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Parameter Optimization 
of a Stability‑Training Platform’s 4‑PSS/PS 
Parallel Mechanism Based on Training Ability 
Evaluation Index and PSO Algorithm
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Abstract 

The existing mechanism parameter optimization (MPO) method of parallel mechanisms only considers the workspace 
size and ignores contribution of each configuration’s performance. So a novel MPO method is proposed for our serial-
parallel mechanism platform, which is used in stability training of legged robots. Regarding the platform’s parallel 
mechanism part, a 4-PSS/PS parallel mechanism, two object functions and three constraint conditions are defined to 
establish the MPO model. The first object function uses critical motion indexes of the moving platform. The second 
one uses derivative function of the defined disturbance Lagrange function. After analyzing stability-training require‑
ments of five existing legged robots, requirements of the platform’s motion capability are given out. Regarding each 
proposed object function separately, the MPO model is solved by the particle swarm optimization (PSO) algorithm. 
Valid workspace boundaries corresponding to the optimization results are solved by a numerical method. The overall 
optimal solution is determined based on volume of the valid workspace. It is revealed that the two object functions 
result in similar optimization solutions, which shows that the proposed object functions can reflect the stability-
training ability consistently. This paper proposes and verifies the established MPO model, which considers both the 
workspace size and configurations’ performance evaluation.
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1  Introduction
Legged robots influenced by the environment distur-
bance may be unstable, so balancing control is needed to 
obtain the self-stabilizing ability. Thus, for different envi-
ronment disturbances, different balancing controllers 
were designed based on the dynamics model, such as: the 
balancing controllers for walking on uneven terrain or a 
slope [1–4], the balancing controllers for standing on a 
tilting slope [2, 5–7], the balancing controllers against 
external impacts [2, 5, 8], and so on. These controllers are 
influenced by the model error. And each controller is only 
designed for a specific robot motion (standing, walking, 

etc.) and a specific environment disturbance (tilting 
ground, impact forces, etc.), which leads to less versatility.

In order to reduce the dependency to the dynamics 
model, intelligence algorithms were applied to design 
intelligence stabilizers, such as: the fuzzy algorithm [9, 
10], the artificial neural networks [11], the reinforcement 
learning algorithm [12, 13], and so on. And some stabi-
lizers’ versatility were enhanced. Wasielica [14] designed 
a static stabilizer for arbitrary upper-body motions on 
a tilting platform. In order to get the best similarity and 
stability, Vuga et al. [13] modified the reproduced human 
motion samples by a reinforcement learning stabilizer.

It was hard to cover all kinds of environment distur-
bances in the design stage of the mentioned control-
lers. Also, the disturbances applied in the learning stage 
of the intelligence stabilizers were relatively single. So 
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it is hard to get the self-stabilizing ability with strong 
robustness, neither can get the animal-like global self-
stabilizing ability, which keeps balancing against arbi-
trary disturbances within the driving ability limitation.

Toward this problem, the authors designed a serial-
parallel mechanism platform (Figure 1(a)) with 6 degree-
of-freedoms (DOFs) [15, 16], and proposed the idea 
of obtaining robot’s self-stabilizing ability by actively 
training (Figure  1(b)). During the training process, the 
training platform applied random motions with lim-
ited amplitude to disturb the trained robots. The robots 
modify their motion based on platform position and ori-
entation feedback, robot joint position feedback and con-
tacting force feedback. The global self-stabilizing ability 
can be obtained by learning.

Parallel mechanism part of the designed platform is a 
4-PSS/PS parallel mechanism, and the serial mechanism 
part is a 2-DOF translational mechanism fixed on the 
moving platform. The platform has a low, big-size moving 
platform with big workspace, high speed and acceleration. 
So it is convenient for robots to get on or off the moving 
platform. And the protective equipment can be installed 
on the moving platform. Compared to the Stewart plat-
form and other newly proposed motion platforms [17–
20], the designed platform is more suitable for the stability 
training. To improve the training performance, MPO of 
the 4-PSS/PS mechanism will conducted in this paper.

