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A Finite and Instantaneous Screw Based 
Approach for Topology Design and Kinematic 
Analysis of 5‑Axis Parallel Kinematic Machines
Tao Sun1*, Shuo‑Fei Yang1, Tian Huang1,2 and Jian S. Dai3

Abstract 

Unifying the models for topology design and kinematic analysis has long been a desire for the research of parallel kin‑
ematic machines (PKMs). This requires that analytical description, formulation and operation for both finite and instan‑
taneous motions are performed by the same mathematical tool. Based upon finite and instantaneous screw theory, a 
unified and systematic approach for topology design and kinematic analysis of PKMs is proposed in this paper. Using 
the derivative mapping between finite and instantaneous screws built in the authors’ previous work, the finite and 
instantaneous motions of PKMs are analytically described by the simple and non-redundant screws in quasi-vector 
and vector forms. And topological and parametric models of PKMs are algebraically formulated and related. These 
related topological and parametric models are ready to do type synthesis and kinematic analysis of PKMs under the 
unified framework of screw theory. In order to show the validity of the proposed approach, a kind of two-translational 
and three-rotational (2T3R) 5-axis PKMs is taken as example. Numerous new structures of the 2T3R PKMs are synthe‑
sized as the results of topology design, and their Jacobian matrix is obtained easily for parameter optimization and 
performance evaluation. Some of the synthesized PKMs have outstanding capabilities in terms of large workspaces 
and flexible orientations, and have great potential for industrial applications of machining and manufacture. Among 
them, METROM PKM is a typical example which has attracted a lot of attention from global companies and already 
been developed as commercial products. The approach is a general and unified approach that can be used in the 
innovative design of different kinds of PKMs.
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1  Introduction
CNC and robot based equipment are important parts 
to push “Made in China 2025” plan [1, 2]. In compari-
son with traditional CNCs and articulated robots, par-
allel kinematic machines (PKMs) are demonstrated by 
many researchers to have advantages of high stiffness, 
good accuracy, excellent dynamics and reconfigurability 
through deeply investigating their topology structures 
[3–5], stiffness characteristics [6], constraint properties 
[7] and kinematic performances [8–10]. They are suitable 
to be applied in machining and repairing of large scale 

component with complex surface. The innovative design 
of PKMs is always a hot topic and draws great attention 
from both academia and industry [11, 12].

The innovative design of PKMs usually consists of 
topology design and kinematic analysis [13–15]. It has 
long been a desire to unify these two parts under a frame-
work of the same mathematical tool. This mathematical 
tool should be able to realize analytical description, for-
mulation and operation of both finite and instantane-
ous motions, and then relate topological and parametric 
models algebraically. Till now, there are three available 
mathematical tools at hand, i.e., matrix group, dual qua-
ternion and screw theory.

Matrix group was firstly given out by Lie and later uti-
lized by Klein to describe rigid body motion. It was 
Hervé et  al. [16, 17] who gave an approach to formulate 
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topological models and carried out type synthesis of PKMs 
through describing finite motions of PKMs by subgroups 
of the matrix representation of the special Euclidean group 
SE(3) and their composite manifolds. Using this approach, 
many PKMs having different motions were synthesized by 
Li and Hervé [18, 19]. Describing instantaneous motions 
by Lie algebra of SE(3), i.e., se(3), Brockett [20] applied the 
exponential mapping between SE(3) and se(3) to relating 
topological and parametric models of open-loop mecha-
nisms. His work was extended to deal with closed-loop 
and other kinds of mechanisms. However, two barriers are 
encountered when using matrix groups for finite motion 
composition in formulating topological models. One bar-
rier arises from that matrix group cannot directly reflect 
the Chasles’ axis as well as the angular and/or linear dis-
placement about and/or along that axis. Thus, the descrip-
tion of finite motion by matrix group is complicated. The 
other barrier comes from the incompetent to algebraically 
compute the finite motion composition result of matrix 
groups by using the Baker-Campbell-Hausdorff formula. 
Topological models of many PKMs cannot be simply writ-
ten as the group products of a few Lie subgroups of SE(3). 
Hence, type synthesis of these PKMs cannot be precisely 
carried out although parametric models for kinematic 
analysis can be directly obtained by se(3).

