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Abstract 

Flexure-based mechanisms are widely utilized in nano manipulations. The closed-form statics and dynamics modeling 
is difficult due to the complex topologies, the inevitable compliance of levers, the Hertzian contact interface, etc. This 
paper presents the closed-form modeling of an XY nano-manipulator consisting of statically indeterminate symmet‑
ric (SIS) structures using leaf and circular flexure hinges. Theoretical analysis reveals that the lever’s compliance, the 
contact stiffness, and the load mass have significant influence on the static and dynamic performances of the system. 
Experiments are conducted to verify the effectiveness of the established models. If no piezoelectric actuator (PEA) is 
installed, the influence of the contact stiffness can be eliminated. Experimental results show that the estimation error 
on the output stiffness and first natural frequency can reach 2% and 1.7%, respectively. If PEAs are installed, the con‑
tact stiffness shows up in the models. As no effective method is currently available to measure or estimate the contact 
stiffness, it is impossible to precisely estimate the performance of the overall system. In this case, the established 
closed-form models can be utilized to calculate the bounds of the performance. The established closed-form models 
are widely applicable in the design and optimization of planar flexure-based mechanisms.
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1  Introduction
The integrations of piezoelectric actuators (PEAs) and 
flexure-based mechanisms have been widely utilized in 
nano-positioning and manipulations [1–5]. On the one 
hand, the shape of a PEA changes if charge or voltage 
is exerted, and thus generating sub-nanometer resolu-
tion actuation. However, PEAs suffer from the inherent 
hysteresis and creep nonlinearities [6–8]. Many feedfor-
ward and feedback methodologies have been proposed to 
compensate for the hysteresis and creep nonlinearities of 
PEAs [9, 10]. On the other hand, flexure-based mecha-
nisms are capable of transmitting high-precision motions 
via the elastic deformations of the flexure hinges, making 
it ideal in building the transmission chains for PEAs [11, 
12]. Widely utilized flexure hinge profiles include circular 
[13–16] and leaf [17, 18].

A single flexure hinge can be treated as a revolute 
joint during micro- and nano-scale motions. In litera-
ture, many analytical and empirical models have been 
established for the compliance/stiffness of a single flex-
ure hinge [19–21]. In order to improve the performance, 
multiple flexure hinges are generally combined in various 
configurations, such as the parallelograms [22–24] and 
the statically indeterminate symmetric (SIS) structures 
[25]. In these structures, it is common to treat the flexure 
hinges as flexible, and all the other components as rigid. 
Considering the widely-utilized lever mechanism as an 
example, the lever is frequently assumed to be rigid [26, 
27] so as to facilitate the design and modeling processes. 
However, this assumption may increase the estimation 
error of the analytical model, especially when the lever is 
long or the compliance of the lever is not negligible.

A PEA is brittle and very weak when subjected to large 
lateral forces or torques. As a result, a PEA is not allowed 
to be firmly fixed to the mechanism during the installa-
tion. Many commercial PEAs use ball tips to eliminate 
the bending torques. In this case, a Hertzian contact 
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interface forms between the tip and the mechanism. One 
significant drawback of Hertzian contact is its low con-
tact stiffness that consumes large portion of the PEA’s 
displacement. The contact stiffness is highly dependent 
on the material properties and the contact status. Cur-
rently, there is no effective and reliable model to estimate 
the contact stiffness. Thus, the contact stiffness is fre-
quently identified from the measured data [2].

As a flexure-based mechanism is generally light and 
compact, its performance is likely to be affected by the 
load mass, including the sensors, end-effectors, fixtures, 
and other accessories installed on the mechanism. The 
load mass increases the effective mass and moment of 
inertia of the system, leading to a slow response. Thus, 
the influence of the load mass should be taken into con-
sideration in the design and modeling of flexure-based 
mechanisms.

This paper presents the closed-form modeling of an 
XY flexure-based nano-manipulator developed in our 
previous work [28]. In this nano-manipulator, the flex-
ure hinges are arranged in SIS configurations to transmit 
linear or angular motions. Analytical modeling reveals 
that the lever’s compliance significantly increases the 
estimation error. Thus, a threshold is proposed to deter-
mine whether the lever’s compliance can be neglected 
or not. Subsequently, a systematic modeling method-
ology is established to investigate the behavior of the 
nano-manipulator during linear and angular motions. 
Experimental results show that the modeling accuracy is 
significantly improved if the influence of the lever’s com-
pliance, the contact stiffness, and the load mass is taken 
into consideration.

2 � Design of the XY Nano‑manipulator
An XY flexure-based nano-manipulator was devel-
oped for nano manipulation tasks in our previous work 
[28]. The schematic diagram and the geometric param-
eters of the nano-manipulator are presented in Figure 1, 
where a central platform is connected to four rigid link-
ages (consecutively labeled as linkage 1‒4) and then to 
the fixed frame through leaf springs. The nano-manip-
ulator is symmetric in the x- and y-axes, thus attenuat-
ing thermally induced errors and guaranteeing uniform 
characteristics. In each axis, the displacement of a PEA 
(P-843.30 from Physik Instrumente) is magnified by a 
lever mechanism. Ball tip is selected to form a Hertzian 
contact interface so as to protect the PEA against the 
lateral forces and torques. Leaf and right circular flex-
ure hinges are adopted in the manipulator. These flexure 
hinges are arranged into four different groups, namely 
Structure I-IV (labeled as I-IV in Figure  1). Except for 
Structure IV, the other structures are SIS structures with 
“clamped-clamped” boundary conditions. Experimental 

results showed that the cross-axis coupling ratio of the 
nano-manipulator is below 1% [28].