Regarding to the MPO issue, dexterity evaluation 
indexes were proposed based on the Jacobian matrix of the 

mechanism’s kinematics, such as: the manipulability [21], 
the condition number [22] and the global condition num-
ber [23]. Considering influence of the assembly error and 
the control error on the position precision of the tip (or the 
moving platform of parallel mechanisms), Caro et al. [24] 
defined a sensitivity index based on the norm of the Jaco-
bian matrix. And they compared the sensitivity indexes of 
several planer mechanisms [25]. Rezaei et  al. [26] evalu-
ated the direct sensitivity and the inverse sensitivity of a 
3-PSP mechanism by moving platform’s max position and 
orientation error. Based on the Krawczyk operator, Tan-
nous et al. [27] proposed an interval linearization method 
to speed up the sensitivity-based MPO calculation. The 
mentioned evaluation indexes are all focused on singular-
ity aspect of a mechanism configuration, rather than the 
performance contribution of the workspace size.

On the other side, volume of the non-singularity 
workspace was used to evaluate parallel mechanisms. 
Based on the Lagrange multiplier method, Li et  al. [28] 
solved the largest non-singular spherical workspace of 
a 3-RPR mechanism. By the same method, Fu and Gao 
[29] proposed an approach to minimize mechanism’s 
volume while its workspace is determined. Karimi et al. 
[30] solved the largest non-singular workspace of the 
6-UPS mechanism by the convex optimization algorithm. 
Kaloorazi et  al. [31] solved the largest non-singular cir-
cle in workspace of a 3-PRR mechanism by the geometric 
method. And Hou et  al. [32] solved the largest reach-
able workspace of the 3-PSS/S mechanism by the genetic 
algorithm. However, these methods treated the whole 
workspace equally, rather than evaluating each mecha-
nism configuration separately.

For the shortcomings of the existing mechanism eval-
uation indexes, this paper gives out three constraint 
conditions of solving the valid workspace: mechanism 
singularity, active pairs’ speed limitation and driving force 
limitation. And two evaluation indexes of the training 
ability are proposed for each mechanism configuration. 
One of them is based on the critical motion index of the 
moving platform. The other is based on derivative func-
tion of the disturbance Lagrange function. By integration 
in the workspace, MPO object function is proposed for 
each evaluation index, which considers both workspace’s 
size and the training performance of each mechanism 
configuration. So compared with the existing evaluation 
method, the proposed method can evaluate 4-PSS/PS 
mechanism’s training ability more comprehensively.

2 � 4‑PSS/PS Mechanism and its Kinematics 
Equations

The parallel mechanism part of the stability-training plat-
form is a 4-PSS/PS parallel mechanism (shown in Fig-
ure 2). The prismatic pairs in four PSS kinematics chains 

(a) 6 DOF serial-parallel mechanism platform [15] 

(b) Stability training concept
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Figure 1  Stability training platform and the stability training concept
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are active kinematics pairs. Ai and Bi (i = 1, 2, 3, 4) are 
centers of upper and lower spherical pairs in the PSS kin-
ematics chains respectively. Distance between Ai and Bi is 
L0. C is center of the spherical pair in the PS kinematics 
chain. The projection of C on the ground is the center of 
the rectangular formed by the projections of Ai. Also, C is 
the center of the moving platform. Right-handed coordi-
nate frame ΣO-xyz is the base coordinate frame. Point O 
is located at the projection of C on the ground. Coordi-
nate frame ΣC-uvw is the moving coordinate frame fixed 
with the moving platform. Positive directions of the coor-
dinate axes are shown in Figure 2. The mechanism param-
eter set of the 4-PSS/PS mechanism is {L0, L1, L2, L3, L4}.

