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Abstract 

There are several design equations available for calculating the torsional compliance and the maximum torsion stress 
of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions of the cross-
section (i.e., the thickness and the width). After reviewing the available equations, two thickness-to-width ratio inde‑
pendent equations that are symmetric with respect to the two dimensions are obtained for evaluating the maximum 
torsion stress of rectangular cross-section beams. Based on the resulting equations, outside lamina emergent torsional 
joints are analyzed and some useful design insights are obtained. These equations, together with the previous work 
on symmetric equations for calculating torsional compliance, provide a convenient and effective way for designing 
and optimizing torsional beams in compliant mechanisms.
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1  Introduction
A compliant mechanism achieves its mobility through 
the deflections of its compliant elements [1]. In most 
compliant mechanisms, the compliant elements are 
designed to produce motion through bending deflec-
tions [2–4]. In fact, torsional deflections could be another 
valuable source for obtaining mobility in compliant 
mechanisms. There have been successful designs utiliz-
ing torsional deflections, for example, a split-tube flexure 
based on the torsion of an open-section hollow shaft was 
presented [5], a revolute joint comprised of two crossed 
torsion plates which shows a good performance in resist-
ing axis drift was presented [6], torsional micromirrors 
were proposed for optical switches and optical displays 
[7, 8], a torsional micro-resonator was fabricated for mass 
sensing [9], lamina emergent torsional (LET) joints were 
devised to facilitate the design of compliant mechanisms 
that can be fabricated from a planar material but have 
motion that emerges out of the fabrication plane [10–12] 

and were employed in precision adjustment mechanisms 
[13], torsion hinges were proposed as surrogate folds in 
origami-based engineering design [14, 15], and torsional 
beams were successfully used for achieving static balanc-
ing of an inverted pendulum [16].

There are several design equations available for calcu-
lating the torsional compliance and maximum torsion 
stress of a rectangular cross-section beam. However, 
before using these equations, one of the two dimensions 
(i.e., the thickness and the width) of the cross-section 
must be defined as the wider of the two dimensions [17]. 
This situation might be troublesome and error-prone 
during the design phase because we always do not know 
which dimension is larger in advance. This is especially 
true for an optimization design process considering that 
the two dimensions of the torsion beam(s) may change 
greatly during the design iteration process including 
the relative size of the two dimensions. In our previous 
work [17], general compliance equations that are sym-
metric with respect to the two dimensions were obtained 
to facilitate the design of torsional beams in compliant 
mechanisms. These equations had been used in charac-
terizing parasitic motions of compliant mechanisms [18, 
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19] and spatial deflections modeling [20–22]. However, 
there still lacks an equation for predicting the maximum 
stress in torsional beams that is symmetric with respect 
to the two dimensions.

To complement previous work [17], this paper is going 
to address this absence. The organization of this paper is 
as follows: Section 2 presents a brief summary on various 
equations for predicting the maximum stress in torsional 
beams; two maximum stress equations that are symmet-
ric with respect to the two dimensions of the cross-sec-
tion are formulated in Section  3; Section  4 offers some 
design insights for outside lamina emergent joints using 
the proposed equations; and Section  5 has concluding 
remarks.

2 � Various Equations for Calculating Maximum 
Shearing Stress

For torsion of rectangular sections, the stress at each cor-
ner is zero, and the maximum shearing stress τmax occurs 
at the middle points of the longer sides (the points most 
remote from the centroid of the cross section), as illus-
trated in Figure 1. It can be obtained using the membrane 
analogy by assuming w ≥ t [23]: 

where θ is the angle of twist per unit length. The infinite 
series on the right side converges rapidly. Because the 
torque as a function of θ is given as [23]

Dividing Eq. (1) by Eq. (2) yields the maximum shear-
ing stress as a function of the torque in the form

where Q (denoted as Qs for this infinite series expression) 
is a constant whose value depends only on ratio t/w (t/w 
≤ 1):

For narrow rectangular sections (t/w<0.1), Q approxi-
mately equals 1.

A polynomial fit of Qs as a function of t/w given in Eq. 
(4) [24]:
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Substituting into Eq. (3) results in the following expres-
sion for τmax:

Pilkey [25] approximated 1/Q using the following poly-
nomial expression:

which leads to another expression for τmax:

The following expression employing a linear approxi-
mation of Q [26] is often used by researchers [10]:

and we have

which approximately equals the first two terms of Eq. (6).

(5)Qr = 1+ 0.6095
t

w
+ 0.8865

t2

w2
− 1.8023

t3

w3
+ 0.91

t4

w4
.

(6)
τmax =

3T

wt2

(

1+ 0.6095
t

w
+ 0.8865

t2

w2

−1.8023
t3

w3
+ 0.91

t4

w4

)

.

