eq. (32) into Eq. (30) yields

snon ¼ � I � Gnon
over Wover þ Gnon

over

� �T
WnonG

non
over

� ��1

Gnon
over

� �T
Wnon

� �

6SF;M:

ð33Þ

Figure 2 Schematic of a general active overconstrained PM
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Rearranging Eqs. (32) and (33) yields

snon
sover

� �

¼

�
I�Gnon

over Wover þ Gnon
over

� �T
WnonG

non
over

� ��1

Gnon
over

� �T
Wnon

Wover þ Gnon
over

� �T
WnonG

non
over

� ��1

Gnon
over

� �T
Wnon

0

B
@

1

C
A

6SF;M ;
ð34Þ

which is the analytical expression of the optimal distribu-

tion of driving forces/torques of a general active overcon-

strained PM. Different optimization goals can be achieved

by changing the values of the weighted matrices Wnon and

Wover, for example:

(1) Let Wi and Wn be the velocities of the ith and nth
actuated joints, respectively. The driving forces/torques are

distributed with the minimum input energy of the actuators

[36, 66, 67].

(2) Let Wi = Wn = 1. Then, the minimum driving for-

ces/torques of the mechanism can be obtained [40, 65].

(3) Let Wi ¼ K�1
i and Wn ¼ K�1

n , where Ki and Kn

represent the stiffness of the ith and nth actuated joints,

respectively. The driving forces/torques are distributed

with the minimum elastic potential energy of the mecha-

nism [37, 68, 69].

3.3 Method Based on the Optimal Internal Forces

For an active overconstrained PM, the solution to its stat-

ically indeterminate problem shown in Eq. (28) can be

broken into a particular solution and a homogeneous

solution [19, 39], as follows:

f act ¼ f spcl þ f homo; ð35Þ

where the special solution fspcl satisfies

Gactf spcl ¼ Fextr;

and the homogeneous solution fhomo meets

Gact f homo ¼ 0:

It can be seen from Eq. (35) that the solutions of driving

forces/torques may involve the components corresponding

to the null space of the coefficient matrix Gact, which are

known as the internal forces. Hence, two kinds of methods

are proposed for the statically indeterminate problem of

active overconstrained PMs from the perspective of dealing

with the internal forces. The first method is that the driving

forces/torques are distributed without internal forces

[18, 35, 70]. A number of studies have shown that the

internal forces can be utilized to change the stiffness [79],

improve the motion accuracy [32], increase the load-car-

rying capacity [19], and eliminate the backlash [34] of

active overconstrained PMs, so the second method is that

the driving forces/torques are distributed by utilizing the

advantages of internal forces [19, 32, 34].

3.4 Weighted Generalized Inverse Method

If A 2 Cx� yþzð Þ and A = [U V], where U and V are com-

posed of the first y columns and the last z columns of A,

respectively. The weighted generalized inverse of the

matrix A can be expressed as [80]

Aþ
P;Q ¼ Uþ

P;Qy I � VHð Þ � I � Uþ
P;QyU

� �
Q�1

y LH

H

 !

;

ð36Þ

where H ¼ Cþ
P;K1 þ I � Cþ

P;QyC
� �

K�1
1 D�Qy � L�� �

Uþ
P;Qy;

K1 ¼QzþD�QyD� D�LþL�Dð Þ�L� I�Uþ
P;QyU

� �
Q�1

y L;

C¼ I�UUþ
P;Qy

� �
V;D¼Uþ

P;QyV;

Aþ
P;Q represents the weighted generalized inverse matrix

of A with P and Q as the weighted factors, I is an identity

matrix, P is a x 9 x positive definite matrix, and Q is a

(y ? z) 9 (y ? z) positive definite matrix that can be

partitioned as

Q ¼ Qy L
L� Qz

� �

,

in which the sign ‘‘*’’ denotes the conjugate and transpose

operations.

Using Eq. (36), we found that the solution of the driving

forces/torques shown in Eq. (34) can be obtained directly

using the weighted generalized inverse of the matrix

mapping the driving forces/torques to the generalized

external force [59]. Therefore, the weighted generalized

inverse can be applied to distribute the driving for-

ces/torques of active overconstrained PMs:

f act ¼ Gactð ÞþS 6SF;M ¼ S�1GT
act GactS

�1GT
act

� ��1 6SF;M; ð37Þ

where S is the weighted diagonal matrix whose elements

are determined by the specific optimization goal.