The 4-PSS/PS mechanism has 4 DOFs: translation along 
vertical direction and three posture DOFs. So workspace 
of this mechanism is considered to be a 4-dimensional 
space spanned by z, θr, θp, θy, which are position and ori-
entation parameters of the moving platform, respectively 
representing the height, roll angle, pitch angle, yaw angle 
of ΣC-uvw in the base coordinate frame. The kinematics 
equations in vector form can be written as

where i = 1, 2, 3, 4 (corresponding to the four PSS kin-
ematics chains); PAi represents homogeneous position 
coordinate vectors of Ai in ΣO-xyz; and P′Bi represents 
homogeneous position coordinate vectors of Bi in ΣC-
uvw; T is the homogeneous transformation matrix of ΣC-
uvw relative to ΣO-xyz, which is a function of the four 
position and orientation parameters with the expression

where cj = cosθj and sj = sinθj (j = r, p, y).
Based on Eq. (1), the derivative kinematics equation 

can be deduced as

(1)
∥

∥PAi − T
(

θr, θp, θy, z
)

P′
Bi

∥

∥− L20 = 0,

(2)

T
�
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�
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


,

where żAi is vertical velocity of Ai in the base coordinate 
frame (i = 1, 2, 3, 4); Ṫ  is time derivative matrix of the 
homogeneous transformation matrix.

Eq. (3) can be written in a matrix form as

where Ż =
[

żA1 żA2 żA3 żA4
]T is the velocity vector of 

the active prismatic pairs; x = [θr, θp, θy, z]T is configura-
tion vector of the moving platform and ẋ is its velocity 
vector. A(x) and B(x) have following expressions:

where diag(·) is a function that expands a vector into a 
diagonal matrix; e3 = [0 0 1]T.

3 � Training Capability Targeted MPO
Considering that the driving power has limitations, con-
straint conditions of the MPO model will be established. 
Then, a training ability evaluation index will be proposed 
based on inclination angle, critical speed and critical 
acceleration of the moving platform. By defining the dis-
turbance Lagrange function, another training ability eval-
uation index will be proposed as a contrast. At last, MPO 
model of the 4-PSS/PS mechanism will be given.

3.1 � Constraint Conditions of the MPO Model
Singularities of parallel mechanisms can be divided into 
three categories: direct singularity, inverse singularity 
and combined singularity. The direct singularity makes 
mechanisms unable to bear loads on the moving platform 
in singular DOFs, while the inverse singularity leads to 
movement incapacity of the moving platform in singular 
DOFs. The combined singularity is the situation when 
the above two singularities take place simultaneously. 
Because the direct singularity results in undetermined 
motions, mechanisms can not work on the direct singular 
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Figure 2  4-PSS/PS mechanism
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configurations. Based on definition of the direct singular-
ity, the singularity constraint condition can be written as

where x0 is the initial configuration of the moving plat-
form. Eq. (5) limits that determinants of the matrixes B 
corresponding to the configurations x and x0 have the 
same sign, which is equivalent to that the configurations 
x and x0 are limited in the same nonsingular workspace. 
This will be revealed in Section 4 by the workspace analy-
sis results.

Considering speed limitation of the active kinematics 
pairs, the max speed constraint can be given as

where abs(·) is the absolute value function, 
Żmax =

[

ż1max ż2max ż3max ż4max

]T is rated speed vec-
tor of the four active prismatic pairs. Here, comparison 
operations are defined to be elementally conducted.

Considering the driving power limitation, the accelera-
tion constraint can be written as

where ap and ar are the center-of-mass (COM) accel-
eration vectors of the moving platform and the robot 
respectively; Fmax = [F1, F2, F3, F4]T is rated driving force 
vector of the active kinematics pairs; Q is the generalized 
force vector, which is calculated by Eq. (8):

where mp and mr are mass of the moving platform and 
the robot respectively; Pp and Pr are the COM position 
vectors of the moving platform and the robot respec-
tively; g is the gravity acceleration vector; er, ep, ey are 
arrays and can be calculated by

(5)Cs(x) = |B(x)B(x0)| > 0,

(6)Cv(x, ẋ) = Żmax − abs
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> 0,
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where R2(θp) and R3(θr) are rotation matrixes around 
y axis and z axis with θp and θr respectively. In order to 
reduce motor power needed by the training platform, 
assistant supporting mechanism that bears gravity of the 
moving platform and the robot is installed on the moving 
platform. So the fourth element of Q can be changed into 
0.

3.2 � Stability‑training Evaluation Indexes
The valid workspace volume of a mechanism is a gen-
eral performance evaluation. It can only reflect part of 
the stability-training ability of the 4-PSS/PS mechanism. 
So regarding to the training ability of every configura-
tion, two evaluation indexes, which consider the training 
intensity within the workspace, will be proposed in dif-
ferent aspects here and compared in the next section.

