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Impact of Impeller Stagger Angles 
on Pressure Fluctuation for a Double-Suction 
Centrifugal Pump
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Abstract 

Pressure fluctuation may cause high amplitude of vibration of double‑suction centrifugal pumps, but the impact of 
impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments are carried out 
for five impeller configurations with different stagger angles by using the same test rig system. Results show that 
the stagger angles exert negligible effects on the characteristics of head and efficiency. The distributions of pressure 
fluctuations are relatively uniform along the suction chamber wall, and the maximum pressure fluctuation amplitude 
is reached near the suction inlet tongue region. The pressure fluctuation characteristics are affected largely by impel‑
ler rotation, whose dominant frequencies include impeller rotation frequency and its harmonic frequencies, and half 
blade passage frequency. The stagger angle exerts a small effect on the pressure fluctuations in the suction chamber 
while a great effect on the pressure fluctuation in volute casing, especially on the aspect of decreasing the amplitude 
on blade passage frequency. Among the tested cases, the distribution of pressure fluctuations in the volute becomes 
more uniform than the other impeller configurations and the level of pressure fluctuation may be reduced by up 
to 50% when the impeller stagger angle is close to 24° or 36°. The impeller structure pattern needs to be taken into 
consideration during the design period, and the halfway staggered impeller is strongly recommended.

Keywords: Double‑suction centrifugal pump, Impeller stagger angle, Pressure fluctuation, Frequency spectra 
analysis
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1 Introduction
Double-suction centrifugal pumps are widely used in 
various fields, such as water diversion, farm irrigation, 
urban water supply, and process industry. The flow rate 
of a double-suction centrifugal pump is about twice 
as much as a single-suction centrifugal pump with the 
same diameter, and the axial force of the former pump is 
theoretically balanced [1]. In long-distance water diver-
sion projects or high lift irrigations, double-suction cen-
trifugal pumps are playing increasingly important roles, 
and the scales of which are becoming much larger. For 
instance, the impeller diameter of a double-suction cen-
trifugal pump in Huinanzhuang pumping station in 

China reaches 1.75 m, and its single installation power is 
7500 kW [2].

The internal flow in a double-suction centrifugal pump 
is extremely complex, especially under off-design operat-
ing conditions [3]. The 3D asymmetric flow pattern in the 
volute, the fluid dynamics of rotor–stator interaction, the 
secondary flow, and the cavitation phenomenon induce 
large pressure fluctuations [4, 5]. Periodic pressure fluc-
tuation may force the impeller or volute to vibrate, and 
resonance may occur when the frequency of pressure 
fluctuation approaches the natural frequency of pump 
components. The energy of pressure fluctuations propa-
gates in fluids at the speed of sound, which is harmful and 
unacceptable to the pump and environment. Further-
more, the lowest static pressure during fluctuation may 
lead to cavitations [6, 7]. Adverse operating conditions 
may be detected by observing the pressure fluctuations 
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generated by a pump, which could provide evidence of 
inadequate suction conditions [8].

Several studies have characterized the pressure fluctua-
tion of centrifugal pumps through experimental investi-
gations, theoretical analysis, and numerical simulations 
[9, 10]. Chu et  al. [11, 12] tested a single centrifugal 
pump; built relationships among unsteady flow, pres-
sure fluctuation, and noise; and inspected the interaction 
effect between the impeller and the volute. This study 
showed that the impeller–volute tongue interaction and 
the asymmetric outflow from the impeller are the two 
main sources of high-level pressure fluctuations. When 
the gap between the impeller and the volute tongue is less 
than 20% of the impeller radius, the amplitude of pressure 
fluctuation noticeably decreases as the gap increases. Stel 
et  al. [13] has recently presented a numerical investiga-
tion of fluid flow in a centrifugal impeller with a vaned 
diffuser. Significant levels of turbulence and blade-ori-
ented effects are revealed at different flow rates. Pei et al. 
[14] found the optimization on the impeller of a low-
specific-speed centrifugal pump can even reduce pres-
sure fluctuations. Gao et  al. [15] analyzed the unsteady 
flow inside a large centrifugal pump with stay vanes. The 
main frequency of pressure fluctuation is the blade pass-
ing frequency. The radial gap between the impeller outlet 
and the volute tongue influences the overall performance 
and the pressure fluctuations inside the pumps [16, 17]. 
Hayashi et al. [18] analyzed the pressure fluctuations in a 
piping system excited by a centrifugal turbomachinery by 
considering the damping characteristics.

