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Abstract

For the purpose of improving the mechanical performance indices of uncertain structures with interval parameters
and ensure their robustness when fluctuating under interval parameters, a constrained interval robust optimization
model is constructed with both the center and halfwidth of the most important mechanical performance index
described as objective functions and the other requirements on the mechanical performance indices described as
constraint functions. To locate the optimal solution of objective and feasibility robustness, a new concept of interval
violation vector and its calculation formulae corresponding to different constraint functions are proposed. The math-
ematical formulae for calculating the feasibility and objective robustness indices and the robustness-based preferen-
tial guidelines are proposed for directly ranking various design vectors, which is realized by an algorithm integrating
Kriging and nested genetic algorithm. The validity of the proposed method and its superiority to present interval
optimization approaches are demonstrated by a numerical example. The robust optimization of the upper beam in a
high-speed press with interval material properties demonstrated the applicability and effectiveness of the proposed

method in engineering.

robustness, Nested genetic algorithm

Keywords: Robust optimization, Uncertain structure, Interval violation vector, Feasibility robustness, Objective

1 Introduction

The uncertainties in material properties, geometric
dimensions, load conditions and so on are ubiquitous
for engineering structures [1]. The optimal solutions to
the optimization models of engineering structures that
neglect these uncertainties may be infeasible because
their mechanical performance indices will fluctuate
under the uncertainties [2]. Hence these uncertainties
must be considered in handling the optimization prob-
lems of uncertain engineering structures [3, 4]. Robust
design optimization is a frequently-utilized methodol-
ogy to improve the robustness of structures and reducing
the sensitivities of their mechanical performance indices
to uncertain factors [5-8]. In the construction of various
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robust optimization models, the objective robustness is
often achieved by simultaneously optimizing the mean
of the objective mechanical performance index and
minimizing its variation under uncertainties while the
constraint robustness is to ensure the satisfaction of con-
straints when the constraint performance indices fluctu-
ate under the influences of uncertain parameters [9].
Most researches on robust design optimization were
conducted based on the assumption that the probabil-
istic distributions of uncertain factors were known [10,
11]. For instance, Doltsinis et al. [12] applied the pertur-
bation technique and the incremental loading procedure
for the response analysis of path-dependent non-linear
structural systems with random parameters, and evalu-
ated the sensitivities of the mean and variance of the
structural performance function by direct differentiation
in the framework of stochastic finite element analysis.
Tang and Périaux [13] proposed a robust optimization
method capable of locating Pareto and Nash equilibrium
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solutions. Zhao and Wang [14] proposed an efficient
approach for solving the robust topology optimization
problem of structures under loading uncertainty based
on linear elastic theory and orthogonal diagonalization
of symmetric matrices. Sahali et al. [15] proposed an effi-
cient genetic algorithm (GA) for multi—objective robust
optimization of machining parameters considering ran-
dom uncertainties. Martinez—Frutos et al. [16] proposed
a robust shape optimization approach of continuous
structures via the level set method, which modeled the
uncertainty in loads and material as random variables
with different probability distributions as well as random
fields. However, it is often difficult or computationally
expensive to determine the probabilistic distributions of
uncertain factors in many engineering problems [17].

In order to realize the robust optimization of uncertain
structures in the absence of the probabilistic distribution
information of uncertainties, several non-probabilistic
methods have been proposed in recent years to account
for the uncertainties [18, 19]. Au et al. [20] proposed a
robust design method based on the convex model and
achieved the robustness of the objective function by
minimizing the worst value of unsatisfactory degree
functions of the uncertain parameters and ensured the
feasibility robustness by a sub-optimization conducting
the worst-case analysis. Takewaki and Ben—Haim [21]
represented the uncertainties in the power spectral den-
sity of load and the parameters of the structure’s vibration
model by info-gap models, and proposed a robust—sat-
isficing methodology for the info-gap robust design of
uncertain structures. However, the above methods are
very complex when the parameter numbers are large. Sun
et al. [22] proposed a bi-level mathematical model with
interval objective and constraint functions for robust
design optimization. The single objective function was
converted into two objective functions for minimizing
the mean and variation while the constraint functions
were reformulated with the acceptable robustness level.
However, the so-called robust solution obtained by their
method cannot ensure the robustness of all constraints.
Karer and Skrjanc [23] proposed a robust optimization
framework for PID controllers by describing the uncer-
tain dynamics of the process as an interval model, which
was firstly transformed into a deterministic model and
then solved by a particle swarm optimization algorithm.
Li et al. [24] proposed an actuator placement robust
optimization method for active vibration control system
with interval parameters. Both nominal value and radius
of the performance index were considered in the inter-
val optimization model, which was also transformed into
a deterministic one by weighted processing and then
solved by GA.
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To sum up, present non-probabilistic robust optimiza-
tion approaches have difficulties in ensuring the robust-
ness of all constraints and achieving the globally optimal
robust solutions to real engineering problems. Moreover,
the solution algorithms employed in the present robust
optimization approaches based on interval models are
indirect ones. That is, they firstly transformed the inter-
val models into deterministic ones and then solved the
resulting deterministic models by conventional deter-
ministic optimization algorithms. The shortcomings of
such indirect robust optimization approaches are similar
to the indirect ones for solving general interval optimi-
zation models [25, 26]. Specifically, different acceptable
robustness levels or satisfactory degrees of interval con-
straints prescribed in model transform process will lead
to different optimal solutions. Additionally, the trans-
formation of interval models into deterministic ones
also deviates from the original intention of uncertainty
modeling.