Dual quaternion can be traced back to the early work of 
Euler, Rodrigues and Hamilton. Perez and McCarthy [21] 
are probably the first to use it in the finite and instantaneous 
motion analysis of serial kinematic chains. Unit dual qua-
ternions and unit pure dual quaternions are used by them 
to respectively describe finite and instantaneous motions, 
because the algebraic structure of the former is a double 
cover of SE(3) whose Lie algebra in turn constitutes the lat-
ter. Using group theory, Selig [22] and Dai [23] investigated 
algebraic properties of the exponential and Cayley mappings 
between these two kinds of dual quaternions, resulting in 
a clear relationship between the finite and instantaneous 
models. It should be noted that even though both finite and 
instantaneous motions can be described by dual quaterni-
ons, quaternion representation is not the simplest form. The 
redundancy may cause complexity in analytical operations 
of finite motions. Additionally, the Rodrigues formula with 
dual angles is not the simplest form of the Baker-Campbell-
Hausdorff formula in composition of finite motions.

Screw theory was firstly proposed by Ball and has been 
developed to be a powerful tool in analysis and mechani-
cal design of PKMs. Instantaneous screw has been proved 
to be the simplest and most effective form to describe 
instantaneous motion and widely used in formulating 
parametric models to conduct velocity and force [24–26], 
precision [27, 28] and stiffness [29–32] analysis. In the 
authors’ previous work [33–36], finite screw is proved 
to be the concise and non-redundant form to describe 

finite motion and can be analytically composited by the 
screw triangle product [33]. Meanwhile, the algebraic 
structures of these two kinds of screws were revealed 
and the derivative mapping between them was built by 
the authors [33]. All these achievements show that finite 
and instantaneous screw theory has the potential to unify 
topology design and kinematic analysis into a general and 
consistent process by doing type synthesis and kinematic 
analysis under this concise mathematical tool, which can 
overcome the shortcomings of the above matrix group 
and dual quaternion based approaches.

Mainly drawing on finite and instantaneous screw 
theory, this paper proposes a unified and systematic 
approach for topology design and kinematic analysis of 
PKMs. A kind of two-translational and three-rotational 
(2T3R) PKMs is taken as example to show the validity 
of the proposed approach. These PKMs generate two-
DoF translations in a fixed plane followed by three-DoF 
rotations about a fixed point. Some of them have great 
potential for industrial applications in 5-axis machining 
and manufacture because of their outstanding capabili-
ties to realize large workspaces and flexible orientations. 
METROM PKM is a typical one which has attracted a 
lot of attention from global companies and already been 
developed as commercial products [37, 38]. The approach 
is a general and unified approach that can be used in the 
innovative design of different kinds of PKMs.

The paper is organized as follows. Having a brief review 
of the state-of-the-art of the existing approaches based 
upon different mathematical tools to uniformly describe 
finite and instantaneous motions in Section 1, Section 2 
presents the theoretical foundations of finite and instanta-
neous screw theory. The topological models of PKMs are 
formulated by describing the PKMs, their limbs and joints 
by finite screws in Section  3, and type synthesis of the 
2T3R PKMs is done to show the usages and advantages of 
the formulated model. In Section 4, the parametric mod-
els of PKMs are directly obtained through differentiating 
the topological models, one typical structure of the 2T3R 
PKMs, i.e., the METROM PKM, is selected to show the 
detailed procedures. The conclusions of this paper are 
drawn in Section 5 (Additional file 1).

2 � Screw Theory: Finite and Instantaneous Screws
In this section, we firstly introduce the basic concepts 
and properties of finite and instantaneous screws, which 
lays the theoretical foundations of type synthesis and kin-
ematic analysis for innovative design of PKMs.

According to the Chasles’s theorem and Mozzi’s theo-
rem, both finite motion and instantaneous motion of a 
rigid body can be regarded as a rotation about an axis 
followed by a translation long that axis, as shown in Fig-
ures 1 and 2.