(7)
1

Qp
= 1− 0.63

t

w
+ 0.25

t2

w2
,

(8)τmax =
3T

wt2
1

(

1− 0.63 t
w + 0.25 t2

w2

) .

(9)Ql = 1+ 0.6
t

w
,

(10)τmax =
T

w2t2
(3w + 1.8t) =

3T

wt2

(

1+ 0.6
t

w

)

,

Figure 1  Stress distribution on a cross-section of a twist beam (w ≥ t)
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Figure  2 compares Q, Qr, Qp and Ql. By denoting the 
errors as:

Figure 3 shows that Qr has an maximum error less than 
0.3%, the maximum error of Qp is less than 2%, while Ql 
may result in an error up to 4.5%.

When using the expressions for τmax given in Eqs. 
(1), (6), (8) and (10), one of the two dimensions of the 

(11)Er =
Qr − Qs

Qs
,

(12)Ep =
Qp − Qs

Qs
,

(13)El =
Ql − Qs

Qs
.

cross-section must be defined as the wider of the two 
dimensions because they assume that w ≥ t. That is to say, 
if w (width) is no larger than t (thickness), this expression 
for τmax needs to be changed by switching w and t. This 
situation might be troublesome and error-prone during 
design phase (we always do not know which one is bigger 
in advance).

3 � General Equations with Symmetric Relation of t 
and w

A two step procedure was taken to obtain a symmetric 
and accurate expression for maximum torsion stress τmax.

First, a symmetric base expression is formulated by 
revising Eq. (9) as:

which yields another equation for τmax:

As shown in Figure  3, this equation may result 
in an error up to 20% (the error is defined as 
Ec = (Qc − Qs)/Qs ).

A compensation function, f(v), can be used to reduce 
the error, where

The variable in the compensation function is chosen to be

because it is symmetric with respect to t and w due to 
|log(t/w)| = |log(w/t)|.

By fitting the results of Ec using a quadratic/quadratic 
rational function, the following compensation function

is found to reduce the maximum error to 0.4% (see Fig-
ure 4). This leads to the following expression for τmax:

Even better fitting results may be achieved with a 4th 
degree polynomial numerator and 4th degree polynomial 
denominator:
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Figure 2  Curves of different expressions for Q

Figure 3  Error comparison of different expressions for Q
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This compensation function reduces the maximum 
error to 0.07% (see Figure  4) and leads to the following 
expression for τmax:

In the following section, we will demonstrate the use of 
this general (width-thickness independent) equation for 
designing lamina emergent torsional (LET) joints.

4 � Outside LET Joint: Design Considerations
Figure 5 shows an outside LET joint fabricated from a pla-
nar sheet of material whose modulus of elasticity and mod-
ulus of rigidity are E and G, respectively. The joint consists 
of two parallel sets of torsional segments connected by con-
necting segments in bending. The geometric parameters of 
the torsional segments are shown in Figure 5, and I = wt3/12 
represents the area moment of inertia in the sheet plane.

4.1 � Torsional Segment: Stiffness vs. Stress
The stiffness of each torsional segment is expressed using 
the symmetric equation obtained in Ref. [17] as

where kc is the torsional stiffness constant [23] that is 
solely determined by the dimensions of the cross-section:

As to the maximum stress, we define a stress constant as
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which is also solely determined by the dimensions of the 
cross-section.

If using meters as the length dimensions (e.g., t and w), 
the units for kc and τc are m4 and m−3, respectively. To 
compare the twist performance of rectangular cross-sec-
tions with different aspect ratios (i.e., t/w), we define the 
following non-dimensionalized term called the torsional 
aspect-ratio factor:
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Figure 4  Errors of using compensation function f (v) and f′(v)

Figure 5  a Outside LET, b its torsional deflection, and c uncon‑
strained parasitic deflection
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Tc is also symmetric with respect to t and w because 
it is only determined by the width-thickness ratio of the 
cross-section. Figure 6 plots Tc as a function of t/w. For 
a LET joint design, we always expect kc to be small so as 
to lower the torsional stiffness in the desired direction for 
reducing actuation effort, and τc  to be small to increase 
the maximum allowed rotation angle. Tc reaches its max-
imum, 2.2747, at t/w = 0.658 and t/w = 1.52. Tc reaches 
its local minimum, 1.4942, at t/w = 1 (square cross-sec-
tion). Tc is also smaller than 1.4942 for t/w < 0.35 and t/w 
> 2.86. In general, cross-sections of 0.35 <  t/w < 1 and 1 
< t/w < 2.86 are suggested to be avoided for the torsional 
segments in LET joints.

It is obvious that increasing the length can significantly 
decrease F, which is preferred if the space is allowed. If 
L is fixed, there is a local minimum at t/w = 1. However, 
there are two maxima at t/w = 1.5 and t/w = 0.67 (these 
geometries are feasible and preferred both for design 
and manufacture), which are suggested to be avoided in 
design.