3 � Characteristics of the SIS Structures
3.1 � In‑plane Compliance of a Single Flexure Hinge
Leaf and right circular flexure hinges are utilized in the 
nano-manipulator. As illustrated in Figure  2, the geo-
metric parameters are the hinge length 2L0 and the mini-
mum thickness t. The shape functions of these hinges are 
defined in Eqs. (1) and (2), respectively:

(1)y(x) = t/2,

(2)y(x) = r + t/2− r

√

1− x2/r2, x ∈ [−L0, L0],

Figure 1  Schematic diagram of the nano-manipulator. t1, t2: Minimal 
thickness of circular and leaf flexures, t1 = 0.58, t2 = 0.44, t3: Thickness 
of linkages, t3 = 4, r: Radius of the circular flexure hinge, r = 3.41, t1, t2, 
t3: Parameters of the lever mechanism, h1 = 11.1, h2 = 18, h3 = 72, l1, 
l2, l4: Length of leaf flexures, l1 = 17.61, l2 = 16.61, l4 = 22.39, l3: Width 
of the central platform, l3 = 27.78, d: Out-of-plane depth of the nano-
manipulator, d = 20.

Figure 2  In-plane deformations of a flexure hinge.
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where r is the radius of the circular profile, and for the 
right-circular flexure hinge, r = L0.

As shown in Figure  2, the in-plane loads of the flex-
ure hinge are the moment about the z-axis (Mz) and two 
forces in the x- and y-axes (Fx and Fy). The angular deflec-
tion about the z-axis and the linear deflections in the x- 
and y-axes are denoted as θB, uB, and vB, respectively. The 
bending moment Mz(x) and shear force Q(x) generated at 
position x may be written as

In the x-axis, the linear deflection at point B is defined 
by the following equation:

where E is the Young’s modulus, A(x)  =  2dy(x) is the 
cross sectional area of the hinge, and

Subsequently, the angular deflection of point B about 
the z-axis can be modeled as

where Iz(x)  =  2dy3(x)/3 is the second moment of area 
with respect to z-axis, and

Timoshenko beam theory is utilized to calculate the 
linear deflection in y-axis:

where θ(x) denotes the angular deflection at position x, 
G is the shear modulus, κ is the Timoshenko shear coef-
ficient, and

(3)
{
Mz(x) = Mz + Fy(L0 − x),
Qy(x) = −Fy.

(4)uB =

∫ L0

−L0

Fx

EA(x)
dx =

Fx

2Ed

∫ L0

−L0

1

y(x)
dx = FxP1,

P1 =
1

2Ed

∫ L0

−L0

1

y(x)
dx.

(5)

θB =

∫ L0

−L0

Mz(x)

EIz(x)
dx =

3(Mz + FyL0)

2Ed

∫ L0

−L0

1

y3(x)
dx

= (Mz + FyL0)P2,

P2 =
3

2Ed

∫ L0

−L0

1

y3(x)
dx.

(6)

vB =

∫ L0

−L0

θ(x)dx −

∫ L0

−L0

Q(x)

κGA(x)
dx

= L0θB +
3Fy

2Ed

∫ L0

−L0

x2

y3(x)
dx + Fy

E
κGP1

= L0(Mz + FyL0)P2 + FyP3 + Fy
E
κGP1,

P3 =
3

2Ed

∫ L0

−L0

x2

y3(x)
dx.

For hinges with a rectangular cross section, κ = 5/6.
Eqs. (4)‒(6) can be rewritten into a matrix form:

where matrix C is defined as the in-plane compliance 
matrix of the flexure hinge.

In this paper, P1‒P3 are only dependent on the geomet-
ric parameter of the hinge, and thus they are named as 
fundamental integrations.

3.2 � Stiffness Modeling of the SIS Structures
Structure I-III can be schematically illustrated in Fig-
ure 3. It is obvious that static indeterminacy causes axial 
tension in lateral deformations, resulting in nonlinear 
load-deflection relationship. However, the deflection of 
a flexure-based mechanism is very small when compared 
to the dimension of the mechanism. Thus, the above 
structural nonlinearity can be treated as negligible [25]. 
This is also adopted in this paper.

The reaction forces and moments of the SIS structure 
are defined in Figure 3. The static equilibrium conditions 
lead to the following equations:

There are six unknown variables in the above equa-
tions. For this statically indeterminate problem, the reac-
tions of the structure can be solved using the flexibility 
method. If we remove the constraints from point B and 
treat the reactions FBx, FBy, and MBz as additional loads, 
the original statically indeterminate structure can be 
transformed into a statically determinate structure. The 
transformed structure is equivalent to the original struc-
ture only when the deflections of the transformed struc-
ture at point B are the same as the original structure. As a 
result, another three equations are derived:

(7)





uB
vB
θB



 =





P1 0 0

0
E
κGP1 + L2

0
P2 + P3 L0P2

0 L0P2 P2









Fx
Fy
Mz





= C





Fx
Fy
Mz



,

(8)







Fx − FAx + FBx = 0,
Fy + FAy + FBy = 0,
Mz −MAz +MBz − (FAy − FBy)(2L0 + L1) = 0.

Figure 3  Schematic diagram of a SIS structure.
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where L01 = L0+L1.
Linear superposition is used to facilitate the calcu-

lation, and contribution of hinge 1 (or 2) refers to the 
deflections of point B when only hinge 1 (or 2) is treated 
as flexible. Utilizing Eqs. (8) and (9), we obtain the reac-
tion forces and moments as below:

Similarly, we can obtain the deflections at point O using 
the linear superposition method, as shown below:

Subsequently, the in-plane stiffness of the SIS structure 
can be derived from Eq. (11):

where kL, kT and kR are the longitudinal, transverse, and 
angular stiffness, respectively.