Page 3 of 10Sun et al. Chin. J. Mech. Eng.  (2018) 31:44 

For finite motion, the axis is referred as Chasles’s axis. 
A finite motion is a pose (including orientation and posi-
tion) transformation of a rigid body from its initial pose 
to arbitrary pose about and along Chasles’s axis. It can be 
expressed by a finite screw in quasi-vector form [33] in 
the simplest and non-redundant manner as

where sf and rf denote the unit vector and position vector 
of the Chasles’ axis, θ and t are the rotational angle about 
and translational distance along that axis with respect to 
the initial pose.

For instantaneous motion, the axis is referred as Moz-
zi’s axis. An instantaneous motion is a rigid body velocity 
measured at a given pose, which is constituted by angu-
lar velocity about and linear velocity along Mozzi’s axis. 
For simplicity, it is usually expressed by an instantaneous 
screw (twist) in vector form [39–41] as

(1)Sf = 2 tan
θ

2

(

sf

r f × sf

)

+ t

(

0

sf

)

,

(2)St = ω

(

st

rt × st

)

+ v

(

0

st

)

,

where st and rt denote unit vector and position vector of 
the Mozzi’s axis, ω and v are angular velocity about and 
linear velocity along that axis.

As is well known, successive finite screws of a rigid 
body from its initial pose to final pose via several inter-
mediate poses should be composited in nonlinear man-
ner. The composition of any two finite screws is expressed 
by

where

Sf,a and Sf,b are two arbitrary successive finite screws gen-
erated by the same rigid body, the symbol "∆" is referred 
to as screw triangle product and is proven by the authors 
of this paper in Ref. [33].

Using the screw triangle product in Eq. (3), the result-
ant finite screw of the rigid body from its initial pose to 
final pose can be obtained through computing screw tri-
angle products of all the successive finite screws it gener-
ates during its continuous finite motion.

Unlike the nonlinear composition of finite screws, 
instantaneous screws are composited in linear way. Sup-
pose a rigid body generates two velocities at a given pose. 
Each is expressed by an instantaneous screw as

The resultant instantaneous screw can be obtained by 
adding them together

As proved in our previous work [33], arbitrary finite 
screw that a rigid body generates from its initial pose 
can be written in the form shown in Eq.  (1). Regarding 
its initial pose as the given pose, arbitrary instantaneous 
screw the rigid body generates has the form in Eq. (2). At 
the initial pose (θ = 0 and t = 0) where the Chasles’ axis 
is coincident with the Mozzi’s axis at the instant, there 

(3)

Sf ,ab = Sf ,a △ Sf ,b =

(

Sf ,a + Sf ,b +
Sf ,b × Sf ,a

2

− tan
θa

2
tan

θb

2

(

tb

(

0

sf ,a

)

+ ta

(

0

sf ,b

)))/

(

1− tan
θa

2
tan

θb

2
s
T
f ,asf ,b

)

,

Sf ,a = 2 tan
θa

2

(

sf ,a

r f ,a × sf ,a

)

+ ta

(

0

sf ,a

)

,

Sf ,b = 2 tan
θb

2

(

sf ,b

r f ,b × sf ,b

)

+ tb

(

0

sf ,b

)

.

St,a = ωa

(

st,a

rt,a × st,a

)

+ va

(

0

st,a

)

,

St,b = ωb

(

st,b

rt,b × st,b

)

+ vb

(

0

st,b

)

.

(4)St,ab = St,a + St,b.
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Figure 1  Finite motion of a rigid body
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Figure 2  Instantaneous motion of a rigid body
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exists differential mapping between finite and instanta-
neous screws. This means the derivative of finite screw is 
derived to be instantaneous screw [33]

This property leads to the algebraic structures of finite 
and instantaneous screws. The entire set of finite screws 
forms a Lie group under screw triangle product, while 
the entire set of instantaneous screws is the correspond-
ing Lie algebra under screw cross product. The underly-
ing relationship between these two kinds of screws is 
thus revealed.

Using this relationship, the topology design and kine-
matic analysis of PKMs can be integrated into the unified 
framework of screw theory. This is because:

(1)	 The topological model of a PKM can be formulated 
by describing finite motions of the PKM, its limbs 
and joints utilizing finite screws.

