
Hu et al. Chin. J. Mech. Eng.  (2018) 31:87  
https://doi.org/10.1186/s10033-018-0288-4

ORIGINAL ARTICLE

Thermal Error Compensation 
of the Wear‑Depth Real‑Time Detecting 
of Self‑Lubricating Spherical Plain Bearings
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Abstract 

The spherical plain bearing test bench is a necessary detecting equipment in the research process of self-lubricating 
spherical plain bearings. The varying environmental temperatures cause the thermal deformation of the wear-depth 
detecting system of bearing test benches and then affect the accuracy of the wear-depth detecting data. However, 
few researches about the spherical plain bearing test benches can be found with the implementation of the detect‑
ing error compensation. Based on the self-made modular spherical plain bearing test bench, two main causes of ther‑
mal errors, the friction heat of bearings and the environmental temperature variation, are analysed. The thermal errors 
caused by the friction heat of bearings are calculated, and the thermal deformation of the wear-depth detecting sys‑
tem caused by the varying environmental temperatures is detected. In view of the above results, the environmental 
temperature variation is the main cause of the two error factors. When the environmental temperatures rise is 10.3 °C, 
the thermal deformation is approximately 0.01 mm. In addition, the comprehensive compensating model of the 
thermal error of the wear-depth detecting system is built by multiple linear regression (MLR) and time series analysis. 
Compared with the detecting data of the thermal errors, the comprehensive compensating model has higher fitting 
precision, and the maximum residual is only 1 μm. A comprehensive compensating model of the thermal error of the 
wear-depth detecting system is proposed, which provides a theoretical basis for the improvement of the real-time 
wear-depth detecting precision of the spherical plain bearing test bench.
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1  Introduction
The self-lubricating spherical plain bearings are special 
journal bearings which inlay or bond the self-lubricating 
solid materials between the inner and outer races. These 
bearings have some special characteristics, such as main-
tenance-free, compact structure, and low coefficient of 
friction. Therefore, the self-lubricating spherical plain 
bearings are widely applied to aviation and aerospace 
fields [1].

In the research process of self-lubricating spheri-
cal plain bearings, the bearing performance and its life 

evaluation are fundamental because they provide guaran-
tees for analyzing the tribological mechanism, determine 
the rated dynamic or static loading and forecast the bear-
ing life. And the spherical plain bearing test bench is a 
necessary detecting equipment in the performance and 
life evaluation. Meanwhile, three performance param-
eters of spherical plain bearings (the wear depth, the 
friction torque and the friction temperature) need to be 
detected in real time. Particularly, the wear depth is the 
most important parameter for the tribological properties 
and the life of self-lubricating spherical plain bearings.

However, due to various error factors, such as tem-
perature variations, loading changes, electromagnetic 
interference, the wear of assistant rolling bearings, 
etc. which affect the real-time wear-depth detecting 
precision of the spherical plain bearing test bench, 
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the evaluating accuracy of the tribological property 
of spherical plain bearings is reduced. Among above 
factors, the thermal errors caused by the temperature 
variation are the main factors [2]. How to reduce the 
thermal errors of the bearing test bench is important 
for the evaluation of self-lubricating spherical plain 
bearings.

At present, the thermal error compensation has 
been intensively studied in precise CNC machine [3], 
yet few researches in the spherical plain bearing test 
benches. The existing researches only build the ther-
mal error models, and do not compensate effectively 
the thermal errors. Zhou [4] built the thermal error 
compensation model of the spherical plain bearing 
test bench under the high temperature operating con-
dition, but did not verify the fitting precision and the 
applicability of this model, nor compensated the ther-
mal errors. Hu et  al. [5] made a comprehensive com-
pensating model for the wear-depth detecting system 
of the spherical plain bearing test bench based on the 
multi-body kinematics and verified its accuracy by 
FEM, but didn’t compensate the thermal errors, either. 
Li et  al. [6], designed a wear-depth detecting module 
with a mechanical compensating device, which can 
online compensate the thermal errors caused by vary-
ing environmental temperatures, but still not veri-
fied the compensation efficiency of this method in 
the experiment. Relevant researches of CNC machine 
can be used on thermal compensating method, bring-
ing in software-based compensating error method. In 
other words, on the basis of the thermal deformation 
analysis, the mathematical compensating model of the 
thermal errors is built, and then the thermal defor-
mation is predicted in the control system. At last, the 
thermal errors are compensated in real time [7, 8]. In 
this process, many mathematical methods are used for 
the thermal error modeling, such as, regression analy-
sis method [9], FEM, neural networks [10], time series 
analysis [11], screw theory, fuzzy theory [12], grey 
theory [13], support vector machine [14], genetic algo-
rithm [15], ant colony algorithm [16].