Substituting P1‒P3 into Eq. (12), the in-plane stiffness 
of Structure I-III are obtained and provided in Table  1. 
It is found that the difference between the longitudi-
nal and transverse stiffness is over 350 times. Therefore, 
these structures can be treated as rigid in the longitudi-
nal direction. Table 1 also shows that Structure III is very 

(9)





uB

vB

θB



 =

contribution of hinge 1
� �� �




1 0 0
0 1 2L01
0 0 1



C





Fx + FBx
Fy + FBy
Mz+MBz+FyL1+2FByL01)





+

contribution of hinge2
� �� �

C





FBx
FBy
MBz



 =





0
0
0



,

(10)







FAx =
1
2Fx, FBx = − 1

2Fx,

FAy = − 1
2Fy +

1
2

L01P2
E
κG P1+L201P2+P3

Mz,

FBy = − 1
2Fy −

1
2

L01P2
E
κG P1+L201P2+P3

Mz,

MAz =
L0
2 Fy +

1
2

E
κG P1−L0L01P2+P3
E
κG P1+L201P2+P3

Mz,

MBz =
L0
2 Fy −

1
2

E
κG P1−L0L01P2+P3
E
κG P1+L201P2+P3

Mz.

(11)





uO

vO

θO



 =





1 0 0

0 1 l1
0 0 1



C





Fx + FBx
Fy + FBy

Mz+MBz+Fyl1+2FByL01





=









P1
2

0 0

0

E
κG P1+P3

2
0

0 0
(
E
κG P1+P3)P2

2[
E
κG P1+L2

01
P2+P3]













Fx
Fy
Mz



.

(12)







kL = Fx
�
uO = 2

�
P1,

kT = Fy
�
vO = 2

��
E
κGP1 + P3

�

,

kR = Mz

�
θO = 2

�
P2 + kTL

2
01,

stiff in the longitudinal and transverse directions. Thus, 
Structure III can be treated as an ideal revolute joint.

3.3 � Stress Concentration of the SIS Structure
In Section  3.2, an SIS structure can be treated as rigid 
in the longitudinal direction. Thus, the normal stress 
caused by the axial load is not investigated herein. Dur-
ing the lateral deformations, the normal stress caused by 
the bending effect is the dominant stress. Thus, the maxi-
mum stress locates on the outer surface of the hinge. The 
maximum stress on the outer surfaces can be expressed 
using the following equation:

where kb is the stress concentration factor for bend-
ing, σmax and σn are the actual and nominal maximum 
stresses, respectively. For the leaf hinges in Structure I 
and II, the stress concentration has little influence on the 
bending compliance calculation according to DU’s work 
[29]. As a result, kb can be set to 1 for Structure I and 
II. For circular hinges in Structure III, according to the 
generalized model established in CHEN’s work [30], the 
stress concentration factor is calculated to be 1.030.

Due to the symmetry, hinge 1 is selected to calcu-
late the maximum stress. Based on Figure  3, the inner 
moment at position x1 within hinge 1 is

Substituting Eqs. (10)‒(12) into Eq. (14), the relation-
ship between Mz(x1) and the SIS structure’s deflections is

In this manipulator, Structure I and II act as pris-
matic joints, i.e., θO =  0. In this case, substituting Eqs. 
(1) and (15) into Eq. (13), the following relationship is 
established:

(13)

σmax(x) = −kbσn(x) = −
kby(x)Mz(x)

Iz(x)
= −

3kbMz(x)

2dy2(x)
,

(14)
Mz(x1) = MAz + FAy(L0 + x1), x1 ∈ [−L0, L0].

(15)

Mz(x1) =
kT[(L0 + L1)θO − vO]x1

2
+

θO

P2
, x1 ∈ [−L0, L0].

(16)
σx(x1)

vO
=

3kbkTx1

dt2
, x1 ∈ [−L0, L0].

Table 1  In-plane stiffness of the SIS structures

Longitudinal
kL /(N/μm)

Transverse
kT /(N/μm)

Rotational
kR /(N·m/rad)

SIS I 17.49 4.350 × 10−2 23.53

SIS II 18.54 5.182 × 10−2 26.72

SIS III 254.7 39.14 3.170 × 103
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On the other hand, Structure III functions as a revolute 
joint, and thus vO = 0. Substituting Eqs. (2) and (15) into 
(13), the relationship between the σx and vO is established:

Eqs. (16) and (17) are utilized to obtain the maximum 
allowable deflections of the SIS structure. For Structure 
I and II, Eq. (16) shows that the maximum stress locates 
at both ends of the hinge. For Structure III, the location 
of the maximum stress can be obtained by differentiating 
Eq. (17) to x1. Taking the yield strength of the material 
into consideration, the maximum allowable deflections 
of Structure I-III are calculated to be 1.46 mm, 1.30 mm, 
and 5.349 mrad, respectively.

4 � Statics and Dynamics Modeling
Monolithic flexure-based mechanisms exhibit friction-
less motions, resulting in an extremely low damping 
ratio. Hence, the nano-manipulator can be approximated 
as an undamped system. Based on Lagrange’s equation, 
the dynamics of a system can be expressed as follows:

where T and V denote the total kinetic and poten-
tial energy of the system, respectively; qi and Qi are 
the ith generalized coordinate and non-conservative 
force, respectively; and N is the number of generalized 
coordinates.

The first three modes of the nano-manipulator are 
the linear motions in the x- and y-axes and the angular 
motion about the z-axis. The linear motions in each axis 
are the primary motions, whereas the angular motion 
about the z-axis is an unexpected motion degrading the 
motion accuracy. In this section, the dynamics models in 
both linear and angular motions are established.