To avoid the limitations of indirect algorithms for solv-
ing interval optimization models, we have proposed
a direct interval optimization algorithm for uncertain
structures by introducing the concept of the degree
of interval constraint violation (DICV) [27] based on
Hu’s “center first halfwidth next” interval order rela-
tion [28]. Specifically, a design vector & has zero DICV
for constraint gx,U) < B= [bL, bR = <bc,bw> when
2¢(x) < b€ or g€(x) = b€ and gV (x) < bV ; otherwise,
the DICV is nonzero for the constraint (where g(x, U) is
the mechanical performance index of a structure under
the influence of interval parameter U, B is the given
interval constant, superscripts L, R, C, W indicate the left
bound, right bound, center and halfwidth of an interval).
The feasibility of a design vector « is determined by the
total DICV of all its interval constraints and a design vec-
tor « is regarded as feasible when its total DICV is zero.
And finally the design vectors are directly sorted accord-
ing to the DICV-based preferential guidelines. How-
ever, there may be g’(x) < b’ or/and 2R (x) > b® when
2%(x) < bC. That is, the constraint g(x, U) < B may be
violated although design vector x is regarded as feasible
when g€(x) < b® according to the definition of DICV.
Consequently, the DICV-based direct interval optimiza-
tion algorithm cannot ensure the constraint robustness
of the optimal solution.

The purpose of this paper is to put forward a direct
robust optimization approach for uncertain structures
with interval parameters, which can achieve the opti-
mal solutions of objective and feasibility robustness. A
novel concept of interval violation vector is proposed for
describing the feasibility robustness of a design vector,
which comprises two components that describe the vio-
lation degrees of the left and right bounds of an interval
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mechanical performance index in a constraint function.
The mathematical formulae for calculating the interval
violation vectors of a design vector corresponding to var-
ious constraint functions are provided. Then the objec-
tive and feasibility robustness indices of various design
vectors can be calculated based on their values of total
interval violation vectors. And finally, the design vec-
tors of an uncertain structure are sorted according to the
robustness-based preferential guidelines, which is real-
ized by integrating the Kriging technique and nested GA.

2 Robust Optimization Model of an Uncertain
Structure with Interval Parameters

The mechanical performance indices of an uncertain
structure are described as the functions of both design
variables and interval parameters. The center and
halfwidth of the most important mechanical perfor-
mance index of the uncertain structure are described as
the objective functions while the requirements on the
other mechanical performance indices are described
as constraint functions. Then the robust optimization
model of an uncertain structure with interval parameters
is described as

min {€@)./" @)}, &)
where
FC@ = (FFw+rtw) /2
= (ml?xf(x,U)+mL}nf(x,U)>/2;
Y@= (o -rw) /2
= (mlz}xf(x, uy— ml}nf(x, U))/Z.
s.t,

gl'(xr u) = (E)Bl = I:blL,bf], i= 1)27' o ;P,
x = (X1,%2," " ,Xn);
U= (Uy,U,---,Uy);

Uy = [u}uﬂ/: L2, ,q.

where x is an #n-dimensional design vector, U is a
g-dimensional interval parameter vector;f(x, U) is the
most important performance index while g;(x, U) is the
ith performance index with restriction. Both f(x, i) and
gi(x, U) are nonlinear continuous functions about x and
U, but the mechanical performance indices g;(x, 1) in
constraints may degenerate into deterministic ones, such
as gi(x). f€(x) and fY (x) are the center and halfwidth
of f(x,U) while fL(x) and fR(x) are the left and right
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bounds of f(x, U). B, is the given interval constant for the
ith constraint, which may degenerate into a real number.