Alqutub et al. [19] investigated the effect of the V cut 
of the impeller outlet on pressure fluctuation in double-
suction centrifugal impellers and found that the V cut 
decreases pressure fluctuation. Spence et al. [20] numeri-
cally simulated a double-suction centrifugal pump with 
impeller staggered at 0°, 15°, and 30°, and found that 
the stagger impeller largely affects the characteristics of 
pressure fluctuation. For such impeller configurations, 
looking from the pump outlet section toward the twin 
impellers, the blades of both impellers can be aligned 
along the exit width or staggered. Yang et al. [21] and Li 
et  al. [22] implemented numerical simulations for stag-
gered impellers and illustrated that a suitable stagger 
angle may reduce the amplitude of pressure fluctuations. 
Yao et  al. [23] reported that a double-suction impel-
ler with staggered bilateral blades can reduce pressure 
fluctuations in comparison with the traditional impeller. 
Staggered impellers have already been used in Huinan-
zhuang pumping station, but the effect of stagger angle 
on the pressure fluctuation remains unclear because of 
the rare experimental investigations on this issue.

In the present study, pressure fluctuation experiments 
are carried out for five impeller arrangements with the 

same test rig system to establish the relationship between 
impeller stagger angles and pressure fluctuations for a 
double-suction centrifugal pump. High-accuracy pres-
sure transducers are mounted along the walls of the 
semi-casing suction chamber and the volute casing. Fluc-
tuating pressure signals are captured and recorded under 
different operation conditions. Time domains of the pres-
sure signals are analyzed using statistical methods and 
Fast Fourier Transform (FFT). The influence of impel-
ler stagger angles on pressure fluctuations is obtained 
successfully.

2  Tested Pump and Experimental Setup
The tested pump (300ss-37) is manufactured by Shan-
dong Shuanglun Co., Ltd. (S.S.G.). The inlet and outlet 
diameters of the pump are 300 and 250 mm, respectively. 
The trailing edge of the original double-suction impeller 
blade is parallel with the pump rotation shaft, and the 
blades on both sides are arranged in a non-staggered lay-
out. The specific speed Ns of the impeller is 185, which is 
defined as Ns = (3.65n

√
Q/2)/H3/4. Different from those 

of the traditional double-suction impeller, the hubs of the 
tested impellers extend to the impeller outlet. The main 
design parameters of the test pump are given in Table 1. 
The design flow rate is 1030  m3/h, the design head is 
37 m, and the design efficiency is 85%. The design rota-
tional speed is 1480 r/min.

Both sides of the impeller are manufactured separately 
to stager the double-suction impeller. Some specific key 
slots are set on the pump shaft in the peripheral direc-
tion. In this way, one side of the impeller can be con-
nected with keyways at a specific stagger angle with the 
other side. According to the different impeller stagger 
angles listed in Table  2, five impeller configurations are 
shown in Figure 1. The stagger angles are 0°, 12°, 24°, 36°, 
and 48°, which correspond to impellers 1, 2, 3, 4, and 5. 
The absolute values of the stagger angles of impellers 2 
and 5, as well as impellers 3 and 4, are exactly the same, 

Table 1 Design parameters of tested pump

Main geometric data Value

Impeller inlet diameter D1/mm 250.6

Impeller outlet diameter D2/mm 367

Impeller outlet width b/mm 35

Blades number Z 6

Nominal flow rate Qn/(m3/h) 1030

Nominal head Hn/m 37

Nominal efficiency ηn/% 85

Nominal rotational speed nn/(r/min) 1480

Specific speed Ns 185
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but the two sides of the blades are staggered in opposite 
directions.

The experiment is carried out on the open test rig at 
Shandong Shuanglun Co., Ltd. (S.S.G.). The investigated 
pump is installed in the test rig containing all necessary 
components to control the operating point of the pump. 
The tested pump is driven by an electric AC-motor. The 
shaft torque and rotating speed are measured by a torque 
and speed sensor, respectively. Static pressure values at 
the inlet and outlet of the pump are measured by a pres-
sure differential transfer. The flow rate is determined 
by a magnetic flow meter. The total uncertainty of the 
efficiency is around ± 0.5%. A scheme of the test rig is 
shown in Figure 2.