(2)	 The parametric model of the PKM can be directly 
obtained through differentiating its topological 
model at given pose.

(3)	 Type synthesis and kinematic analysis for innova-
tive design of PKMs can be easily carried out using 
these two models under the simple and consistent 
screw theory.

In the following two sections, 5-axis PKMs hav-
ing 2T3R motion will be taken as example to show the 
detailed procedures of this finite and instantaneous screw 
based approach for topology design and kinematic analy-
sis. Firstly, type synthesis of this kind of PKMs will be 
done utilizing finite screws, which will result in numer-
ous new topology structures with potential industrial 
applications. Then, the kinematic analysis of a typical 
structure, i.e., the METROM PKM, will be conducted to 
show how to directly obtain the parametric model based 
upon instantaneous screws through differentiating the 
corresponding topological model. The Jacobian matrix 
and constraint force will be formulated, which is ready 
for parameter optimization and performance evaluation.

3 � Type Innovative Design Based upon Finite 
Screws

3.1 � Topological Model of a PKM
Suppose a PKM is composed of l open-loop limbs, as 
shown in Figure  3. Each limb consists ni (i = 1, 2, ···, l) 
one-DoF joints (revolute joints (R) and prismatic joints 

(5)

Ṡf

∣

∣

θ = 0

t = 0

= θ̇

(

sf

r f × sf

)

+ ṫ

(

0

sf

)

= ω

(

st

rt × st

)

+ v

(

0

st

)

= St .

(P)). Because the finite motions of the PKM’s moving plat-
form can be obtained as the intersection of those of its 
limbs, and the finite motions of each limb are the com-
position of those of all joints in it, following analytical 
equations can be formulated through describing the finite 
motions of the PKM, its limbs and joints as finite screws.

Where Sf,PKM denotes the finite screw generated by the 
PKM, Sf,i is the finite screw generated by its ith limb, 
Sf,i,k is the finite screw of the kth joint in the ith limb. The 
denotations of si,k, ri,k, θi,k and ti,k can be referred to the 
symbols in Eq. (1).

Equations  (6)‒(8) contain all the topological informa-
tion of the PKM, including:

(1)	 The number of limbs and the number of joints in 
each limb;

(2)	 The type of each joint, i.e., R joint or P joint;
(3)	 The direction and position of each joint, i.e., the 

geometrical arrangement of each joint in the limb 
which it belongs to;

(4)	 The geometrical relationships among different limbs.

(6)Sf ,PKM = Sf ,1 ∩ Sf ,2 ∩ · · · ∩ Sf ,l ,

(7)
Sf ,i = Sf ,i,ni △ Sf ,i,ni−1 △ · · · △ Sf ,i,1, i = 1, 2, · · · , l,

(8)

Sf ,i,k =















2 tan
θi,k
2

�
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�
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�

0
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�

, P joint,
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Figure 3  A PKM having l limbs
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Thus, these three equations can exactly serve as topo-
logical model of the PKM, which can be used for topol-
ogy design. In what follows, we take 5-Axis PKMs having 
2T3R motion as example to show the usage of this finite 
screw based topological model in doing type synthe-
sis, resulting in numerous new topology structures with 
potential industrial applications.

3.2 � Type Synthesis of 2T3R 5‑Axis PKMs
The main goal of type synthesis is inventing innovative 
mechanisms with new topology structures having the 
given motion pattern. The expected motion pattern of 
the discussed PKMs is 2T3R, i.e., two-DoF translations 
in a fixed plane followed by three-DoF rotations about 
a fixed point O, which allows the PKMs realize 5-axis 
machining. Hence, the finite motions of a PKM with this 
2T3R motion can be written using finite screw as

According to Eq. (6), the feasible limb structures for the 
2T3R PKMs should generate finite screws that contain 
Sf,PKM in Eq. (9)

Through adding none or one translational factor into 
Sf,PKM, finite screws of the feasible limb structures should 
have either of the following two expressions

which correspond to the 5-DoF and 6-DoF limb struc-
tures, respectively.