The left and right bounds of the mechanical perfor-
mance index g;(x, U) in the ith interval constraint func-
tion of Eq. (1) can be computed by

gl = min g;(x, U);
) = max (%, U); 2)
i= 1,2;"' b

where p is the number of constraint functions.

3 Definition of the Interval Violation Vector and its
Calculation
3.1 Definition of the Interval Violation Vector for an
Interval Constraint
For the ith interval constraint g;(x,U) < B; = [biL,blR]
in Eq. (1), there are a total of six positional relations
between gi(x, U) = [gF(x),gR(x)] and B; = [bF,bF] as
shown in Figure 1. It is obvious that the interval con-
straint g;(x, U) < B; = [biL, bf] is fully satisfied when the
positional relation of the mechanical performance index
gi(x, U) and the given interval constant B, is illustrated
as Figure 1(a) when biL - giL(x) > gl.R (x) — giL(x) and
bf - gl.R x) > bf - bf, including the case that giR (x)=biL.
Correspondingly, the violation degrees for both the left
and right bounds of the interval mechanical performance
index gi(x, U) are zero in the case shown in Figure 1(a).
Therefore, the following concept of interval violation
vector is introduced to describe the violation degree of a
design vector for an interval constraint.

Definition 1 (Interval violation vector)
The interval violation vector of an interval constraint
gi(x,U) <B; = [bf,bf] is a two-dimensional vector, the
components of which describe the violation degrees of
the left and right bounds of the interval mechanical per-
formance index g;(x, U) of an uncertain structure under
the influence of interval parameter vector U.

Specifically, the interval violation vector of constraint

gi(x, U) < B; = [bF, b]is

vi®) = (vF@,vf ), 3)

where VIL (x) and le (x) are the violation degrees of the left
and right bounds of g;(x, U), and there is

R x) — gk )|+ |bt — - @)

= max (0,

gl — b} :
) — gt + |bf —gtw)] )’
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Figure 1 Six positional relations between the interval performance index g,(x, U) and given interval constant 5

(bR — bf) — (b — gf @)
bR = by |+ |bf — gf @)

3b
&' @) — b} )
= max| 0, R .

—bf + |bf — g @)
As can be seen from Eq. (3), the interval violation
vector v;(x) = (ViL(x),VlR (x)) of interval constraint
gilx,U) < B, = [biL, bfe] has the following properties:

Vf-e (x) = max (0,

(1) There are 0 < viL(x) <land 0 < vf(x) <1 for any
design vector x.

(2) There is v;(x) = (0,0) when gL,R %) < biL as shown in
Figure 1(a).

(3) There is ViL(x) =1 when gl,L(x) > biL, see Fig-
ures 1(d)—(f).

(4) There is le (x) = 1when giR x) > blR, see Figures 1(c),

(e), (f).

3.2 Calculation of the Interval Violation Vector for Various
Constraints

For a mechanical performance index independent of

interval parameters, there is g;(x) = giL (x) = gl,R (x), and

the constraint g;j(x, U) < B; = [bf,bf] in Eq. (1) degen-

erates as g;(x) < B; = [bf, blR] correspondingly. Then the

formula for calculating the interval violation vector of
such a constraint should be adjusted as Eq. (4).

In engineering, the interval constant B; = [biL, blR]
in Eq. (1) may also degenerate into a real number,
namely, there is b; = bF = bR In this case, the con-
straint g;(x, U) < B; = [biL, blR] in Eq. (1) degenerates as
gi(x, U) < b; and the formula for calculating the interval
violation vector of such a constraint should be adjusted
as Eq. (5).

Furthermore, the constraint g;(x,U) < B; = [biL, bf]in
Eq. (1) will degenerate as g;(x) < b; when the mechanical
performance index is independent of the interval param-
eters and the interval constant degenerates into a real
number. And then the formula for calculating the interval
violation vector for such a constraint will be simplified as
Eq. (6).

As can be observed from Egs. (3)—(6), there are
vi(x) = (0,0) when g;(x) = bF or b; = gf(x) or gi(x) = b;,
otherwise, the values of v;(x) can be calculated by Eq. (3).
Consequently, the formula for calculating the interval
violation vector of constraint g;(x, U) < B; = [biL, blR] can
be concluded as Eq. (7).