For the pressure fluctuation measurement, Druck 
PTX14000-15 piezoresistive high-frequency pressure 
transducers are flush mounted in the wall of the semi-
spiral suction chamber and volute casing, the uncertainty 
of which is ± 0.25%.

3  Arrangement of Pressure Measurement 
Locations

The investigation mainly focuses on the effects of pres-
sure fluctuations on the semi-spiral suction chamber and 
the volute casing caused by hydraulic excitations. In the 
semi-spiral suction chamber, three measurement points 
are proposed as shown in Figure 3(a). Location  S3 is the 
nearest to the inlet tongue of the suction chamber among 
the three measurement locations. In the volute casing, 
measurement points at five circumferential locations 
in the volute casing wall are presented in Figure 3(b) to 
obtain the specific frequencies of the pressure fluctua-
tions caused by the interaction between the impeller and 
the volute tongue.

4  Test Procedure and Data Acquisition
The tested operating conditions are adjusted by the valve 
located in the outlet pipe. Eleven operating conditions 
are tested within the flow rate range of 0–1.2 Qn. Pres-
sure fluctuation transducers output 4–20  mA signals 
over their operating range. The signals run across a high-
accuracy resistor to generate voltages that are recorded 
synchronously with the sampling frequency of 2 kHz and 
sampling time of 30 s by the acquisition unit. A low-pass 
filter with a cut frequency of 500 Hz is set.

Table 2 Different impeller stagger angles

Impeller number 1 2 3 4 5

Stagger angle/(°) 0 12 24 36 48

Figure 1 Five impeller configurations with impeller stagger angles 
0°, 12°, 24°, 36° and 48°

Figure 2 Schematic diagram of the test rig

Figure 3 Measurement locations of pressure transducers
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The peak-to-peak value in the time domain with 95% 
confidence is adopted to evaluate the level of pressure 
fluctuations. The FFT method is applied to obtain fre-
quency spectra, and the Hanning window is used to real-
ize the transform.

5  Results and Discussion
5.1  Performance Tests
During the energy performance tests, the pump is kept at 
a constant rotational speed. The flow rate is changed by 
adjusting the valve on the outlet pipe. The flow rate-head 
curves for the five tested impeller configures are shown 
in Figure 4. The flow rate-efficiency curves for five tested 
impeller configures are shown in Figure 5. Results show 
that the head only slightly decreases when the double-
suction impeller is staggered. A comparison of the per-
formances at best efficiency points for the five impeller 
configurations is shown in Table 3. The impeller stagger 
angles may exert negligible effects on the pumping head 
and efficiency.

5.2  Pressure Fluctuations in the Semi‑spiral Suction 
Chamber

Frequency analysis of pressure fluctuations at different 
flow rates in the semi-spiral suction chamber is carried 
out. For each location, frequency analysis between 0 and 
400 Hz is presented with results because of the absence of 
obvious frequencies higher than 400 Hz. For comparison 
with other scholars’ results [5, 10, 20, 22], the pressure 
fluctuations are normalized to the pressure coefficient Cp 
defined as Cp = (pi −  p̄i)/(0.5 ρu2

2). Where p̄i is the aver-
age value of the static pressure fluctuation during 10 s, pi 
is the transient static pressure value, ρ is the fluid density, 
and u2 is the impeller outlet circumferential velocity.

Figure 6 shows the time domains of the pressure fluctu-
ations on the best efficiency point at measurement points 

 S1,  S2, and  S3 on the wall of the semi-suction chamber. 
Ten periods of impeller rotation are compared for the 
five impellers, and periodical pressure fluctuations are 
observed. Among the three measurement points, the 
highest level of pressure fluctuation appears on the meas-
urement point  S3, which is located nearest to the inlet 
tongue. The pressure fluctuation level is the lowest on 
point  S1. Such results may be explained by the different 
distances between the suction chamber and the impeller 
suction eye. Smaller distance may lead to larger pressure 
fluctuation. Figure  7 shows the change in the peak-to-
peak values of pressure fluctuations with the flow rate on 
the three measurement points for the five impellers. The 
trends of the peak-to-peak values changing with the flow 
rate reach a basic agreement on measurement points  S1, 
 S2, and  S3. During the flow rate range of 0.6–1.0 Qn the 
peak-to-peak values versus flow rate curves are almost 
the same. The impeller stagger angle exerts negligible 
effects on the flow field in the suction chamber.