Substituting Eq. (10) into Eqs. (11) and (12) leads to the 
two standard Sf ,i

(9)

Sf ,PKM = t2

(

0

s2

)

△ t1

(

0

s1

)

△ 2 tan
θc

2

(

sc

rO × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

.

(10)Sf ,PKM ⊆ Sf ,i

(11)Sf ,i = Sf ,PKM,

(12)Sf ,i = Sf ,PKM △ t3

(

0

s3

)

,

(13)

Sf ,LI = t2

(

0

s2

)

△ t1

(

0

s1

)

△ 2 tan
θc

2

(

sc

rO × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

,

(14)

Sf ,LII = t2

(

0

s2

)

△ t1

(

0

s1

)

△ 2 tan
θc

2

(

sc

rO × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

△ t3

(

0

s3

)

,

where Sf ,LI and Sf ,LII denote the first and second standard Sf,i.
According to Eqs. (9) and (10), joint types and arrange-

ments of the limb structures which generate the above 
two expressions can be obtained. Thus, Eqs.  (13) and 
(14) correspond to two standard limbs, RaRbRcP1P2 and 
P3RaRbRcP1P2, where the subscripts denote the directions 
of the joints. Based upon these two standard limbs, all 
the derivative limbs can be synthesized using the proper-
ties of screw triangle product. It should be noted that we 
only concern the 5-DoF limbs here, because the 6-DoF 
ones can be easily obtained by random permutation of 
the joints in P3RaRbRcP1P2.

A 5-DoF derivative limb of RaRbRcP1P2 should satisfy 
the following two conditions:

(1)	 The finite screw it generates is equivalent to the 
standard one, i.e., Sf ,LI in Eq. (13), and thus denoted 
as S′f ,LI;

(2)	 The five factors in S′f ,LI are the same with those in 
Sf ,LI but have different sequence, or S′f ,LI has differ-
ent factor(s) with Sf ,LI.

Firstly, we consider the situation that S′f ,LI and Sf ,LI 
have the same five factors. It means that the correspond-
ing derivative limb structures have the same five joints 
with RaRbRcP1P2. Hence, these derivative limb structures 
can be obtained by permutation of RaRbRcP1P2 while 
unchanging the finite screw it generated. Because the 
three R joints constituted a spherical joint (S), their direc-
tion can be arbitrarily chosen. Thus, we can suppose that 
the direction of Rc is perpendicular to the directions of 
P1 and P2, i.e., sc × (s1 × s2) = 0. In this way, it can be 
proved that arbitrarily adjusting the sequence among Rc, 
P1 and P2 will always result in the derivative limb struc-
tures that satisfy the two conditions.

For example, RaRbP1P2Rc can be obtained through 
changing the order of Rc in RaRbRcP1P2. Based upon 
Eqs.  (7) and (8), S′f ,LI generated by RaRbP1P2Rc can be 
formulated as

Equation  (15) can be rewritten as follows by comput-
ing the resultant of the first three factors using the screw 
triangle product in Eq. (3)

(15)

S
′

f ,LI = 2 tan
θc

2

(

sc

rO × sc

)

△ t2

(

0

s2

)

△ t1

(

0

s1

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

.

(16)

S
′

f ,LI = 2 tan
θc

2

(

sc

rO × sc +
t1s1+t2s2
2 tan

θc
2

+
(t1s1+t2s2)×sc

2

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

.
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Equation  (16) has the following equivalent expression 
for sc × (s1 × s2) = 0,

where

Following the similar way to derive Eq.  (17) from 
Eq. (15), Eq. (13) can be rewritten as

where

Because (t1s1 + t2s2)× sc and t1s1 + t2s2 are two arbi-
trary orthogonal vectors that are perpendicular to sc, 
both rc and rc′ denote arbitrary vectors perpendicular to 
sc. Thus, Eq. (15) is equivalent to Eq. (13).

In this manner, two derivative limb structures, 
RaRbP1P2Rc and RaRbP1RcP2, can be synthesized.