Similarly, the formula for calculating the interval viola-
tion vector of constraint g;(x, U) > B; = [biL,bf] can be
deduced as Eq. (8), the detailed derivation of which is not
provided here for space—saving sake.
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bR~ )) when &) # 5, (4)
when gi(x) = biL.
& @)—b; R
I AL , when b; K(x);
bi—gf @) FE (5)
when b; = gl,R(x).
(6)
when gi(») = b;.
(67 = bY)|) + sign(|gf @) — b7 [) = 0:
gR @) —bt ) (7)
g bf—gﬁ(x)‘ , otherwise.
bf—gf ) 8)

, otherwise.

max| 0, +——F————— |, max| 0,
< b,{e_biLHgiL(x)—bH) giR(x)fgiL(x)Jr‘gf(x)fhf

4 Preferential Guidelines Considering Objective
and Feasibility Robustness

In order to directly solve the robust optimization model
in Eq. (1), two robustness indices are introduced to eval-
uate the objective and feasibility robustness of a design
vector. The feasibility robustness index is utilized to
evaluate the acceptability of a design vector as far as the
constraint functions are concerned while the objective
robustness index is utilized to evaluate the superiority
and robustness of a design vector as far as the objective
mechanical performance index is concerned. Then the
robustness—based preferential guidelines are proposed
for realizing the direct ranking of various design vectors.

4.1 Feasibility Robustness Index and its Calculation

The feasibility robustness index can be calculated from
the total interval violation vector of all the constraints in
the robust optimization model considering that the total
interval violation vector reversely reflects the feasibility
robustness of a constraint function. Specifically, the total
interval violation vector corresponding to design vector x
can be calculated by Eq. (9) as far as the interval violation
vectors of all constraints g;(x, U) < (>)B;(i =1,2,---,p)
are calculated by Eq. (7) or Eq. (8):

b
vr@®) = vi®),i=12-,p. )
i=1

Then design vector x is regarded as feasible robust
when v1(x) = (0,0) and it is not when vr(x) > (0,0).
And the feasibility robustness index of design vector x
can be calculated by

Ier(®) = 1= vr@)| / v/2p =
I 2 R 2 (10
1= (k@) + (hw)’ / Vo

)

As can be seen from Eq. (10), the larger total interval
violation vector will lead to the smaller feasibility robust-
ness index for a design vector. Moreover, the feasibility
robustness index for a design vector has the following
properties.

(1) For a feasible robust design vector x, there is
Ier(x) = 1.

(2) For a design vector x that is not feasible robust, there
is0 < Igp(x) < 1.

(3) The larger feasibility robustness index indicates the
better acceptability of a design vector as far as the
constraints are concerned.

4.2 Objective Robustness Index and its Calculation

The center and halfwidth of the objective mechanical
performance index should be regarded as equally impor-
tant in the robust optimization of an uncertain structure
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regardless of their possible difference in orders of mag-
nitude. To achieve this aim, all the feasible robust design
vectors are sorted according to their corresponding val-
ues of f¢(x)and f" (x) with the rank numbers obtained
as r@), " (x) respectively. A design vector with the
smaller objective value is assigned a larger rank number
and the design vector with the largest objective value is
assigned the rank number of 1. Then the rank vector of
design vector x are generated as r(x) = (rc(x), rW(x)).
And finally, the objective robustness index of design vec-
tor x is calculated by

Ior(%) = \/(Vc(x))2 + (rW(x))Z. (11)

It is obvious from Eq. (11) that the objective robust-
ness index is positive for any design vector, and the larger
objective robustness index indicates the better and more
robust of a design vector as far as the objective mechani-
cal performance index is concerned.

4.3 Preferential Guidelines for Ranking Various Design
Vectors

As far as their objective and feasibility robustness indices

are calculated by Eq. (10) and Eq. (11), all of the alterna-

tive design vectors can be ranked according to the follow-

ing preferential guidelines:

(1) A feasible robust design vector is always superior
to an infeasible one. That is, design vector «, is
superior to design vector &, when Irr(x1) =1
and Irr(x2) < 1.

(2) The infeasible design vectors are ranked accord-
ing to their corresponding values of feasibility
robustness indices. Specifically, infeasible design
vector &, is superior to infeasible design vector &,
when Jpr(%1) > Ipr(%2).

(3) The feasible robust design vectors are ranked
according to their objective robustness indi-
ces. Specifically, feasible design vector =x; is
superior to feasible design vector x, when
Ior(x1) > Ior(%2).