The spectral domains of pressure fluctuations on meas-
urement points  S1,  S2, and  S3 are shown in Figure  8, 
which are all operating under nominal conditions. As 
shown in Figure 8, the blade passage frequency (148 Hz), 
half blade passage frequency (74  Hz), and four times 
impeller rotation frequency (98 Hz) are clearly identified 
in the frequency domains. For measurement point  S1, the 
largest amplitude of the pressure fluctuation appears at 
frequency 98 Hz for impeller 5, which may be caused by 
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Figure 5 Flow rate‑efficiency curves

Table 3 The best efficiency points for five impellers

Impeller number 1 2 3 4 5

Flow rate Q/(m3/h) 1028.81 1028.20 1031.87 1029.60 1030.08

Head H/m 38.89 37.93 37.67 37.78 37.84

Efficiency η/% 85.24 85.28 85.02 85.37 85.31
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the mechanical source rather than the hydraulic reason. 
The pressure fluctuation characteristics on point  S2 are 
similar to that on point  S1. The blade passage frequency 
component on point  S2 is much more notable than the 
one on point  S1, which may reflect the effect of the inter-
action between the impeller and the inlet tongue in the 
suction chamber. For the pressure fluctuations on point 

 S3, the amplitudes at half blade passage frequency and 
four times impeller rotation frequency are much larger 
than that on points  S1 and  S2.

Figure 9 shows the spectra of the pressure fluctuations 
at location  S3 for impeller 1. The amplitudes of pressure 
fluctuations on half blade passage frequency at 0.2 and 
1.2 Qn are 3.9 and 1.6 times of that at the best efficiency 
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Figure 6 Time domains of pressure fluctuations on measurement points  S1,  S2 and  S3 at best efficiency points
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point, respectively. In addition, notable white noise phe-
nomenon is present for the pressure signals under 0.2 and 
0.6 Qn operating conditions. As mentioned by Liu [9], the 
white noise phenomenon may cause the complex turbu-
lence flow inside the suction region of the test pump.

The pressure fluctuations on half blade passage fre-
quency in Figure  9 show that the amplitude of the 
pressure fluctuation on such frequency at l.2 Qn is two 
times as large as that at 1.0 Qn. According to the pres-
sure fluctuations reflected by the three measurement 
points, the characteristics of pressure fluctuations in the 
suction chamber present a homogeneous distribution. 
The maximum amplitude of the pressure fluctuations is 
reached at location  S3, which is nearest to the suction 
chamber inlet tongue. The pressure fluctuations in the 
suction chamber are considerably affected by the rota-
tion effect, of which the frequencies are manifested as 

the harmonic of impeller rotation frequency and half 
blade passage frequency.

5.3  Pressure Fluctuations in the Volute Casing
In the volute casing, a pronounced pressure fluctuation 
pattern can be caused by the interaction between the 
impeller blades and the volute tongue [24, 25]. Figure 10 
illustrates the time domains and their corresponding 
spectral domains at the best efficiency point on measure-
ment point  P1. Compared with the frequencies of pres-
sure fluctuations in the suction chamber, the frequencies 
of pressure fluctuations in the volute are much higher and 
complicated. The periodicity of the pressure fluctuation 
in the time domain is not obvious because of the super-
position of several frequency components. According to 
the shown spectra, the main frequencies in the volute 
are the impeller rotation frequency and its harmonic (25 
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and 100  Hz), the half blade passage frequency (74  Hz), 
the blade passage frequency and its harmonics (148 and 
296 Hz), and the broadband frequency [15].

Comparing with that at location  P1, the periodicity of 
the pressure fluctuations at location  P2 is much more 
obvious. The dominant frequency of pressure fluctua-
tion, which is the blade passage frequency, is much more 

remarkable than that in impellers 1, 2, and 5 (Figure 11). 
The amplitudes of the pressure fluctuations at the blade 
passage frequency at location  P2 for impellers 3 and 4 are 
very small [26], and the broadband frequency is observed 
near the half blade passage frequency.

Figure  12 shows the time and frequency domains of 
measurement point  P3 at the best efficiency points for 
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the five impellers. Measurement point  P3 is far from the 
volute tongue, and the level of pressure fluctuation at the 
blade passage frequency is lower. The harmonic frequen-
cies of the blade passage frequency dominate the pres-
sure fluctuation.