4.1 � Influence of the lever’s compliance
The lever in flexure-based mechanisms is typically treated 
as a rigid element [26, 27, 31] to facilitate the modeling 
process. This approximation may affect the estimated 
parameters of the overall system, e.g., the displacement 
amplification ratio. Figure  4(a) examines the lateral 
deformations of the lever in the nano-manipulator when 
a lateral force is applied at the free end. The contribu-
tion of Structure III is equivalent to a revolute joint with 
a torsional stiffness of kR3. If the lever is assumed to be 
rigid, the free end moves to point C′. However, the lever 
is flexible, and the actual position of the free end is point 

(17)

σx(x1)

θO
=

−3kb[kT(L0 + L1)P2x1 + 2]

4dP2

(

r + t
/
2− r

√

1− x21
/
r2
)2

,

x1 ∈ [−L0, L0].

(18)
d

dt

(
∂T

∂ q̇i

)

−
∂T

∂qi
+

∂V

∂qi
= Qi, i = 1, 2, . . . ,N ,

C, with a distance of δ to point C′. The distance δ is neg-
ligible in very short levers while it becomes noticeable in 
long levers. In this paper, the equivalent structure shown 
in Figure 4(b) is proposed to account for the lever’s com-
pliance, where klever is the equivalent lateral stiffness of 
the lever with “clamped-free” boundary conditions. The 
modeling of klever is straightforward using the mechanics 
of materials, and thus it is omitted for the conciseness of 
this paper. In the lever mechanism, klever is calculated to 
be 1.111 N/μm.

Figure 5(a) shows the deformation of the manipulator 
in the x-axis, where linkages 2 and 4 remain stationary, 
and the central platform, linkages 1 and 3 generate the 
same displacement. This corresponds to the first/second 
mode. The masses of the central platform, linkages 1 and 
3 are denoted as m0, m1, and m3, respectively. In the con-
tact interface, point A is the end of the PEA and point 
B represents the contact point on the lever. The lumped 
mass model in the x-axis can be depicted in Figure 5(b), 
where mL is the load mass, and Ilever denotes the moment 
of inertia of the lever. In Figure  5(b), the equivalent 

Figure 4  Influence of the lever’s compliance: (a) deformations under 
a lateral force and (b) the equivalent structure.

Figure 5  Dynamics modeling of the nano-manipulator in linear 
motions: (a) deformations and (b) lumped mass model.



Page 6 of 11Qin et al. Chin. J. Mech. Eng.  (2018) 31:7 

stiffness and the effective mass of the central platform are 
defined in the following equation:

From the static and dynamic point of view, the PEA 
is equivalent to an active force generator. In Figure 5(b), 
the equivalent stiffness, the driving force, and the effec-
tive mass of the PEA are denoted as kPEA, FPEA, and mPEA, 
respectively; and kcon represents the equivalent contact 
stiffness of the contact interface. Further, a dimension-
less parameter, η = kcon/kPEA, is proposed to characterize 
the contact stiffness. Three generalized coordinates are 
defined in Figure  5(b), namely, the displacement of the 
PEA (xPEA), the rotation angle of the lever (θlever), and the 
linear displacement of the central platform (xeq).

In this nano-manipulator, the connection between the 
PEA and the lever is not firm, and preload force is utilized 
to keep the PEA and the lever in contact. The input stiffness 
kin is defined as the linear stiffness at point B when no PEA 
is installed. If kin is too low or the preload force is not large 
enough, the detachment phenomenon may occur in large 
step motions. However, if the input stiffness is too high, 
the displacement of the PEA will be significantly reduced. 
Based on Figure 5(b), kin can be calculated as follows:

The output stiffness is the linear stiffness of the central 
platform in the x or y axis that can be modeled as

The displacement amplification ratio of the lever mech-
anism is the ratio between the displacements of points C 
and B, which can be expressed as

The influence of the lever’s compliance is significant. If 
the lever is assumed to be rigid, klever converges to infin-
ity. In this case, kin, kout, and kamp will be overestimated. 
On the contrary, if the lever’s compliance is considered, 
the modeling complexity will increase significantly. 
Therefore, a criterion is necessary to to decide whether 
the lever’s compliance can be neglected or not. Based on 
Eqs. (20)‒(22), klever can only be neglected if the following 
two conditions are satisfied:

(19)
{

keq = 2(kT1 + kT2),

meq = m0 +m1 +m3.

(20)kin =
keqklever

keq + klever
·
h23
h22

+
kR3

h22
.

(21)kout = keq +

(
η

1+η
h22kPEA + kR3

)

klever
η

1+η
h22kPEA + kR3 + h23klever

.

(22)kamp =
xeq

h2θlever
=

h3

h2
·

klever

klever + keq
.

(23)

{
klever > 100keq,

h23klever > 100
(
h22kPEA + kR3

)
.

Eq. (23) is the criterion to decide whether the lever 
can be treated as rigid or not. In this nano-manipulator, 
klever  =  11.7keq and h3

2klever  =  0.618(h2
2kPEA+kR3). As a 

result, the lever’s compliance must be considered.

4.2 � Dynamics of the Nano‑manipulator in the x‑axis
Based on Figure  5(b), the total kinematic and potential 
energy of the nano-manipulator are given below:

Substituting Eqs. (24) and (25) into Eq. (18), the nano-
manipulator’s equations of motion in the x-axis are estab-
lished as follows:

where

There are three modal vibrations for the linear motions 
in the x-axis. The corresponding natural frequencies can 
be numerically obtained using

As the nano-manipulator is not designed as a high-
speed scanner, only the first natural frequency is inves-
tigated, and all the higher order dynamics is neglected. 
The influence of the contact stiffness and the load mass 
on the first natural frequency is analyzed and shown in 
Figure  6. The variation range of η is 10−3 to 103, corre-
sponding to the cases of low and high contact stiffness, 
respectively. When the contact stiffness is low, the first 
natural frequency converges to its lower bound, cor-
responding to the case when no PEA is installed. When 
the contact stiffness increases, the first natural frequency 
gradually converges to its upper bound. When η  >  100, 
the first natural frequency starts to converge. This indi-
cates that the contact interface can be treated as rigid if 
η > 100. As the load mass increases the effective mass of 

(24)T = 1
2mPEAẋ

2
PEA + 1

2 Ileverθ̇
2
lever +

1
2

(
meq +mL

)
ẋ2eq.