5 Integrated Algorithm for Directly Solving the
Interval Robust Optimization Model

A robust optimization algorithm integrating Kriging
models and nested GA is proposed to directly solve the
constrained interval robust optimization model of the
uncertain structure. The Kriging model is utilized here
to replace finite element analysis (FEA) for efficiently
computing the mechanical performance indices of the
uncertain structure. For the mechanical performance
index influenced by n-dimensional design vector ¥ and
g-dimensional interval vector U, such as f(x,U) and

Page 6 of 13

gi(x,U) in Eq. (1) is concerned, the sample points for
constructing the Kriging model should be generated in
the (n+g)-dimensional space determined by n design
variables and g interval parameters based on Latin hyper-
cube sampling (LHS). To ensure the prediction accuracy
of Kriging models, the adaptive resampling technology
proposed in our previous work [29] is also adopted. Spe-
cifically, the construction of every Kriging model is an
iterative process until the achievement of satisfactory
local and global precision evaluated by multiple correla-
tion coefficient R? and relative maximum absolute error
(RMAE). The inner layer GAs integrated with Kriging
models calculate in parallel the intervals of the mechani-
cal performance indices under the influence of uncer-
tain parameters while the outer layer GA realizes the
direct sorting of various design vectors according to the
robustness-based preferential guidelines and locates the
optimal solution to the constrained interval robust opti-
mization model.

The flowchart of the proposed direct interval robust opti-
mization algorithm is illustrated in Figure 2, the implemen-
tation of which proceeds as follows.

Step 1:  Construct the robust optimization model of
an uncertain structure with interval param-
eters. The mechanical performance indices
of the uncertain structure are described as
the functions of design variables and inter-
val parameters. The center and halfwidth of
the most important mechanical performance
index are described as objective functions
while the requirements of the other mechani-
cal performance indices are described as con-
straint functions.

Construct the Kriging models for efficiently
computing the mechanical performance indi-
ces of the uncertain structure based on finite
element (FE) model, LHS and adaptive resam-
ple technology.

Initialize the GA parameters involved in the
nested optimization, including the population
sizes, maximum iteration numbers, crossover
and mutation probabilities of the inner and
outer layer GAs. Set the iteration number of
the outer layer GA as 1 and generate the initial
population.

Rank the individuals in the current popu-
lation of outer layer GA according to the
robustness-based preferential guidelines and
calculate their fitness values, during the pro-
cess of which inner layer GAs integrated with
Kriging models constructed in Step 2 are

Step 2:

Step 3:

Step 4:
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Construct the constrained interval robust
optimization model of the uncertain structure.

v

'

Construct the parameterized
FE model.

Collect enough sample points
based on LHS and FEA.

v

Construct the Kriging models for computing the mechanical
performance indices in the objective and constraint functions.

|
|
| |
| ST ek
| Initialize the GA parameters, generate the initial Implement
. crossover
l population of the outer laver GA, Ifer,=1. and
|
: mutation to [«
| No generate
—T the next
: population.
|
n_—— |
e == — == — o= o — oo oo 1
1 Inner GA Inner GA Inner GA |I
=1 L . R . . R . - I
LB f9] [ 10 [frait) [orarts) (e, (g, i)
). 7 (x) Calculate the total interval violation vectors of all individuals.

Calculate the objective and feasibility robustness indices of all individuals.

|

Rank all individuals according to the robustness-based preferential
guidelines and calculate their corresponding fitness values.

|
|
|
|
|
|
|
|
|
|
! !
|
|
|
|
|
|
|
|

Iter =lter,+1 —

:( Output the optimal solution. )

Figure 2 Flowchart of the proposed direct interval robust optimization algorithm

Step 5:

implemented in parallel for computing the left
and right bounds of the mechanical perfor-
mance indices.

Output the design vector with the largest fit-
ness value if the convergent threshold or maxi-
mum iteration number of the outer layer GA is
reached. Otherwise, increase the iteration num-
ber of the outer layer GA by 1 and go to Step 4.

6 lllustrative Examples

Two illustrative examples are investigated in this section
to verify the effectiveness of the proposed approach for
directly solving interval robust optimization problems
and its applicability in engineering practice. The con-
struction of Kriging models is unnecessary for the first
example since its objective and constraint functions are
analytical. It is obvious that the proposed robust interval
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Table 1 GA parameters for numerical example in Eq. (12)

GA Population  Crossover Mutation Maximum
size probability  probability iteration
number
Outer layer 100 0.90 0.05 200
Inner layer 50 0.99 0.05 150

optimization algorithm has the same advantages as our
previous one in realizing the direct solution of interval
optimization problems and avoiding the complicated
model transformation process. Consequently, the opti-
mization results obtained by the proposed algorithm
are only compared with those obtained by the direct one
hereinafter.