Secondly, we consider the situation that S′f ,LI has dif-
ferent factor(s) with Sf ,LI . In this situation, each deriva-
tive limb structure has at least one different joint with 
RaRbRcP1P2. Supposing that the direction of Rc is perpen-
dicular to that of P1, i.e., sTc s1 = 0 , it can be proved that 
the generated finite screw will not be changed if we use 
one Rc to replace P2, or two Rc to replace P1 and P2.

For example, RaRbRcP1Rc can be obtained from 
RaRbRcP1P2 by replacing P2 with Rc. According to Eqs. (7) 
and (8), S′f ,LI generated by RaRbRcP1Rc is

(17)

S
′

f ,LI = 2 tan
θc

2

(

sc

r
′

c × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

,

r
′

c = rO −
(t1s1 + t2s2)× sc

2 tan θc
2

+
t1s1 + t2s2

2
.

(18)

Sf ,LI = 2 tan
θc

2

(

sc

rO × sc +
t1s1+t2s2
2 tan

θc
2

−
(t1s1+t2s2)×sc

2

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

= 2 tan
θc

2

(

sc

rc × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

,

rc = rO −
(t1s1 + t2s2)× sc

2 tan θc
2

−
t1s1 + t2s2

2
.

(19)

S
′

f ,LI = 2 tan
θ ′c

2

(

sc

rQ × sc

)

△ t1

(

0

s1

)

△ 2 tan
θc

2

(

sc

rO × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

.

Using the properties of screw triangle product, Eq. (19) 
can be rewritten as

where s̃c is the skew matrix of sc, E3 is a unit matrix of 
order three.

Because sTc s1 = 0, the second and third factors are two 
translations perpendicular to sc. Using the similar deriva-
tions from Eq.  (15) to Eq.  (17), the following equivalent 
expression of Eq. (20) can be obtained

where

For the same reason as discussed about 
rc and r

′

c, r
′′

c denotes arbitrary vec-
tor which is perpendicular to sc, because 
(

t1 exp (θc s̃c)s1 + (exp (θc s̃c)− E3)
(

rQ − rO

))

× sc and 
t1 exp (θc s̃c)s1 + (exp (θc s̃c)− E3)

(

rQ − rO

)

 are two arbi-
trary orthogonal vectors that are perpendicular to sc. This 
means that Eq. (19) is equivalent to Eq. (13).

In this manner, RaRbRcP1Rc and RaRbRcRcRc are synthe-
sized as derivative limb structures.

Furthermore, it is easy to see that arbitrarily adjust-
ing the sequence among two Rc and P1 will not change 
the generated finite screw based upon the derivations 
in the first situation. Hence, two additional deriva-
tive limb structures are obtained, i.e., RaRbP1RcRc and 
RaRbRcRcP1.

From the above analysis, totally seven 5-DoF feasible 
limb structures for the 2T3R PKMs are synthesized. 
For simplicity, we rewrite the three adjacent R joints, 
RaRbRc, as S, and the two adjacent R joints, RaRb, as U 
(universal joint). These seven limb structures are listed 
in Table 1.

(20)

S
′

f ,LI = 2 tan
θc + θ ′c

2

(

sc

rQ × sc

)

△

(

0

(exp (θc s̃c)− E3)
(

rQ − rO

)

)

△ t1

(

0

exp (θc s̃c)s1

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

,

(21)

S
′

f ,LI = 2 tan
θc + θ ′c

2

(

sc

r
′′

c × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

,

r
′′

c = rQ −

(

t1 exp (θc s̃c)s1 + (exp (θc s̃c)− E3)
(

rQ − rO

))

× sc

2 tan
θc+θ ′c

2

+

t1 exp (θc s̃c)s1 + (exp (θc s̃c)− E3)
(

rQ − rO

)

2
.
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Having these limb structures at hand, we can obtain 
any 2T3R PKMs with several 5-DoF and 6-DoF limbs 
obeying some specific assembly conditions.

(1) According to Eq. (6), all the 5-DoF limbs in a 2T3R 
PKM should have the same translation plane and the 
same rotation center O. Thus, only one 5-DoF limb can 
be selected to compose a 2T3R PKM because S and/or U 
joints that belong to different limbs cannot be placed at a 
common point for the convenience of mechanical design.