(25)

V = 1
2kPEAx

2
PEA + 1

2ηkPEA(h2θlever − xPEA)
2

+ 1
2kR3θ

2
lever +

1
2klever

(
h3θlever − xeq

)2
+ 1

2keqx
2
eq.

(26)Mẍ + Kx = u,

(27)

M =





mPEA 0 0
0 Ilever 0
0 0 meq +mL



,

K =





(1+η)kPEA −ηh2kPEA 0

−ηh2kPEA ηh22kPEA+kR3+h23klever −h3klever
0 −h3klever klever+keq



,

x = [xPEA, θlever, xeq]
T, u = [FPEA, 0, 0]

T.

(28)
∣
∣
∣K −

(
2π fi

)2
M

∣
∣
∣ = 0, i = 1, 2, 3.
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the nano manipulator, its influence is also obvious in Fig-
ure 6: the first natural frequency decreases when the load 
mass increases.

4.3 � Static Analysis of the Nano‑manipulator
In static modeling, the velocities and accelerations are 
zero. Substituting these into Eq. (26), we can solve for the 
static relationships between the outputs and the input of 
the nano-manipulator, as shown below:

where xPEA0 =  FPEA/kPEA is defined as the nominal dis-
placement of the PEA (free extension without loads).

In order to investigate the influence of the contact stiff-
ness on the nano-manipulator’s static characteristics, the 
following three dimensionless ratios are introduced to 
characterize the actual displacement of the PEA, the dis-
placement applied to the lever, and the displacement of 
the central platform, respectively:

As Figure  7 illustrates, if the contact stiffness is low, 
g1 converges to its upper bound of 1, and both g2 and g3 
converge to zero. As a result, the majority of the PEA’s 
displacement is not transmitted to the lever, but con-
sumed in the contact interface. In contrast, if the con-
tact stiffness is high, both g1 and g2 converge to kPEA/
(kin+kPEA), and g3 converges to its upper bound of 
kPEAkamp/(kin+kPEA). Therefore, in practice, it is desirable 
to improve the contact stiffness so as to achieve larger 
workspace.

4.4 � Angular Motion of the Nano‑manipulator
As illustrated in Figure  8(a), when a moment Mz is 
applied on the central platform, the central platform and 
all the linkages experience almost the same rotations, 

(29)







xPEA =
kin+ηkPEA

kin+η(kin+kPEA)
· xPEA0,

θlever =
ηkPEA

kin+η(kin+kPEA)
·
xPEA0
h2

,

xeq =
ηkPEAkamp

kin+η(kin+kPEA)
· xPEA0.

(30)g1(η) =
xPEA

xPEA0
, g2(η) =

h2θlever

xPEA0
, g3(η) =

xeq

xPEA0
.

denoted as θeq. Figure 8(a) actually shows the third mode 
of the nano-manipulator. Based on the computational 
analysis, the lever mechanisms are almost stationary. 
Thus, this angular motion of the central platform has no 
effect on the PEAs, and the installations of the PEAs will 
not affect the angular behavior of the central platform.

The effective moment of inertia of the central platform, 
linkages 1 and 3 are denoted as I0, I1, and I3, respectively. 
The corresponding rotation centers of linkages 1‒4 are 
labeled as Oi (i =  1‒4). During the angular motion, the 
load mass will increase the central platform’s moment 
of inertia. If the load mass is assumed to be distributed 
uniformly across the central platform, the total kinematic 
energy of the nano-manipulator can be written as

where IL≈mLI0/m0 is the moment of inertia of the load 
mass.

For Structure I, the deformation is a rotation about the 
z-axis. The deformation of Structure II is separated and 
illustrated with dashed lines in Figure 8(b1). The respec-
tive rotation centers are labeled as O′, O2′, and O′4. Since 
the leaf springs and linkages are connected in parallelo-
gram configurations, during the angular motion, the dis-
tance between points O′ and O′4 is constant and equal to 
the distance between points O and O4:

In Figure  8(b1), solid lines show a transformed struc-
ture obtained by counter rotating Structure II by an angle 
of −θeq. A further transformation is illustrated in Fig-
ure  8(b2): flipping the deformation of the lower flexure 
hinge. The above operations do not change the potential 
energy of Structure II. Thus, the angular deformation of 
Structure II is transformed to a linear deformation vO. 
The relationship between vO and θeq can be established 
based on the geometric constraints as below:

(31)T =
1

2
[I0 + IL + 2(I1 + I3)]θ̇

2
eq,

(32)
∣
∣O′O′

4

∣
∣ = |OO4| = (t3 + 2l2 + l3)

/
2.

(33)vO =
∣
∣O′O′

4

∣
∣ · sin

(
θeq

)
≈ |OO4|θeq.

Figure 6  Influence of η and mL on the first natural frequency.
Figure 7  Influence of the contact stiffness on the static parameters.
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As illustrated in Figure 8(a), Structure IV rotates about 
point O3 during the angular motion. If an identical copy 
of Structure IV is connected to the opposite side, a 
new structure is obtained, as shown in Figure  8(c). The 
topology of the new structure is the same as SIS I. The 

deformation is an angular displacement of θeq about the 
z-axis.