6.1 Numerical Example

The constrained interval robust optimization model
in Eq. (12) is utilized as a benchmark example, which
is firstly solved by the proposed algorithm with the GA
parameters listed in Table 1. Besides the maximum itera-
tion number given as a stop criterion, the outer layer GA
evolution is terminated when the absolute difference of
f€(x) between the optimal solution and the average of
current population is less than 1072,

min {f€ @),/ @)} =

min { (F*@) +f1@) /2, (F* @) —f* @)/ 2}
wherefR(x) = mlalixf(x, U),fL(x) = ml}nf(x, u);
f@, U) = Ukxy + 2)+Upx3+UZx}

s.t.,

g U) = Uyx? — Uzxy + Usxs > [8.0,10.0];
o, U) = Uyxy + Upxy + Uzx3 + 1.0 > [4.5,5.0].
x1 € [1,10], %7 € [0,9], %3 € [2,8].

U, = [0.8,1.0], Uy = [0.9,1.1], U3 = [1.0,1.2].

(12)

Figure 3 illustrates the convergent curves of numeri-
cal example obtained by the proposed algorithm.
The objective value of the optimal solution con-
verges at the 78th generation. The optimal solution is
x° = (3.17, 0.02, 2.00), the corresponding objectives and
constraints of which are f¢(x°) = 9.11, f¥ (x°) = 1.80,
g1(x°, U) =[10.00, 12.41] andgy(x°, U) = [7.55, 9.94]
respectively. It is obvious that both constraints in Eq. (12)
are fully satisfied at x° = (3.17, 0.02, 2.00), demonstrat-
ing the feasibility robustness of two constraints.

The robust optimization model in Eq. (12) is also solved
by our previous algorithm [27] with the GA parameters
and convergent threshold prescribed the same as those
in the proposed one. The objective values of the opti-
mal solution converge at the 86th generation, with the
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Figure 3 Convergent curves of numerical example obtained by the
proposed algorithm

optimal solution obtained as &* = (3.11, 0.20, 2.08) and
the convergent curves illustrated in Figure 4.

Table 2 lists the optimization results of the numerical
example obtained by two algorithms. As can be seen from
Table 2, the 2nd constraint function g (x, U) > [4.5,5.0]
is fully satisfied at both the optimal solutions. But the 1st
constraint function g; (x, U) > [8.0,10.0] may be violated
at the optimal solution x* = (3.11,0.20,2.08) obtained
by our previous algorithm while it is always satisfied at
the optimal solution x° = (3.17,0.02,2.00) obtained by
the proposed algorithm. That is, the optimal solution x’
obtained by our previous algorithm is not a robust one
as far as the constraints are concerned while the opti-
mal solution x° obtained by the proposed algorithm is.
The improvement is gained from the definition of inter-
val violation vector and the robustness-based prefer-
ential guidelines. Specifically, the interval constraint
g1(x, U) > [8.0,10.0] at x~ is regarded as feasible accord-
ing to the “center first halfwidth next” interval order rela-
tion for evaluating the feasibility of a constraint in our
previous algorithm since g© (x*) = 10.79 > 9.0 but & is
obviously not feasible robust according to the definition
of interval violation vector in Section 3. Consequently,
the proposed algorithm can yield a more robust solution
than our previous one as far as the constraint functions
are concerned.

It is also clear from Table 2 that both objective func-
tions of the optimal solution obtained by the proposed
algorithm are smaller than those obtained by our previ-
ous one, which demonstrates that the proposed algo-
rithm can obtain a better and more robust solution than
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Figure 4 Convergent curves of numerical example obtained by our
previous algorithm
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Table 2 The optimization results of numerical example
obtained by proposed and previous algorithms

Algorithm  Optimal Objective Constraint functions
solution functions
IfL, £R), g5, 971 (g5, 95
(Fe.£%)
Proposed  x°=(3.17, [7.31,10.92], [10.00, 12.41] [7.55,9.94]
0.02,2.00) (9.11, 1.80)
Previous x =311, [7.62,11.31], [9.58,12.00] [7.98,10.53]
0.20,2.08) (947, 1.84)

the previous one as far as the objective functions are con-
cerned. Moreover, the convergent curves in Figures 3, 4
demonstrate that the proposed algorithm can locate the
optimal solution more efficiently than the previous one.