The 4-PSS/PS mechanism simulates disturbances in 
real environment by random motions. The trained robots 
adjust their movements to against these disturbances. So 
the ability of exerting disturbances can evaluate the train-
ing ability, which can be calculated in three aspects:

(1)	 Intensity of the inertial force disturbance on robots’ 
COM, which is formed by the velocity varying 
motion of the platform. It can be evaluated by aver-
age norm of robots’ COM critical acceleration and 
denoted by na(x).

(2)	 Lasting time of the mentioned inertial force distur-
bance. It can be evaluated by average norm of the 
moving platform’s critical velocity and denoted by 
ns(x).

(3)	 Inclination disturbance of the moving platform, 
which can be evaluated by average norm of the 
moving platform’s inclination angle vector and 
denoted by nt(x).

na(x), ns(x) are respectively calculated by normalized 
numerical integration in the robot COM acceleration 
space and the velocity space of the moving platform. 
Along with nt(x), they have the following formulae as

(9)
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where cv1, cv2, cv3, cv4, ca1, ca2, ca3, ct1, ct2 are normaliza-
tion factors of θ̇r, θ̇p, θ̇y, ż, ax, ay, az, θp, θy respectively. 
These normalization factors are reciprocals of motion 
performance requirements to the training platform, 
which will be given in the next section in details. αi, βj, γk 
are super-spherical coordinate variables and αi = 2πi/N, 
βj = πj/N − π/2, γk = πk/N − π/2 (i, j, k = 1, 2,…, N), in 
which N is the discrete point number. In the direction 
determined by αi, βj in the robot COM acceleration space, 
amax is the acceleration vector with the max norm under 
the acceleration constraint that Ca(x, ap, amax) > 0. With a 
variable rmax determined by the dichotomy method, amax 
can be written as

Similarly, ẋmax is the max-normed velocity vector 
under the speed constraint (Cv(x, ẋmax) > 0) in the direc-
tion fixed by αi, βj, γk in platform’s velocity space. Also, 
it is solved by the dichotomy method and has following 
form of

Because robot balancing movement tends to keep the 
system dynamics states unchanged or changing slowly, 
the inertial force of the robot is always declined. As a 
stricter assumption, the moving platform and the robot 
can be assumed to be fixed together when solving the 
amax by the constraint (7). So ap can be calculated by

where ω is angle velocity vector of the moving platform, 
and can be calculated by

Based on Eqs. (9)–(11), we use the following index I1(x) 
to evaluate the training ability of configuration x.

By numerical integration in the non-singular work-
space, object function E1 can be given as

(11)nt(x) =
1√
2

∥

∥

∥diag
(

[

0 ct1 ct2 0
]T
)

x
∥

∥

∥
,

(12)
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x,αi,βj
)
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]T
.
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sin βj cos γk
sin γk


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.

(14)
ap = amax + ω̇ ×

(

Pp − Pr

)

+ ω ×
[

ω ×
(

Pp − Pr

)]

,

(15)ω =
[

eTr eTp eTy

]

[

θ̇r θ̇p θ̇y
]T
.

I1(x) = na(x)+ ns(x)+ nt(x).

where xmin and xmax are the lower bound and the upper 
bound of x respectively, which limit the maximum work-
space in the optimization computation.

Different from the E1, another object function E2 is pro-
posed here, which integrates velocity, acceleration and 
inclination of the moving platform by the disturbance 
Lagrange function Ld. Ld is defined as

where vr is velocity of the robot’s COM when assum-
ing the robot is fixed with the moving platform, h is the 
distance between the robot’s COM and the moving plat-
form, α is inclination angle of the moving platform. vr 
and α can be calculated respectively by

Derivative function of Ld reflects changing speed of the 
system dynamic states under disturbances. So the evalua-
tion index I2(x) is defined as

And the object function E2 is defined as

3.3 � Mathematical Model of the MPO Problem
Because size of the moving platform can be determined 
by the trained robots’ sizes, L3 and L4 among the mech-
anism parameters can be predetermined. L0, L1, L2 are 
regarded as the designation variables. Integrating the 
given constraint conditions and the object functions, 
the following optimization model can be given as

where E can be chosen to be E1 or E2; L0min, L1min, L2min, 
L0max, L1max, L2max are the minimum values and the maxi-
mum values of the designation variables respectively.