Based on the above analyses, the total potential energy 
of the nano-manipulator is derived as follows:

where k′R4 is the angular stiffness of the new structure in 
Figure 8(c). In this manipulator, l5 = 12.32 mm. Utilizing 
Eq. (12), we have k′R4 =   7.272 N·m·rad−1. Substituting 
Eqs. (31) and (34) into Eq. (18), the nano-manipulator’s 
equations of motion about the z-axis is established to be

Accordingly, the third natural frequency of the nano-
manipulator can be calculated using

5 � Experimental Verification
5.1 � Experimental Setups
The static and dynamic characteristics of the nano-
manipulator are experimentally investigated to verify the 
established models. Figure  9(a) shows the experimen-
tal setup for the static test, where the applied force and 
the resultant displacement of the central platform are 
measured. This corresponds to the output stiffness. The 
applied force is measured by a force gauge (HF-10 from 

(34)

U = 4
[

kR1θ
2
eq

/

2+ kT2

(
|OO4|θeq

)2
/

2
]

+ k ′R4θ
2
eq

/

2

=

(

4kR1 + 4kT2|OO4|
2 + k ′R4

)

θ2eq

/

2,

(35)
[I0 + IL + 2(I1 + I3)]θ̈eq

+

(

4kR1 + 4kT2|OO4|
2 + k ′R4

)

θeq = Mz.

(36)f3 =
1

2π

√

4kR1 + 4kT2|OO4|
2 + k ′R4

I0 + IL + 2(I1 + I3)
.

Figure 8  Angular motion of the nano-manipulator: (a) overall defor‑
mation, (b1) and (b2) equivalent transformations of Structure II, and 
(c) transformation of Structure IV.

Figure 9  Experimental setups: (a) static test and (b) dynamic test.
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ALGOL), and the displacement is measured using a dis-
placement probe (GT21 from TESA Technology). Fig-
ure  9(b) shows the experimental setup for the dynamic 
test, where a modal hammer (ENDEVCO 2301-10 from 
MEGGITT) is used to excite the nano-manipulator, and 
the response is measured by two accelerometers (4507B 
from Brüel & Kjær) installed on the central platform.

During the experimental tests, the parameters of the 
nano-manipulator with and without the PEAs installed 
are measured individually. In the installations of the 
PEAs, each PEA is bolt-fixed on the nano-manipulator, 
and the preload force is manually adjusted. Based on the 
previous analyses, higher contact stiffness is preferred 
during the installation. The load mass is not measured 
in the static test because it has no influence on the static 
parameters of the nano-manipulator. In the dynamic test, 
the load mass is measured to be 53.4 g, including the fix-
tures and two accelerometers.

5.2 � Statics of the Nano‑manipulator
The measured and estimated output stiffness of the 
nano-manipulator are listed in Table 2. If no PEA is not 
installed, the analytical results are obtained by substitut-
ing kPEA = 0 and η = 0 into Eq. (21). In this case, the esti-
mation error of the analytical model (Analytical 1) is only 
−2%. If the PEAs are installed, the output stiffness of the 
nano-manipulator increases. As η is an unknown vari-
able, the lower and upper bounds of the analytical results 
are provided. The measured output stiffness in each axis 
is close to the upper bound of the analytical results, indi-
cating that high contact stiffness is achieved.

In order to investigate the influence of the lever’s com-
pliance, the analytical results with rigid lever assumption 
(Analytical 2) are also presented in Table 2 for the com-
parison. These analytical results are obtained by assign-
ing klever a large value according to the criterion defined 
in Eq. (23). When no PEA is installed, the estimation 
error with rigid lever assumption is 42%. Such a high 
overestimation is not acceptable.

5.3 � Dynamics of the Nano‑manipulator
The frequency responses of the nano-manipulator are 
presented in Figure 10. Only the experimental results in 
the x-axis are presented due to the symmetry of the nano-
manipulator. There are three peaks in the magnitude plot. 

The first peak corresponds to the first (or second) mode 
and the other two peaks are the unmodeled higher order 
dynamics. It is clearly illustrated that the installation of 
the PEAs only increases the first natural frequency.

The first natural frequencies in the x- and y-axes are 
given in Table  3. Without the PEAs, the first natural 
frequency in the x-axis is measured to be 320 Hz. If the 
lever’s compliance is taken into consideration (Analyti-
cal 1), the estimation errors in the x-axis is 3.3%. When 
the PEAs are installed, the first natural frequency in the 
x-axis increase to 429 Hz. In this case, the lower and 
upper bounds of the analytical result are listed in Table 3. 
The measured first natural frequency is very close to the 
upper bound of the analytical result. This also demon-
strates that high contact stiffness is achieved. Similarly, if 
the lever is assumed to be rigid (Analytical 2), the mod-
eling accuracy is significantly affected. When no PEA is 
installed, the estimation error is 20.9%.

In current experimental setup, the third mode (rota-
tions about the z-axis) doesn’t show up in the measured 
data. Therefore, the computational analysis is employed 
to evaluate the nano-manipulator’s behavior during the 
angular motions. Based on the computational results, the 
third natural frequency with the 53.4 g load mass is found 
to be 769.2 Hz. The analytical result is 754.1 Hz, corre-
sponding to an estimation error of 2%, and thus validat-
ing the analytical model.

Table 2  Output stiffness in the x-axis

Measured
(N/μm)

Analytical 1
(N/μm)

Analytical 2
(N/μm)

No PEA 0.50 0.49 0.71

PEA installed 0.74 0.49‒0.78 0.71‒1.89

Figure 10  Frequency response in the x-axis.

Table 3  First natural frequencies in the x-axis

Measured (Hz) Analytical 1 (Hz) Analytical 2 (Hz)

No PEA 320 330.5 387.0

PEA installed 429 330.5‒422.9 387.0‒631.8



Page 10 of 11Qin et al. Chin. J. Mech. Eng.  (2018) 31:7 

6 � Conclusions
1.	 An XY flexure-based nano-manipulator is presented 

in this paper. Two PEAs are employed to generate 
actuations and the cross-axis couplings are attenu-
ated in the kinematic chains. The flexure hinges, 
arranged in SIS configurations, function as prismatic 
and revolute joints. Lever mechanism is utilized to 
magnify the displacement of the PEA. It is found 
that the lever’s compliance may significantly affect 
the estimated parameters of the nano-manipulator, 
such as the input/output stiffness and the first natu-
ral frequency. In this paper, a criterion is proposed 
to decide whether the lever’s compliance can be 
neglected or not. The lever’s compliance can be mod-
eled by cascading a linear spring at the end of the 
lever. Although simple in formulation, this methodol-
ogy is effective in improving the modeling accuracy, 
as verified through experimental results.