6.2 Engineering Example
The upper beam of an ultra—precision high-speed press
is utilized to verify the applicability of the proposed
method in the robust optimization of practical engineer-
ing structures with interval parameters. Figure 5 illus-
trates the 3D solid model and cross section of the upper
beam. The geometrical parameters ki, i, Iy, l,, I; in Fig-
ure 5(b) are chosen as design variables while its material
density p and elastic modulus E are interval parameters.
According to the performance requirements of the
upper beam, the maximum deformation reflecting stiff-
ness is the most important mechanical performance
index, the center and halfwidth of which are described as

a 3D solid model

e

L A b
W74

b Cross section

Figure 5 The upper beam in an ultra-precision high-speed press

the objective functions. With the weight and maximum
equivalent stress described as constraint functions, the
robust optimization model of the upper beam is con-
structed as

min {d°x),d" ()},
where d€ (x)=(d® (x) + d-(x)) / 2,
d¥ (x) = (dR(x) —d )/ 2;
dR(x) = max dx, U, d-(x) = ml}nd(x, u;
st,w(x, U;) = w(x, p) < [5000, 5010] kg;
S(x, U) < [45, 46] MPa.
X = (hll h2r lly 127 13)7 u= (Ub UZ)v
210 mm < /7 < 250 mm, 250 mm < /15 < 300 mm,
80 mm < /1 <120 mm, 25 mm < /5 <55 mm,
330 mm < /3 < 390 mm;
Uy = p = [7280, 7320] kg/m?3,
Uy = E = [126, 154] GPa.

(13)

where x is the design vector while U is the interval
parameter vector; d(x, U) is the maximum deformation;
d®(x) and d¥(x) are the center and halfwidth of d(x, U)
while d*(x) and d®(x) are the left and right bounds of d(x,
U); wx, U;) and 6(x, U) are the weight and maximum
equivalent stress respectively.
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Table 3 Mechanical performance indices of the initial

design scheme of the upperbeam | | e Left bound
~<------ Right bound
L SR L 4R C 4w 5020 g
wh, wfl kg [6%, 6"] MPa [d', d*1mm,(d¢, d") mm Center point
(52162, 5232.3] [45.21,50.00] [0.1716,02114]1,(0.1915, 0.0199) o)
4980 ffr===
2 4960
% 4940
Fixed Support ‘é"}
Frictionless Support 4920
Frictionless Support 2
Dl Force: 8.0x10°N 4900
Bearing Load: 2.5x10°N 4850
Bearing Load 2: 5.0x10°N 0 100 200 300
Generation
a Convergent curves of weight
Figure 6 1/4 FE model of the upper beam: loads and constraints
a8 | Left bound
= : ========= Right bound
Table 4 GA parameters for the robust optimization of the g 471 Center point
upper beam 2 46
GA Maximum Population  Crossover Mutation E’ 45
iteration size probability  probability b
number f) 44
S
Inner layer 150 60 099 0.05 L)
(5] "
Outer layer 300 120 0.90 0.01 g 7y
£ )
g 41r
= i
As far as the initial design of the upper beam is con- 40
& pp 0 100 200 300

cerned, there is x = (230, 270, 100, 50, 350) mm. The
mechanical performance indices of the initial design
under interval parameters E and p are listed in Table 3. It
is obvious from Table 3 that neither constraint is satisfied

Generation

b Convergent curves of maximum equivalent stress

for the initial design of the upper beam. 024 R ;?gh?%tnui d
/E\ 0231} Center point

6.2.1 Optimization Results Obtained by Proposed Algorithm £
Figure 6 illustrates the 1/4 FE model of the upper beam. g 022
A pressure of 800 kN is exerted at every joint between B
the upper beam and driving oil cylinder. A bearing load g 0.21 \
of 250 kN is applied on the end bearing hole while a bear- 3
ing load of 500 kN is applied on the mid bearing hole. g 02

Based on the Kriging models constructed by the %
adaptive resampling technology with the same preci- =00 i
sion requirements as Ref. [30] (namely, R?>0.95 and 0.18
RMAE<0.05), the robust optimization model in Eq. (13) 0 100 200 300
can be directly solved by the proposed algorithm with AiETUGL
the GA parameters listed in Table 4. The outer layer GA € Convergent curves of maximum deformation
evolution is terminated when the absolute difference of Figure 7 Convergent curves of the upper beam'’s mechanical perfor-
d€ (x) between the optimal solution and the average of | Manceindices obtained by the proposed algorithm

the current population is less than 1074,
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The convergent curves corresponding to the weight,
""""" Left bound maximum equivalent stress and maximum deforma-