(16)E1 =
∑

xmin≤x≤xmax

I1(x),

(17)Ld =
1

2
mrv

T
r vr −mr

∥

∥g
∥

∥h cosα,

(18)vr = ω ×
(

Pr −
[

0 0 z
]T
)

+
[

0 0 ż
]T
,

(19)α = cos−1
(

cos θp cos θy
)

.

I2(x) = max
(

|dLd(x)
/

dt|
)

.

(20)E2 =
∑

xmin≤x≤xmax

I2(x).

(21)

max
L0,L1,L2

E,

s.t., xmin ≤ x ≤ xmax, L0min ≤ L0 ≤ L0max ,
L1min ≤ L1 ≤ L1max, L2min ≤ L2 ≤ L2max,
Cs(x) > 0, Cv(x, ẋ) > 0, Ca

(

x,ap,ar
)

> 0,
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4 � Case Study Based on the PSO Algorithm
The kinematics calculation, the dynamics calculation and 
integrations in the workspace involved in the calculation 
of E1 and E2 will lead to strong nonlinearity. So there may 
be multiple peaks for the proposed object functions. The 
gradient based algorithms, such as the climbing method 
and the Lagrange multiplier method, can only converge 
to the local optimal solutions in this situation. Compared 
with other global searching algorithms (the genetic algo-
rithm, the simulated annealing algorithm, etc.), the PSO 
algorithm [33] can speed up the convergence process by 
using both the “individual experience” and the “global 
experience”. And tuning of the PSO algorithm is much 
simpler than the model approximation algorithms (arti-
ficial neural network, etc.). So the PSO is used here to 
solve the MPO model.

4.1 � Performance Requirement Analysis of the 4‑PSS/PS 
Mechanism Regarding to Stability‑training

The 4-PSS/PS mechanism is the parallel mechanism part 
of the training platform [15, 16], which should has the 
ability to make the trained robots unstable. So inclination 
of the moving platform should have the ability to over-
turn the trained robots in the two horizontal rotation 
DOFs, and should have a certain motion range in the rest 

DOFs to provide sufficient room for achieving the speed 
and acceleration required by the stability training.

Parameters of five legged robots (shown in Table 1) are 
referenced here to determine the performance require-
ments for the 4-PSS/PS mechanism. Among them, the 
GoRoBoT-III is a 70-DOF humanoid robot developed by 
the authors’ laboratory in 2012. It has highly integrated 
humanoid head, toe joints for humanoid walking, arms 
and hands for intense gripping. The critical inclina-
tion angles are calculated based on parameters of these 
robots. Calculation results and the robots’ parameters 
are shown in Table  1. The five robots considered here 
are representative in aspects of mass, size, number and 
configuration of DOFs, motion capability, so the per-
formance requirements determined for the 4-PSS/PS 
mechanism are general performance requirements of the 
stability-training process for legged robots.

Based on the max step length and the robot mass in 
the Table 1, the minimum size of the moving platform is 
determined to be 2.5 m × 1.5 m and rated load of the plat-
form is determined to be 110 kg, so that all the robots in 
Table 1 can be trained on the platform designed and can 
have a certain moving space (four steps forward walking 
and 180° turning). Based on the critical overturning angle 
data in Table 1, required motion range and speed range 

Table 1  Parameters and the critical overturning angle of the 5 legged robots

1. The COM (center of mass) height h of the biped robot is assumed to be 60% of the robot height. Because the quadruped robots are usually loaded weights on their 
torsos, h of the quadruped robot is assumed to be 150% of the robot height

2. The standing support surface size lX × lY is measured from the minimum circumscribed rectangle of the robot’s support polygon when the robot is in its standing 
posture

3. Parameters marked by ‘*’ is estimated in proportion of the robot height by the opened image or video data of the robot