Figure 13 presents the time and frequency domains of 
measurement point  P4 at the best efficiency points for 

the five impellers. The broadband components greatly 
affect the pressure fluctuation behaviors at this location. 
The time and frequency domains of measurement point 
 P5 at the best efficiency points for the five impellers are 
given in Figure 14. The measurement location is set in the 
outer volute section, and the characteristics of the pres-
sure fluctuations at this location are basically the same as 
that at location  P4.

Figure 15 shows the peak-to-peak values of the pressure 
fluctuations as a function of flow rate for the five impel-
lers. In consideration of the above results, the stagger 
angle greatly affects the pressure fluctuations at location 
 P2. The pressure fluctuation of the staggered impeller is 
decreased. In addition, the peak-to-peak values of impel-
lers 3 and 4 reduce to 50% compared with that of impel-
ler 1. Impellers 3 and 4 have the lowest level of pressure 
fluctuations, and their impeller stagger angle is 24° or 
36°, which is close to 360/(2·Z). The stagger angle mainly 
affects the component of the blade passage frequency but 
exerts negligible effects on the other components.

Figure  16 present the peak-to-peak values of pres-
sure fluctuations on the volute at different flow rates for 
impellers 1 and 4. For impeller 1, the peak-to-peak val-
ues at locations  P1 and  P2, which are close to the volute 
tongue, are relatively large. The peak-to-peak value is 
small at locations  P4 and  P5 set in the diffuse section of 
the volute, and the smallest one is found at location  P3, 
which is far from the volute tongue. For impeller 4, the 
change trends of the peak-to-peak values with flow rate 
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are even, and the discrepancies of the different locations’ 
trends become small. This result is also supported by a 
previous computational fluid dynamics study [27].

Figure 17 shows the spectra of pressure fluctuations at 
location  P2 for impellers 1 and 4 under the five operat-
ing conditions. As observed in the spectra of impeller 1, 
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the dominant frequency is always the blade passage fre-
quency, and the broadband component displays remark-
ably only at 1.2 Qn, thereby increasing the peak-to-peak 

value of the pressure fluctuations. For impeller 4, the 
blade passage frequency only exists at flow rates below 
0.6 Qn. The corresponding amplitude at 0.2 Qn is one 
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tenth of that in impeller 1. The broadband of these two 
impellers demonstrates the same behaviors. The center 
frequency of the broadband component decreases with 
increasing flow rate. For impeller 4, some low frequencies 
of the pressure fluctuations below 0.6 Qn may be induced 
by the shedding of stall cells as investigated by Zhou [28].

The above results suggest that the stagger angle defi-
nitely affects the pressure fluctuation characteristics in 

the volute casing; in particular, it decreases the amplitude 
on the blade passage frequency. When the impeller stag-
ger angle is 24° or 36°, the distribution of pressure fluc-
tuations in the volute casing becomes more uniform than 
the other impeller configurations, and the level of pres-
sure fluctuation can be reduced by up to 50%. Staggered 
impellers may redistribute the flow pattern at the region 
of the impeller outlet and affect the jet-wake flow field. 
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In this way, the staggered impeller changes the strength 
of the interaction between the impeller and the volute 
tongue.

6  Conclusions
1. Five impeller configurations with the same test rig 

system are investigated. The pressure fluctuations are 
captured along the walls of the semi-casing suction 
chamber and the volute casing. The time domain and 
frequency spectra are carefully identified using statis-
tical methods and Fast Fourier Transform.

2. The stagger angles exert negligible effects on the 
characteristics of head and efficiency. Compared with 
the traditional parallel impeller, the staggered impel-
ler slightly decreases the pump head.

3. The distributions of pressure fluctuations are rela-
tively uniform along the suction chamber wall, and 
the maximum pressure fluctuation amplitude is 
reached near the inlet tongue region.

4. The dominant pressure fluctuation frequencies are 
composed of impeller rotation frequency and its har-
monic frequencies, and half blade passage frequency.

5. The stagger angle exerts minimal effects on the pres-
sure fluctuations in the suction chamber but greatly 
affects the pressure fluctuation characteristics in the 
volute casing. In particular, this parameter decreases 
the amplitude on the blade passage frequency. When 
the impeller configuration is nearly halfway stag-
gered, the distribution of pressure fluctuations in the 
volute casing becomes more uniform than the other 
impeller configurations, and the level of pressure 
fluctuation may be reduced by up to 50%.
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