2.	 The dynamics of the nano-manipulator in linear 
and angular motions is analyzed. The influence of 
the contact stiffness and the load mass is analyti-
cally investigated. Higher contact stiffness results in 
improved performances, such as larger workspace 
and higher first natural frequency. The influence of 
the load mass is also significant as it adds extra iner-
tia to the nano-manipulator.

3.	 The nano-manipulator is monolithically fabricated 
using wire electrical discharge machining technique. 
During the installation of the PEAs, the preload 
forces of the PEAs are manually tuned for a high con-
tact stiffness. The analytical results show good mod-
eling accuracy in comparison with the experimental 
results, and thus verifying the established models. 
The methodologies proposed in this paper are appli-
cable in the design and optimization of flexure-based 
mechanisms.

Authors’ contributions
YDQ designed the prototype, carried out the experiments and wrote the 
paper. XZ participated in the revision of the paper. BS participated in the 
design of experiments and revision of the paper. YLT and DWZ participated in 
the mechical design and manufacture of the prototype. All authors read and 
approved the final manuscript.

Author details
1 Institute of Robotics and Automatic Information System (Tianjin Key 
Laboratory of Intelligent Robotics), Nankai University, Tianjin 300350, China. 
2 Robotics and Mechatronics Research Laboratory, Department of Mechanical 
and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia. 
3 School of Mechanical Engineering, Tianjin University, Tianjin 300072, China. 

Authors’ Information
Yan-Ding Qin is currently an associate professor at Institute of Robotics and 
Automatic Information System, Nankai University, China. He received his PhD 
degree from Tianjin University, China, in 2012. His research interests include 
micro/nano manipulation and 3D bio-printing.

Xin Zhao is currently a professor at Institute of Robotics and Automatic 
Information System, Nankai University, China. He received PhD degree from 

Nankai University, China, in 1997. His research interests include micro operation 
robotics, MEMS, and biological pattern and tissue formation.

Bijan Shirinzadeh is currently a professor at Department of Mechanical and 
Aerospace Engineering, Monash University, Australia. He received his PhD degree 
from The University of Western Australia, Australia, in 1990. His research interests 
include micro/nano manipulation, systems kinematics and dynamics, haptics 
and robotic-assisted surgery and microsurgery, and advanced manufacturing.

Yan-Ling Tian is currently a professor at School of Mechanical Engineering, 
Tianjin University, China. He received his PhD degree from Tianjin University, 
China, in 2005. His research interests include micro/nano manipulation, 
mechanical dynamics, surface metrology and characterization

Da-Wei Zhang is currently a professor at School of Mechanical Engineering, 
Tianjin University, China. He received his PhD degree from Tianjin Univer-
sity, China, in 1995. His research interests include micro/nano positioning 
techniques, high speed machining methodologies, and dynamic design of 
machine tools.

Acknowledgements
Supported by National Natural Science Foundation of China (Grant Nos. 
61403214, 61327802, U1613220), and Tianjin Provincial Natural Science Foun‑
dation of China (Grant Nos. 14JCZDJC31800, 14JCQNJC04700).

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 27 April 2016   Accepted: 14 January 2018

References
	1.	 D H Wang, Q Yang, H M Dong. A monolithic compliant piezoelectric-

driven microgripper: design, modeling, and testing. IEEE/ASME Transac-
tions on Mechatronics, 2013, 18(1): 138-147.

	2.	 Y Qin, B Shirinzadeh, Y Tian, et al. Design issues in a decoupled XY stage: 
static and dynamics modeling, hysteresis compensation, and tracking 
control. Sensors and Actuators A: Physical, 2013, 194: 95-105.

	3.	 T Secord, H H Asada. A variable stiffness PZT actuator having tunable 
resonant frequencies. IEEE Transactions on Robotics, 2010, 26(6): 993-1005.

	4.	 H Tang, Y Li. Design, analysis, and test of a novel 2-DOF nanopositioning 
system driven by dual mode. IEEE Transactions on Robotics, 2013,

	5.	 H Liu, J Wen, Y Xiao, et al. In situ mechanical characterization of the cell 
nucleus by atomic force microscopy. ACS Nano, 2014, 8(4): 3821-3828.

	6.	 Y Qin, Y Tian, D Zhang, et al. A novel direct inverse modeling approach for 
hysteresis compensation of piezoelectric actuator in feedforward applica‑
tions. IEEE/ASME Transactions on Mechatronics, 2013, 18(3): 981-989.

	7.	 M Pellegrino, P Orsini, M Pellegrini, et al. Integrated SICM-AFM-optical 
microscope to measure forces due to hydrostatic pressure applied to a 
pipette. Micro and Nano Letters, 2012, 7(4): 317-320.

	8.	 S Ryu, R Kawamura, R Naka, et al. Nanoneedle insertion into the cell 
nucleus does not induce double-strand breaks in chromosomal DNA. 
Journal of Bioscience and Bioengineering, 2013, 116(3): 391-396.

	9.	 K Kuhnen. Modeling, identification and compensation of complex hys‑
teretic and log(t)-type creep nonlinearities. Control and Intelligent Systems, 
2005, 33(2): 134-147.

	10.	 W T Ang, P K Khosla, C N Riviere. Feedforward controller with inverse rate-
dependent model for piezoelectric actuators in trajectory-tracking appli‑
cations. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 134-142.