4. The max step length lS of the robot is estimated in proportion of the robot leg length by the opened image or video data of the robot; lS of the quadruped robot is 
estimated for the trot gait

Robot name DOF 
number 
nDOF

Mass mr (kg) Height hr (mm) Standing 
support surface 
size lX × lY 
(mm × mm)

Max step 
length lS 
(mm)

The COM 
height h 
(mm)

Critical 
overturning 
angle 
in the sagittal 
plane θS (°)

Critical 
overturning angle 
in the lateral 
plane θL (°)

HRP-2P [34] 30 54.1 1600 185 × 320* 400 960 5.5 9.5

ASIMO [35] 34 43 1200 220 × 320* 370 720 8.7 12.5

GoRoBoT-III 70 90 1580 200 × 250 380 950 6.0 7.5

TITAN-XIII [36] 12 5.2 300 420 × 420 200 450 25.0 25.0

BigDog [37] 20 109 1000 1100 × 300 300 1500 20 5.7

Table 2  Required range of the position and orientation variables and their speed

Symbol of the position and orientation parameters The required range The required speed range

Roll angle θr (°) [− 15, 15] [− 5, 5] (°)/s

Pitch angle θp (°) [− 28, 28] [− 5, 5] (°)/s

Yaw angle θy (°) [− 28, 28] [− 5, 5] (°)/s

Translation distance z (mm) [0, 300] [− 50, 50] mm/s
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of the four position and orientation variables of the mov-
ing platform are shown in Table 2.

Statistical values of short time accelerations often 
borne by human are referenced to determine the accel-
eration requirements of the moving platform. For exam-
ples, acceleration of an airplane takeoff is about 0.5g 
(gravity acceleration value of the earth); elevator’s maxi-
mum acceleration of normal working is about 0.3g; sud-
den braking acceleration of a bus running at 112.7 km/h 
is approximately 0.4g [38]. So the critical acceleration 
value of human to lose stability is assumed to be 0.4g, 
which can also be used as the maximum acceleration 
value required for the stability training. In the continu-
ous working statue, the motion platform is required to 
make the robot’s COM to achieve the 0.4g acceleration in 
any direction. Also, capability of short time overloading 
is required for some disturbance with larger acceleration 
but shorter acting time, so that the platform can simulate 
the real environments.

4.2 � Optimization Calculation for the 4‑PSS/PS Mechanism 
Using the PSO Algorithm

Optimization program is coded in the Matlab software 
and is run in a personal computer with the 2.99 GHz 
Pentium Dual-Core E5700 CPU. For the 4-PSS/PS par-
allel mechanism, particles of the PSO algorithm are 
defined to be: pi = [L0,i, L1,i, L2,i]T (i is an index of parti-
cles). After multiple tunings, the particle number is cho-
sen to be 15, which makes the algorithm prefer to get the 
global optimal solution within reasonable time consump-
tion. And in order to enhance the ability of jumping out 

from local solutions, bigger study ratio and inertial fac-
tor are used, which are respectively set to be 1 and 0.85. 
The PSO algorithm will be terminated after the iteration 
number nI achieving the max tolerant, which is set to be 
400 (determined by multiple tunings). For the moving 
platform of 2500 mm × 1500 mm, values of other param-
eters involved in the optimization calculation are shown 
in Table 3.

Choosing the object function to be E1 and E2 sepa-
rately, the MPO model is solved plenty times. They all get 
the same optimal solution before nI achieving the max 
tolerant, among which E1 and E2 curves of three solv-
ing processes are shown in Figure  3(a) and Figure  3(b) 
respectively.

The PSO algorithm is convergent in [2500.0000, 
1954.6664, 1000.0000]T mm and [2500.0000, 2040.2948, 
1000.0000]T mm respectively for E1 and E2 under the 
residuals tolerance of 10−4  mm. They are rounded into 
[2500, 1955, 1000]T mm and [2500, 2040, 1000]T mm 
respectively for actual mechanism designation. The 
maximum values of the E1 and E2 are 5.9352 × 107 and 
20.104  kW respectively. The calculation times are 4.5  h 
and 11.8 h, respectively.