4.2 � LET Joint: Torsional Stiffness vs. Compressive/Tensile 
Stiffness

Ideally a LET joint would have low torsional stiffness 
while maintaining high stiffness in the other directions 
[10]. However, a LET joint is susceptible to undesired 
motion when compressive/tensile load is applied because 
the torsional segments are placed into bending, as illus-
trated in Figure 5(c).

When an outside LET joint is subject to a compres-
sive/tensile load, the torsional segments can be treated 
as fixed-guided segments with the axial force Po = 0 
(because the connecting segments is floating) as illus-
trated in Figure  5. The transverse force Fo, can be 

expressed by the Bi-BCM (the first bending mode) [27] 
as:

in which fo and po are the normalized axial and transverse 
forces, respectively, defined as

and yo is the normalized displacement defined as

By substituting Eqs. (27) and (28) into Eq. (26), the par-
asitic compression/extension stiffness of the whole LET 
joint can be obtained as:

The equivalent torsional compliance of the outside LET 
joint along the x-axis [10] is:

where the stiffnesses of the torsional segments are

while the connecting segments in bending can be consid-
ered stiff because they are short, i.e.,

Then we have

For the purpose of comparing the compression/exten-
sion stiffness to the torsional stiffness of LET joints for 
different design parameters, the following stiffness ratio 
term is defined:

A well-designed LET joint should have large Rs so as 
to achieve low torsional stiffness but provide good con-
straint in the compression/extension direction. The right 
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Figure 6  Tc vs. t/w
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side of Eq. (34) is divided into four terms, among which 
the first is a constant, the second is material-related term, 
the third is inversely proportional to the square of the 
length of the torsional segments, while the last monoton-
ically increases with t/w. For isotropic materials, the Pois-
son’s ratio ν  ranges from 0.2 to 0.5 [28], thus the range 
of the second term E/G = 2(1+ν) is from 2.4 to 3. How-
ever, one can use composite materials to obtain larger 
E/G (e.g., multi-layer structures). The third term indi-
cates that Rs can be significantly increased by decreasing 
the length of the torsional segments. However, decreas-
ing the length of the torsional segments will increase the 
torsional stiffness (as indicated by Eq. (22)) and further 
decrease rotational range of the joint. The fourth term 
is plotted in Figure 7 as a function of w/t, which shows 
that Rs dramatically increases as w/t increases. Consider-
ing Tc shown in Figure 6, w/t > 2.86 is suggested if para-
sitic motion along the compression/extension direction is 
required to be small.

4.3 � Design Examples
This section provides a few LET joint designs to demon-
strate the design considerations in the previous section. 
The parameters of 5 designs are listed in Table 1. These 

designs have equal or almost equal cross-section area. 
Figure 6 marks these designs on the Tc curve.

Considering

where α is the torsional deflection angle of the joint, sub-
stituting it into Eq. (19) yield

For the purpose of comparison, we calculated τmax 
using Eq. (36) by assuming α = 0.1 rad.

The results of Kαx, K�y and τmax for the 5 designs are 
listed in Table 2. Among the 5 joints, Design 3 is the best 
design, with the smallest Kαx, the largest K�y, and the 
lowest τmax. Design 2 has the same values for Kαx and 
τmax as Design 3, but has the lowest compression/exten-
sion stiffness. Design 1 has modest values for K�y and 
τmax but the largest Kαx. Design 4 and Design 5 are the 
worst designs because they have the largest Kαx and τmax.

5 � Conclusions
This work presented closed-form symmetric equations 
for calculating maximum torsion stress of a rectangular 
cross-section beam. Together with the symmetric equa-
tions in our previous work [17], these equations are inde-
pendent of the relative magnitude of the two dimensions 
(i.e., the thickness and the width) of the cross-section, 
thus are more convenient and effective for designing and 
optimizing torsional beams in compliant mechanisms.

(35)T = Kαxα,

(36)
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·
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·
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·
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t
w
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+ 2.609

t
w
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· α.

Figure 7  Rs as a function of t/w

Table 1  A few LET joint designs

t (mm) w (mm) t/w L (mm) E (GPa) G (GPa)

Design 1 2 2 1 10 205 79.37

Design 2 1.16 3.45 0.336 10 205 79.37

Design 3 3.45 1.16 2.97 10 205 79.37

Design 4 2 .5 1.6 1.56 10 205 79.37

Design 5 1.6 2.5 0.64 10 205 79.37

Table 2  Calculated results

Kαx(N·m) K�y(N/m) τmax

Design 1 17.8347 3280000 1

Design 2 11.2398 1103900 0.336

Design 3 11.2398 9764900 2.97

Design 4 16.3246 5125000 1.56

Design 5 16.3246 2099200 0.64
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These equations were utilized to analyze outside lamina 
emergent torsional joints and some useful design insights 
were obtained and described.
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