	11.	 M Szymonski, M Targosz-Korecka, K E Malek-Zietek. Nano-mechanical 
model of endothelial dysfunction for AFM-based diagnostics at the cel‑
lular level. Pharmacological Reports, 2015, 67(4): 728-735.



Page 11 of 11Qin et al. Chin. J. Mech. Eng.  (2018) 31:7 

	12.	 F Iwata, M Adachi, S Hashimoto. A single-cell scraper based on an 
atomic force microscope for detaching a living cell from a sub‑
strate. Journal of Applied Physics, 118, 134701 (2015), http://dx.doi.
org/10.1063/1.4931936.

	13.	 J M Paros, L Weisbord. How to design flexure hinges. Machine Design, 
1965, 37(27): 151-156.

	14.	 Y Li, Q Xu. Development and assessment of a novel decoupled XY paral‑
lel micropositioning platform. IEEE/ASME Transactions on Mechatronics, 
2010, 15(1): 125-135.

	15.	 H C Liaw, B Shirinzadeh, J Smith. Robust neural network motion tracking 
control of piezoelectric actuation systems for micro/nanomanipulation. 
IEEE Transactions on Neural Networks, 2009, 20(2): 356-367.

	16.	 Y Li, Q Xu. Design and analysis of a totally decoupled flexure-based XY 
parallel micromanipulator. IEEE Transactions on Robotics, 2009, 25(3): 
645-657.

	17.	 L J Lai, G Y Gu, L M Zhu. Design and control of a decoupled two degree of 
freedom translational parallel micro-positioning stage. Review of Scientific 
Instruments, 2012, 83(4): 045105-1-17.

	18.	 B J Kenton, K K Leang. Design and control of a three-axis serial-kinematic 
high-bandwidth nanopositioner. IEEE/ASME Transactions on Mechatronics, 
2012, 17(2): 356-369.

	19.	 Y K Yong, T F Lu, D C Handley. Review of circular flexure hinge design 
equations and derivation of empirical formulations. Precision Engineering, 
2008, 32(2): 63-70.

	20.	 Y Li, Q Xu. Modeling and performance evaluation of a flexure-based XY 
parallel micromanipulator. Mechanism and Machine Theory, 2009, 44(12): 
2127-2152.

	21.	 W O Schotborgh, F G M Kokkeler, H Tragter, et al. Dimensionless design 
graphs for flexure elements and a comparison between three flexure 
elements. Precision Engineering, 2005, 29(1): 41-47.

	22.	 H C Liaw, B Shirinzadeh. Enhanced adaptive motion tracking control 
of piezo-actuated flexure-based four-bar mechanisms for micro/nano 
manipulation. Sensors and Actuators A: Physical, 2008, 147(1): 254-262.

	23.	 Q Yao, J Dong, P M Ferreira. Design, analysis, fabrication and testing of 
a parallel-kinematic micropositioning XY stage. International Journal of 
Machine Tools & Manufacture, 2007, 47(6): 946-961.

	24.	 Q Xu. New flexure parallel-kinematic micropositioning system with large 
workspace. IEEE Transactions on Robotics, 2012, 28(2): 478-491.

	25.	 Y Qin, B Shirinzadeh, D Zhang, et al. Compliance modeling and analysis 
of the statically indeterminate symmetric flexure structure. Precision 
Engineering, 2013, 37(2): 415-424.

	26.	 S B Choi, S S Han, Y M Han, et al. A magnification device for precision 
mechanisms featuring piezoactuators and flexure hinges: Design and 
experimental validation. Mechanism and Machine Theory, 2007, 42(9): 
1184-1198.

	27.	 Q Xu, Y Li, N Xi. Design, fabrication, and visual servo control of an XY 
parallel micromanipulator with piezo-actuation. IEEE Transactions on Auto-
mation Science and Engineering, 2009, 6(4): 710-719.

	28.	 Y Qin, B Shirinzadeh, Y Tian, et al. Design and computational optimization 
of a decoupled 2-DOF monolithic mechanism. IEEE/ASME Transactions on 
Mechatronics, 2014, 19(3): 872-881.

	29.	 S W Han, H K Shin, S H Ryu, et al. Evaluation of DNA transcription of living 
cell during nanoneedle insertion. Journal of Nanoscience and Nanotech-
nology, 2016, 16(8): 8674-8677.

	30.	 A J Mcdaid, K C Aw, S Q Xie, et al. Optimal force control of an IPMC actu‑
ated micromanipulator for safe cell handling. Proceedings of the Proceed-
ings of SPIE - The International Society for Optical Engineering, F, 2012.

	31.	 Y Tian, B Shirinzadeh, D Zhang. A flexure-based five-bar mechanism for 
micro/nano manipulation. Sensors and Actuators A: Physical, 2009, 153(1): 
96-104.

http://dx.doi.org/10.1063/1.4931936
http://dx.doi.org/10.1063/1.4931936

	Closed-Form Modeling and Analysis of an XY Flexure-Based Nano-Manipulator
	Abstract 
	1 Introduction
	2 Design of the XY Nano-manipulator
	3 Characteristics of the SIS Structures
	3.1 In-plane Compliance of a Single Flexure Hinge
	3.2 Stiffness Modeling of the SIS Structures
	3.3 Stress Concentration of the SIS Structure

	4 Statics and Dynamics Modeling
	4.1 Influence of the lever’s compliance
	4.2 Dynamics of the Nano-manipulator in the x-axis
	4.3 Static Analysis of the Nano-manipulator
	4.4 Angular Motion of the Nano-manipulator

	5 Experimental Verification
	5.1 Experimental Setups
	5.2 Statics of the Nano-manipulator
	5.3 Dynamics of the Nano-manipulator

	6 Conclusions
	Authors’ contributions
	References