4.3 � Workspace Analysis for the Optimization Results
The workspaces corresponding to the two mechanism 
parameter sets are analyzed here. Boundaries of theo-
retical workspace are solved for the 4-PSS/PS mechanism 
based on its kinematics model. Also, critical surfaces 
are solved for the singularity constraint, the max speed 
constraint and the acceleration constraint. Then the 

Table 3  Parameter values involved in the optimization calculation

Parameter Value

Maximum boundary of designation variables [L0max, L1max, L2max] (mm) [1000, 3500, 2500]

Minimum boundary of designation variables [L0min, L1min, L2min] (mm) [400, 2500, 1500]

Rotation speed’s normalization factors [cv1, cv2, cv3] (s/rad) [11.46, 11.46, 11.46]

Translation speed’s normalization factors cv4 (s/mm) 0.02

Acceleration’s normalization factors [ca1, ca2, ca3] (s2/m) [0.2251, 0.2251, 0.2251]

Moving range’s normalization factors [ct1, ct2] (/rad) [2.046, 2.046]

Moving platform’s size L3 × L4 (m × m) 2.5 × 1.5

Height of the robot’s COM h (mm) 700

Robot’s mass mr (kg) 90

Moving platform’s mass mp (kg) 20

Active pairs’ max speed Żmax (mm/s) [250, 250, 250, 250]T

Max driving force Fmax (N) [1450, 1450, 1450, 
1450]T

Upper boundary of platform’s rotation angle [θrmax, θpmax, θymax] (°) [15, 29]

Lower boundary of platform’s rotation angle [θrmin, θpmin, θymin] (°) [− 15, − 28, − 28]

Upper boundary of platform’s translation distance zmax (mm) 300

Lower boundary of platform’s translation distance zmin (mm) 0

Discrete point number N 30

Gravity acceleration vector g (m/s2) [0, 0, − 9.8]T
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theoretical workspace boundary and the critical surfaces 
in it are integrated to get the valid workspace boundaries 
corresponding to the two mechanism parameter sets. 
The mechanism parameter set with larger valid work-
space is regarded as the final optimal result.

To display the 4-dimensional workspace of the 4-PSS/
PS mechanism, z value among the position and orien-
tation parameters is fixed, so the subspaces spanned by 
the rest three orientation angles can be displayed in the 
Cartesian coordinate frame. The whole workspace is dis-
played by splicing these subspaces with different z values. 
Because the axis directions of the four active prismatic 
pairs are parallel with the moving direction of the z axis 
translation DOF, the subspaces with different z value 
will be exactly the same with unlimited movement range 
of the active prismatic pairs. In different subspaces, the 

differences of the corresponding joint variables will be 
equal to the difference of the z values. Thus the whole 
4-dimensional workspace of the 4-PSS/PS mechanism 
can be displayed by the 3-dimensional orientation angle 
space without loss of generality when z is set to 0. The 
process of solving the valid workspace is shown in 
Figure 4.

In Figure  4, the theoretical workspace boundary sur-
face and the critical surfaces need to be calculated first. 
Then the valid workspace boundary surface of the 4-PSS/
PS mechanism is the inner envelope surface of these sur-
faces. The initial configuration is chosen to be x0 = [0 0 
0 0]T, and the dichotomy method is used solve intersec-
tion points between the above mentioned surfaces and 
a straight line from the x0. Among them, the theoreti-
cal workspace boundary is identified by whether or not 
inverse kinematics (IK) of the mechanism has real solu-
tions. In each line from x0, the boundary point of the 
valid workspace is the nearest point to x0 among the the-
oretical boundary point and critical point of constraint 
conditions. The boundary surface of the valid workspace 
can be obtained by swapping the workspace.
V and A are velocity space of the moving platform and 

acceleration space of the robot’s COM respectively. Val-
ues of V and A can be determined by the performance 
requirements of the 4-PSS/PS mechanism, and are shown 
as

Figure 5 shows the workspace analysis results when the 
mechanism parameters with unit of mm are L0 = 1000, 
L1 = 2500, L2 = 1955, L3 = 2500, L4 = 1500 (optimiza-
tion result for E1) and L0 = 1000, L1 = 2500, L2 = 2040, 
L3 = 2500, L4 = 1500 (optimization result for E2) respec-
tively. The workspace analysis is conducted in the same 
personal computer with the MPO calculation. The com-
putational time is nearly 1.5 h for each parameter set.