(2) In order to design PKMs with suitable actuations, 
we select one 5-DoF limb and four 6-DoF limbs to com-
pose a 2T3R PKM. In this way, each limb has one actua-
tion. The four 6-DoF limbs are separated into two groups, 
which are placed symmetrically with respect to the trans-
lation plane of the 5-DoF limb. The five limbs are fixed 
at an icosahedron shape base in order to minimize risk 
of collisions and guarantee rigidity of the entire machine 
[37].

Using these assembly conditions, many innovative 
2T3R PKMs can be synthesized. Here, we only list four 
topical PKMs due to space limitations, as shown in Fig-
ure 4. Some of these PKMs have been successfully applied 
in machining and manufacture or have great potential 
industrial applications because of their outstanding capa-
bilities to realize large workspaces and flexible orienta-
tions, among which the SPR-4(SPRR) in Figure  4(a) is 
known as METROM PKM [37] and has been developed 
as commercial product by German company [37] (Addi-
tional files 2, 3, 4, 5).

4 � Kinematic Analysis Based upon Instantaneous 
Screws

4.1 � Parametric Model of a PKM
For a PKM composed of l limbs as shown in Figure 3, its 
topological model has been formulated in Eqs.  (6)‒(8) 
based upon finite screws. As discussed in Section 2, the 
parametric model for kinematic analysis of the PKM can 
be directly formulated using the differential mapping 
between finite and instantaneous screws. According to 
Eq. (5), the instantaneous screws generated by the PKM, 
its limbs and joints can be obtained through differentiat-
ing the corresponding finite screws of them.

Firstly, the instantaneous screw generated by the kth 
joint in the ith limb at its initial pose can be obtained 
through differentiating Eq. (8) as

Table 1  5-DoF limb structures for 2T3R PKM

Standard limbs Derivative limbs

SP1P2 UP1P2Rc, UP1RcP2

SP1Rc, SRcRc

UP1RcRc, SRcP1

Figure 4  Typical 2T3R PKMs. a SPR-4(SPRR), b SRR-4(SPRR), c UPPR-
4(SPRR), d UPRR-4(SPRR)
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Equation (22) shows the velocity of each one-DoF joint 
in the PKM. It can serve as the parametric models of the 
joints by taking ωi,k and vi,k as the parameters, because 
the unit and position vectors of the joints at their initial 
poses are determinate quantities.

In the similar manner, parametric model of the ith limb 
can be obtained by differentiating Eq.  (7) and obtaining 
the instantaneous screws of the limb at its initial pose

Finally, the parametric model of the PKM can be for-
mulated through differentiating Eq. (6) as

From Eqs.  (22)–(24), it can be clearly seen that the 
relationships between the parametric models of a PKM, 
its limbs and joints obtained in this paper are coinci-
dent with those given by other traditional approaches. 
However, unlike the traditional approaches, it is unnec-
essary to obtain the instantaneous screw system of a 
PKM through solving intersection of the instantaneous 
screw systems of its limbs in our approach. Based upon 
Eq. (24), the instantaneous screw system of the PKM can 
be directly formulated through differentiating the finite 
screw given in its topological model. In this way, the 
Jacobian matrix of the PKM for velocity, force, precision 
and stiffness modeling can be easily carried out using the 
obtained instantaneous screw system, which is ready to 

(22)

St,i,k = Ṡf ,i,k

�

�

θi,k = 0
ti,k = 0

=















θ̇i,k

�

si,k

ri,k × si,k

�

, R joint

ṫi,k

�

0

si,k

�

, P joint

=















ωi,k

�

si,k

ri,k × si,k

�

, R joint

vi,k

�

0

si,k

�

, P joint

(23)

St,i = Ṡf ,i

∣

∣

θi,k = 0

ti,k = 0
, k=1,2,··· ,ni

=

ni
∑

k=1

Ṡf ,i,k

∣

∣

θi,k = 0

ti,k = 0
, k=1,2,··· ,ni

=

ni
∑

k=1

St,i,k .