Moreover, there are other approaches for the force dis-

tribution problem of active overconstrained PMs. A parti-

tioned actuator set control method was proposed by

Gardner et al. [71], to improve the traction or load sharing
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among the actuators. A scaling factor method and an

analytical method were presented in Ref. [74] to determine

the wrench capabilities of active overconstrained PMs.

Nahon et al. [75], summarized three methods for solving

the optimal force distribution problem of this kind of PMs:

the weighted pseudo-inverse, explicit Lagrange multipliers,

and direct substitution.

4 Discussion

The force analyses of both active and passive overcon-

strained PMs belong to the statically indeterminate prob-

lem. A large number of methods have been proposed for

the force analysis of these two kinds of overconstrained

PMs, among which the weighted generalized inverse

method is the simplest and most common. That is to say,

the solutions of the statically indeterminate problems of

both active and passive overconstrained PMs can be solved

by

f ¼ GF
f

� �þ

W
6SF ¼ W�1 GF

f

� �T
GF

f W
�1 GF

f

� �T
� ��1

6SF :

ð38Þ

For the passive overconstrained PMs, f consists of the

magnitudes of all constraint wrenches (including actuation

wrenches), GF
f is the coefficient matrix mapping the driving

forces/torques and constraint forces/moments to the exter-

nal loads, and the weighted matrix W is composed of the

stiffness matrices of each limb’s constraint wrenches,

which cannot be actively selected. As a result, the solutions

of the driving forces/torques and constraint forces/moments

of passive overconstrained PMs are unique. For the active

overconstrained PMs, f is composed of the magnitudes of

all driving forces/torques, GF
f is the coefficient matrix

mapping the driving forces/torques to the generalized

external loads, and the elements of the weighted matrix

W can be actively given according to different optimization

goals. Therefore, there are an infinite number of solutions

of the driving forces/torques of active overconstrained

PMs.

5 Conclusions and Outlook

The existence of redundant constraints or actuations makes

the force analysis of both passive overconstrained PMs

(i.e., the PMs with redundant or common constraints) and

active ones (i.e., the redundantly actuated PMs) belong to a

statically indeterminate problem, which is extremely dif-

ficult and particularly complicated to solve. The various

approaches proposed for the force analysis of these two

kinds of overconstrained PMs are divided into six cate-

gories and four categories, respectively, in this paper,

among which:

(1) The pseudo-inverse method was used to solve the

force analysis of these two kinds of overconstrained PMs.

However, for the passive overconstrained PMs, the solu-

tions are obtained without physical meaning, and for the

active overconstrained PMs, the driving forces/torques are

solved with the minimum values.

(2) The common method used to solve the statically

indeterminate problem of passive overconstrained PMs

involves combining the force and moment equilibrium

equations and the compatibility equations of deformation

of the mechanisms, and that used to solve the driving

forces/torques of active overconstrained PMs involves

establishing a specific optimization goal and then solving

the minimum values of the objective function under the

constraint of force and moment equilibrium equations.

(3) The weighted generalized inverse method can be

applied to solve the statically indeterminate problem of

both passive and active overconstrained PMs. For the

passive overconstrained PMs, the weighted matrix consists

of the stiffness matrices of each limb’s constraint wren-

ches, and for the active overconstrained PMs, it is deter-

mined by the optimization goals.

In recent decades, sustained efforts have been made to

find a simple and general method to solve the driving

forces/torques and constraint forces/moments of passive

overconstrained PMs, and to distribute the driving for-

ces/torques of active overconstrained PMs. It can be seen

from this paper that the weighted generalized inverse

method is the simplest and most universal one at present.

However, the existing theoretical methods for force

analysis of overconstrained PMs are basically proposed

without considering the actual characteristics of the

mechanisms, such as joint clearance and friction, the real

stiffness models of supporting limbs. Therefore, the force

analysis of typical overconstrained systems (for example,

the parallel machine tool XT 700) under the condition of

the actual characteristics will become a research hotspot. In

addition, the establishment of systematic experimental

platforms to verify the theoretical methods will be another

important research direction.
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