The boundary surfaces and the critical surfaces of the 
constraint conditions shown in Figure  5 are surfaces 
central symmetry with respect to the origin point. It is 
also shown that the theoretical workspace of the 4-PSS/
PS mechanism is segmented into three subspaces by the 
singular surfaces. Determinant of the matrix B(x) keeps 
the same sign in each subspace and changes its sign when 
x crosses the singular surfaces. So the singularity con-
straint condition given in Section 2 by Eq. (5) is equal to 

V =
{

ẋ =
[

θ̇r θ̇p θ̇y ż
]T
∣

∣

∣

−5(◦)
/

s ≤ θ̇r, θ̇p, θ̇y ≤ 5(◦)
/

s,
−50 mm/s ≤ z ≤ 50 mm/s

}

.

A = {a ∈ R3|(a(≤ 0.4g}.
Figure 3  E1 and E2 curves of three solving processes
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that configuration x is in the same nonsingular subspace 
with x0. By integrating the surfaces in Figure  5, bound-
ary surfaces of the valid workspaces corresponding to the 
MPO results of E1 and E2 are obtained and are shown in 
Figure 6.

In order to give a clear view, θy > 0 parts of the 
valid workspace boundaries are hidden in Figure  6. 
In these valid workspaces, moving range of the plat-
form can reach: − 29.7° ≤ θr ≤ 29.7°, − 31.5° ≤ θp ≤ 31.5°, 
− 56.7° ≤ θy ≤ 56.7°. This moving range is bigger than the 
required moving range of the moving platform shown in 
Table 2. So, after the MPO process, the designed training 
platform can be used to train all the legged robots shown 
in Table  1. It is also revealed that differences between 
those two valid workspaces are quit small and the opti-
mization result of the object function E2 is better than 
the one of E1 in aspect of the valid workspace volume. 
So the final optimal mechanism parameters are cho-
sen to be L0 = 1000  mm, L1 = 2500  mm, L2 = 2040  mm, 
L3 = 2500 mm, L4 = 1500 mm.

But the computational time cost of the object function 
E2 is much higher than E1. So in a MPO with a higher 
dimensional parameter set (when moving platform size is 
not determined or the serial DOF is also considered in 

the MPO process), E1 can be used as an approximation 
of E2.

5 � Conclusions
(1)	 Two object functions are proposed using the nor-

malized motion indexes and the disturbance 
Lagrange function respectively. Both of these object 
functions consider the training ability evalua-
tion and the workspace size simultaneously, which 
solves the existing MPO methods’ problem of only 
focusing on the singularity issue or workspace size 
of parallel mechanisms.

(2)	 The MPO model is solved by the PSO algorithm. 
It is revealed that the valid workspace correspond-
ing to each evaluation’s result is quite similar. So the 
two proposed evaluations can reflect the stability-
training ability of the platform consistently.

(3)	 Based on the proposed constraint conditions (the 
singularity constraint, the max speed constraint, 
the acceleration constraint), the valid workspaces 
of the MPO results are analyzed. Moving range 
of the platform can reach: − 29.7° ≤ θr ≤ 29.7°, 
− 31.5° ≤ θp ≤ 31.5°, − 56.7° ≤ θy ≤ 56.7°. This mov-
ing range satisfies training requirement of the five 
typical legged robots. Also, the proposed three 

xin=[0,0,0,0]T, xout=[cosθ2cosθ1, cosθ2sinθ1, sinθ2, 0]T

x=xout, IK has real solutions

xout=2xout
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IK has real solutions
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θ1=θ1+Δθ2
θ2 = −π/2
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Output the 
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Y

N
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x3=xin
xin=[0,0,0,0]T, xout=x1
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Dichotomy subroutine
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Enter the 
Subroutine

Return to 
main program

Dichotomy subroutine:

Figure 4  Process of the valid workspace boundary extracting algorithm
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constraint conditions will be used to control the 
designed training platform by determining safety 
boundaries of its actual workspace.
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