Based on the self-made modular spherical plain bear-
ing test bench, this paper calculates the thermal errors 
caused by the friction heat of the spherical plain bear-
ing and the assistant rolling bearing, and detects the 
thermal deformation of the detecting system caused 
by the environmental temperature variation. Accord-
ing to the above experimental data, the comprehensive 
compensating model of the thermal error of the wear-
depth detecting system is built by MLR and time series 
analysis, and the applicability of the comprehensive 
compensating model is verified in the experiment.

2 � Wear‑Depth Detecting Principle of Spherical 
Plain Bearings

The self-made test bench of self-lubricating spherical 
plain bearings is composed of six modules, namely, the 
transmission module, the hydraulic loading  module, 
the bearing fixture module, the wear-depth detecting 
module, the environmental simulation module and 
the control module [17]. The schematic diagram and 
the photograph of the bearing test bench are shown in 
Figure 1, and the schematic diagram of the wear-depth 
detecting system (the combination of the bearing fix-
ture module and the wear depth detecting module) is 
shown in Figure  2. In the bearing fixture module, the 
spherical plain bearing is put into the T-type plate, and 
the testing spindle passes through the bearing inner 
ring. In wear-depth detecting module, the top of the 
measuring sleeve is fixed on the base of the test bench, 
and the contacting clamp of the displacement sensor 
is fastened on the bottom of the measuring sleeve, so 

Figure 1  Schematic diagram and the photograph of the modular 
self-lubricating spherical plain bearing test bench [17]. 1. Transmission 
module, 2. Hydraulic loading module, 3. Bearing fixture module, 4. 
Wear-depth detecting module, 5. Environmental simulation module, 
6. Control module
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that the upper end of the slender pole inserted into the 
measuring sleeve can touch the bottom of the T-type 
plate by means of the spring force. The displacement 
sensor (the measuring range is 10  mm, the outstand-
ing linearity is ± 0.075%, and the temperature range is 
from − 30  °C to 100  °C) is fastened on the bottom of 
the slender pole, and the measuring head of the sensor 
is pressed onto the contacting clamp of the displace-
ment sensor.

In the wear experiment, the wear of the spherical 
plain bearing leads to the down-moving of the T-type 
plate along the Z axis, and the downward displace-
ment is the wear depth of the spherical plain bearing. 
Meanwhile, the slender pole moves down with the 
T-type plate along the Z axis, the displacement sensor, 
fixed on the slender pole, declines along the Z axis and 
gradually distances the contacting clamp of the dis-
placement sensor (there is a pre-compressing quantity 
between the displacement sensor and the contacting 
clamp of the displacement sensor), and at the moment 
the displacement sensor detects the wear depth of the 
spherical plain bearing.

3 � Thermal Error Verification of the Wear‑Depth 
Detecting System

In the wear experiment of spherical plain bearings, there 
are two main reasons for thermal errors, including the 
thermal deformation of the wear-depth detecting sys-
tem caused by the varying environmental temperatures 
and the thermal deformation caused by the friction heat 
of bearings (the spherical plain bearing and the assistant 
rolling bearing) in the bearing fixture module. In the fol-
lowing, the thermal deformation caused by the friction 
heat is calculated, and the thermal deformation, caused 
by the environmental temperature variation, is detected 
in the experiment.

3.1 � Effect of the Friction Heat of Bearings
On the basis of the low-speed oscillating and heavy-
loading operating condition (the testing load is 250 MPa, 
the oscillating frequency is 0.2 Hz, and the angle of oscil-
lation is ±  25°), the thermal deformation of the friction 
heat of the spherical plain bearing and the temperature 
rise of the friction heat of the assistant rolling bearing are 
calculated.

3.1.1 � Effect of the Test Spherical Plain Bearing
As shown in Figure 2, in the wear experiment process, 
the testing spindle drives the inner race of the spheri-
cal plain bearing to oscillate, and the test loading cor-
respondingly act on the top of the bearing. Then the 
top of the spherical plain bearing generate friction 
heat, and then the friction heat of the spherical plain 
bearing is mainly conducted into the T-type plate by 

Figure 2  Schematic diagram of the wear-depth detecting system. 
1. T-type plate, 2.Testing spindle, 3. Assistant cylindrical roller bearing, 
4.Slender pole, 5.Measuring sleeve, 6. Detecting frame, 7. Fixing 
clamp of displacement sensor, 8. Spring, 9. Displacement sensor,10. 
Contacting clamp of displacement sensor, 11. Spherical plain bearing

Figure 3  Temperature variation curve of the bearing outer race



Page 4 of 13Hu et al. Chin. J. Mech. Eng.  (2018) 31:87 

thermal conduction and resulted in the thermal expan-
sion of the T-type plate. In  the  previous  study, the 
self-lubricating spherical plain bearing reciprocally 
oscillated 32000 times under the operating condition of 
low-speed oscillating and heavy-loading, the tempera-
ture of the bearing outer race rose about 7 °C [18]. The 
temperature variation curve of the bearing outer race is 
shown in Figure 3.