(24)

St,PKM = Ṡf ,PKM

∣

∣

θi,k = 0
ti,k = 0

,
i = 1, 2, · · · , l
k = 1, 2, · · · , ni

= Ṡf ,1

∣

∣

θ1,k = 0
t1,k = 0

, k=1,2,··· ,n1

∩ Ṡf ,2

∣

∣

θ2,k = 0
t2,k = 0

, k=1,2,··· ,n2

∩ · · · ∩ Ṡf ,l

∣

∣

θl,k = 0
tl,k = 0

, k=1,2,··· ,nl

= St,1 ∩ St,2 ∩ · · · ∩ St,l .

conduct kinematic analysis for parameter optimization 
and performance evaluation.

4.2 � Kinematic Analysis of METROM PKM
Taking a typical structure of the synthesized innovative 
PKMs in Section 3, i.e., SPR-4(SPRR) (METROM) PKM 
shown in Figure  4(a), for example, the detailed proce-
dures of how to directly obtain its parametric model 
through differentiating the topological model will be 
shown. The instantaneous screws related Jacobian matrix 
will then be formulated for kinematic analysis.

According to the derivations in Section 3, the topologi-
cal model of the METROM PKM can be formulated as

Using the derivative properties of screw triangle 
product [33], the parametric model of this PKM can be 
directly obtained by taking differential of Eq. (25)

It means that the instantaneous screw generated by 
the METROM PKM at its initial pose is the linear com-
bination of five instantaneous screws. Thus, the Jacobian 
matrix of this PKM can be obtained through rewriting 
Eq. (26) into matrix form

Based upon this Jacobian matrix, the constraint force 
exerted on the moving platform of the PKM can be 
found. It is a line vector whose axis passes through point 
O with the direction s1 × s2, which restrains the one-DoF 
translation along its direction. It is expressed by a screw 
(wrench) as

(25)

Sf ,METROM = t2

(

0

s2

)

△ t1

(

0

s1

)

△ 2 tan
θc

2

(

sc

rO × sc

)

△ 2 tan
θb

2

(

sb

rO × sb

)

△ 2 tan
θa

2

(

sa

rO × sa

)

.

(26)

St,METROM = Ṡf ,METROM

∣

∣

θm = 0
tn = 0

,m=a,b,c, n=1,2

= ṫ2

(

0

s2

)

+ ṫ1

(

0

s1

)

+ θ̇c

(

sc

rO × sc

)

+ θ̇b

(

sb

rO × sb

)

+ θ̇a

(

sa

rO × sa

)

= v2

(

0

s2

)

+ v1

(

0

s1

)

+ ωc

(

sc

rO × sc

)

+ ωb

(

sb

rO × sb

)

+ ωa

(

sa

rO × sa

)

.

(27)

St,METROM =

�

sa sb sc 0 0

rO × sa rO × sb rO × sc s1 s2

�











ωa

ωb

ωc

v1
v2











.
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Having the Jacobian matrix and constraint force of the 
METROM PKM at hand, kinematic analysis of it can be 
carried out. In this way, parameter optimization and per-
formance evaluation can be done, which are important 
parts in the parameter innovative design of METROM 
PKM. Because velocity and force [24–26], precision [27, 
28] and stiffness [29–32] analysis of PKMs using Jacobian 
matrix and constraint force under instantaneous screws 
are widely researched, we do not give the detailed proce-
dures here due to space limitation.

5 � Conclusions
This paper presents a finite and instantaneous screw 
based approach for topology design and kinematic analy-
sis. A kind of 2T3R 5-axis PKMs is taken as example to 
show the validity of the proposed approach. Following 
conclusions are drawn.

(1)	 The topological models of PKMs are formulated by 
describing finite motions of the PKMs, their limbs 
and joints by finite screws.

(2)	 Using the derivative mapping between finite and 
instantaneous screws, the parametric models of 
PKMs are proved to be directly obtained by differ-
entiating the corresponding topological models.

(3)	 Using these models, type synthesis and kinematic 
analysis of PKMs can be carried out and strongly 
related. Type synthesis for topology design and 
kinematic analysis for parameter optimization and 
performance evaluation of a kind of 2T3R 5-axis 
PKMs are done to show the validity of the proposed 
approach.
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