Right bound tion of the upper beam obtained by the proposed algo-
Center point

5020 rithm are illustrated in Figure 7, which converge at the
o 121st generation. The optimal solution is obtained as
x°=(238.89, 280.22, 81.61, 32.73, 386.21), the corre-
4980 fr: sponding objective values of which are d“(x°)=0.2027,
’_o;,, 3560 ] dY(x°) =0.0193 while the weight and maximum equiva-
- lent stress in constraints are w(x°, U;)=[4983.9, 5000.0]
f:)n 4940 and &(x°, U)=[40.16, 44.95] respectively. It is obvious
2 that both constraints in Eq. (13) are fully satisfied at &°
4920 and the feasibility robustness is improved after optimiza-
4900 tion. A comparison on the objective values of the optimal
solution x° with that of the initial design demonstrates
8805 100 200 300 that the objective robustness is also improved since d" is
Generation decreased after optimization.
a Convergent curves of weight
6.2.2 Comparison with Previous Algorithm
48 | e Left bound The constrained interval robust optimization model in
E:, Right bO“fld Eq. (13) is also solved by our previous algorithm [27]
= 46} Center point with the GA parameters and convergent threshold set-
@ tled the same as those in the proposed algorithm. The
B 44l objective values of the optimal solution converge at the
5 T "’ 146th generation, with the optimal solution obtained
- L as ¥ =(248.03, 296.28, 85.31, 30.31, 387.89). Figure 8
g illustrates the convergent curves of the mechanical per-
§ it formance indices of the upper beam obtained by our
E 1 previous algorithm, a comparison of which with those in
= Treemen Figure 7 demonstrates that the proposed algorithm can
3 100 200 300 locate the optimal solution more efficiently than the pre-
Generation vious one.
b Convergent curves of maximum equivalent stress Table 5 compares the optimization results
obtained by the proposed and our previous algo-
"""""" Iﬁ?g]lt’%':)nuid rithm [27], which shows that the 2nd constraint func-
Center point tion 8(x, U) < [45,46] MPa is fully satisfied at both
024y optimal solutions. But the 1st constraint function
g ' ' w(x, Up) = w(x, p) < [5000,5010] kg may be violated
= 023t at &' =(248.03, 296.28, 85.31, 30.31, 387.89) obtained
g by our previous algorithm but it is always satisfied at
g 0‘22L x°=(238.89, 280.22, 81.61, 32.73, 386.21) obtained by
3 the proposed algorithm. This is due to the fact that the
§ 021} Ist constraint function is regarded to be satisfied at &~
% according to the “center first halfwidth next” interval
Z 0 order relation in our previous algorithm since there is
B ‘ wlc(x*) = 5000.6 kg < 5005 kg but its corresponding
0 100 200 300 interval violation vector is v, (x*) = (0.26,0.80) accord-
Generation ing to Definition 1 in Section 3. At the same time, the
€ Convergent curves of maximum deformation optimal solution obtained by the proposed algorithm has
Figure 8 Convergent curves of the upper beam’s mechanical perfor- the smaller center and halfwidth of the maximum defor-
mance indices obtained by our previous algorithm mation in the objective functions than those generated

by the previous algorithm. Hence the proposed algo-
rithm can yield a better and more robust solution than
the previous one. This is due to the improved criteria for



Cheng et al. Chin. J. Mech. Eng. (2018) 31:38

Page 12 of 13

Table 5 Comparison of the optimization results of the upper beam obtained by the proposed and previous algorithms

Algorithm Optimal solution (hy, h,, I, 5, I3) mm Mechanical performance indices of the upper beam

wh, wfl kg [6, 8% MPa [d", d*1mm, (d¢,d") mm
Proposed (238.89,280.22,81.61,32.73,386.21) [4983.9, 5000.0] [40.16, 44.95] [0.1834, 0.2220],(0.2027, 0.0193)
Previous (248.03,296.28,85.31,30.31,387.89) [4992.3,5008.9] [38.64,43.56] [0.1976,0.2366],(0.2171, 0.0195)

evaluating the violation degrees of various constraints
and the robustness-based preferential guidelines utilized
in the proposed algorithm.

7 Conclusions

To improve the mechanical performance indices of an
uncertain structure with interval parameters and ensure
their satisfaction with performance requirements when
fluctuating under uncertainties, a constrained interval
robust optimization model was constructed with both
the center and halfwidth of the most important mechani-
cal performance index described as objective functions
and the other mechanical performance indices included
in constraint functions. A novel concept of interval vio-
lation vector was proposed for evaluating the feasibility
robustness of a design vector, the mathematical formulae
for calculating the interval violation vectors of various
constraint functions were also provided. Then the robust-
ness—based preferential guidelines were proposed for
directly ranking various design vectors and an algorithm
integrating Kriging technique and nested GA was put
forward to realize the direct solution of the constrained
interval robust optimization problem.

The proposed direct interval robust optimization algo-
rithm has the same advantage as our previous one [27]
in avoiding the complex model transformation process
from interval to deterministic. The optimization results
of the numerical example demonstrated that the pro-
posed algorithm was more efficient and effective than our
previous one. The robust optimization of the upper beam
in a high-speed press with interval material density and
elastic modulus demonstrated the feasibility and validity
of the proposed method in engineering practice.
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