As shown in the Figure 3, the temperature of the outer 
race of the spherical plain bearing gradually rises from 
the room temperature 22 °C to 29 °C during the experi-
ment. Moreover, the bearing fixture module is in thermal 
equilibrium, and the temperature of the outer race stays 
around 29 °C.

At this stage, the thermal deformation of the T-type 
plate along the Z axis was calculated by FEM after ther-
mal equilibrium of the bearing fixture module. Firstly, the 
three-dimensional model of the T-type plate was built 
with Solidworks, and then was simulated with ANSYS. 
The structural element Solid 186 was adopted to calcu-
late the thermal deformation. The required parameters of 
this simulation are shown in Table 1.

The schematic diagrams of the thermal deformation is 
shown in Figure 4. When the bearing fixture module is in 
thermal equilibrium, the maximum thermal deformation 
of the T-type plate bottom along the Z axis is 0.074 μm.

3.1.2 � Effect of the Assistant Rolling Bearing
As shown in Figure  2, along with the oscillation of the 
spherical plain bearing, the assistant cylindrical rolling 
bearing also oscillates in the bearing fixture module, so 
the assistant rolling bearing generates friction heat under 
the action of the experimental loading. The heat quantity 
can be computed by the following equation [19]:

where Q is the heat quantity, n is the rotating speed of 
the bearing, and M is the total frictional torque of the 
bearing.

The experimental results showed that the rotating 
speed of the bearing was 12 r/min and the total frictional 
torque was 50 Nm [18]. What’s more, the friction heat 
of the rolling bearings were mainly conducted into the 
bearing fixture (the material of the bearing fixture was 
45#, the mass of the bearing fixture was 8.2 kg, and the 
specific heat capacity was 460  J/(kg·°C) at normal tem-
perature) by thermal conduction. So through the follow-
ing thermo dynamical formula, the temperature rise was 
0.017 °C.

where �t is the temperature rising, C is the specific heat 
capacity, and m is the mass of the bearing fixture.

From the above calculation, the self-lubricating spheri-
cal plain bearing oscillated 32000 times under the operat-
ing condition of low-speed oscillating and heavy-loading, 
the experiment indicated that the temperature of the 
outer race rose about 7  °C, and the maximum thermal 
deformation of the T-type plate bottom along the Z axis 
was 0.074  μm. The temperature rise of the bearing fix-
ture, caused by the friction heat of the cylindrical rolling 
bearing, was 0.017 °C.

3.2 � Effect of the Environmental Temperature Variation
In the experiment, the environmental temperature vari-
ation was influenced by the temperature changes in the 
whole day and the heat dissipation of the embedded 
hydraulic station. The following experiment was designed 
to detect the thermal errors of the wear-depth detecting 
system.

(1)Q = 1.047× 10
−4 nM,

(2)�t =
Q

Cm
,

Table 1  Required parameters of  the  thermal deformation 
simulation of the T-type plate

Parameters Value

Coefficient of thermal conduction λ (W/(m·K)) 50.2

Coefficient of thermal expansion α (μm/K) 11.59

Air convection coefficient h (W/(m2·K)) 6

Environmental temperature (°C) 22

Equilibrium temperature of the outer ring (°C) 29

Figure 4  Schematic diagrams of the thermal deformation 
distribution of the T-type plate
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As shown in Figure 1 and Figure 2, the bearing fixture 
assembled the self-lubricating spherical plain bearing is 
placed on the base of the test bench, so that the top of 
the slender pole tightly touches the bottom of the T-type 
plate under the spring force. Then the displacement sen-
sor is adjusted and fixed, so that there is a pre-pressing 
quantity between the displacement sensor and the con-
tacting clamp of the displacement sensor. Without the 
start-up of the transmission module, there was no rela-
tive movement between the inner and outer races of the 
spherical plain bearing. And when opening embedded 
hydraulic station, there was no applied load to the spheri-
cal plain bearing.

Eight temperature sensors (their sequence numbers 
were 1‒8), collecting the varying temperature of the 
wear-depth detecting system, were pasted on different 
locations. The distribution diagram and the photographs 
of these eight temperature sensors on the wear-depth 
detecting system are shown in Figure 5.

At the same time, a temperature sensor (No. 9) collect-
ing the room temperature was suspended near the test 
bench. Another temperature sensor (No. 10), collecting 
the varying temperature of the hydraulic system, was 
adhered to the base of the embedded hydraulic station. 
In conclusion, there were ten temperature sensors on the 
spherical plain bearing test bench. During the experi-
ment, the corresponding temperature changing curves 
of the ten temperature sensors are shown in Figure 6, the 
thermal deformation curve of the wear-depth detecting 
system along the Z axis is shown in Figure 7.

As shown in Figure 6 and Figure 7, the total time of the 
experiment is 525 minute, and the temperature of the ten 
temperature sensors gradually rises. The temperature 
variation of the detecting points numbered (1‒9) are sim-
ilar, but the temperature rise of the detecting point (10) 
on the base of the embedded hydraulic station is higher 
than the above nine detecting points. The initial indicat-
ing value of the displacement sensor is 4.441, and the 
final value is 4.431. The thermal deformation of the wear-
depth detecting system along the Z axis is approximately 
0.01 mm when the room temperature rises 10.3  °C, and 
the show value of the displacement sensor gradually 
decreases with the rising of the temperature.

4 � Thermal Errors Modeling
In view of the above experiment and simulation, the envi-
ronmental temperature variation is main cause in the two 
error factors. In order to improve the wear-depth detect-
ing precision, the software compensating method is used 
to offset the thermal errors of the detecting system. In the 
following, the compensation model of the thermal errors 
of the wear-depth detecting system is built.

4.1 � Selection of the Optimal Temperature Detecting Points
In the above ten detecting points, not every point has 
the same influence on the thermal deformation of the 
wear-depth detecting system. They may have certain cor-
relations among them, in other words, there is coupling 
among the ten detecting points. If the mathematical 

Figure 5  Schematic diagram and the photographs of the 
temperature-sensor distributing position. 1. Base of the bearing 
fixture; 2.Heel block; 3. Spherical plain bearing; 4. T-type plate; 5. 
Platform of the test bench; 6. Measuring sleeve; 7. Detecting frame; 8. 
Slender pole
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model is directly bulit based on all these detecting-point 
data, the complexity of the modeling process will be 
increased while the fitting precision of the model will 
be reduced. Therefore, in order to get the optimal 

temperature detecting points for the compensation 
model of the thermal errors, the ten detecting points on 
the spherical plain bearing test bench were selected.

In order to estimate the respective influence of the tem-
perature variation of the ten detecting points on the ther-
mal deformation of the detecting system, the correlation 
coefficients were calculated between the thermal defor-
mation and the temperature changing values of each ten 
sets. By comparing the correlation coefficients, the most 
irrelevant detecting point was excluded. Then MATLAB 
was used to calculate the above correlation coefficients, 
and the results are listed in Table 2.

From Table  2, the correlation between the tempera-
ture variation of the hydraulic station base and the 
thermal errors is the smallest one, and the value is only 
0.537. Therefore, the temperature changing values of the 
hydraulic station were excluded in building the thermal 
error model.

Based on the above analysis, the detecting point of the 
hydraulic system was excluded. Next, the correlation 
of the remaining nine detecting points was needed to 
analyze, and the coupling of the remaining nine detect-
ing points was needed to judge. In this paper, the fuzzy 
clustering method was used to analyze the mutual cor-
relation of the remaining detecting points by MATLAB, 
and the remaining nine detecting points were classified 
on coupling. The results are listed in Table 3.

Figure 6  Temperature changing curves of the ten detecting points

Figure 7  Thermal deformation curve of the wear-depth detecting 
system along the Z axis

Table 2  Correlation coefficients between  the  thermal 
deformation and the temperature changing values

Detecting point name Correlation coefficient

1-Base of the bearing fixture γ1→0.922

2-Heel block γ2→0.871

3-Spherical plain bearing γ3→0.841

4-T-type plate γ4→0.900

5-Platform of the test bench γ5→0.896

6-Measuring sleeve γ6→0.927

7-Detecting frame γ7→0.940

8-Slender pole γ8→0.936

9-Environmental temperature γ9→0.943 (maximum)

10-Base of the hydraulic station γ10→0.537 (minimum)

Table 3  Classification result of  the  fuzzy clustering 
method for the remaining nine detecting points

Category code Number 
of detecting 
points

First category 1, 3

Second category 6, 8

Third category 2, 4, 5

Fourth category 7, 9
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In Table  3, the nine detecting points are divided into 
four categories. According to the result of the correlation 
coefficients between the thermal deformation and the 
temperature changing values of each ten sets, the influ-
ence of the temperature rise on the base of the bearing 
fixture was greater than that on the spherical plain bear-
ing in the first category, namely, γ1 > γ3 , and the same 
with the second sort-γ8 > γ6 , the third sort-γ4 > γ5 > γ2 , 
and the fourth sort-γ9 > γ7 . Therefore, the greatest influ-
encing detecting points were selected in the above four 
categories: in the first category-(1) the base of the bear-
ing fixture, in the second one-(8) the slender pole, in the 
third-(4) the T-type plate, and in the fourth-(9) the envi-
ronmental temperature.

4.2 � Modeling Process of the Thermal Error Compensation
In selecting the four optimal detecting points, MLR and 
time series analysis were adopted to build the compre-
hensive compensating model of the wear-depth detecting 
system in the following.

4.2.1 � Multiple Linear Regression Modeling
MATLAB was used to fit the multiple linear model of the 
four optimal detecting points and the thermal deforma-
tion of the detecting system, as follows:

where yM(t) is the fitting values of the multiple linear 
model, �T1(t) is the temperature variation of the base of 
the bearing fixture, �T4(t) is the temperature variation of 
the T-type plate, �T8(t) is the temperature variation of 
the slender pole, and �T9(t) is the temperature variation 
of the environment.

Hence, the curves of the multi-element fitting thermal 
errors and the detecting thermal errors are shown in Fig-
ure 8, the residual curve of the multi-element fitting errors 
and the detecting thermal errors is shown in Figure 9.

As shown in Figure  8 and Figure  9, the curve simi-
larity between the multi-element fitting thermal errors 
and the detecting thermal errors is low, and the maxi-
mum residual error between the multi-element fitting 
value and the real detecting value is approximately 
2 μm.

On the basis of the above fitting results, there are 
residual errors δ(t) between the multi-element fitting 
value yM(t) and the real detecting value yD(t) , and the 
relationship among them is shown below:

(3)

yM(t) = 4.456− 0.0015�T1(t)+ 0.0008�T4(t)

+ 0.0006�T8(t)− 0.0012�T9(t),

(4)yD(t) = yM(t)+ δ(t),

where yD(t) is the real detecting value, and δ(t) is the 
residual errors of the multi-element fitting value. From 
Eqs. (3) and (4), yD(t) can be gotten:

In order to further improve the fitting precision of the 
thermal error model of the wear-depth detecting sys-
tem, on the basis of multi-element fitting, time series 
analysis method was introduced for the residual errors 
δ(t) , which improved the curve similarity between the 
multi-element fitting thermal errors and the detected 
thermal errors. The time series analysis, processing the 
dynamic data, is a parameterized analytical method, 
and it could fit the applicable time series model on the 
basis of the random data arranged according to the 
time sequence. The above model was used to analyze 
the data system to learn the inner structure and the 
dynamic property of the random data. Thus the data 
trend could be predict with the existing data [20].

The data stationarity is the basis of time series anal-
ysis, so the stationarity of the multi-element fitting 
residual errors δ(t) should be verified first.

The following is the stationarity verifying of the 
multi-element fitting residual errors δ(t).  The method 
used in following formulas is inverse number [20]:

(5)

yD(t) = 4.456− 0.0015�T1(t)+ 0.0008�T4(t)

+ 0.0006�T8(t)− 0.0012�T9(t)+ δ(t),

(6)











EA =
1

4
N (N − 1),

DA =
1

72
(2N 3 + 3N 2 − 5N ),

Figure 8  Curves of the multi-element fitting thermal errors and the 
detecting thermal errors
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where A is the inverse number of the residual errors δ(t) , 
and N is the number of values.

In view of the given α = 0.05, if |u| < uα/2 , the multi-
element fitting residual errors δ(t) is stable and vice versa.

In Eqs.  (6) and (7), N  =  27 and A  =  378. So 
u  =  0.1764  <  uα/2 = 1.96 . The multi-element fitting 
residual errors δ(t) is stable.

The normal distribution testing of the multi-element 
fitting residual errors δ(t) is done as follows.

The white noise with the normal distribution charac-
teristics is the premise of the time series model, that is, 
the multi-element fitting residual errors δ(t) should obey 
the normal distribution. The existing function of the nor-
mal distribution test in MATLAB was used to get that 
the multi-element fitting residual errors δ(t) obeyed the 
normal distribution.

4.2.2 � Model Selection of Time Series Analysis
From the above stationarity verifying and normal distri-
bution testing, the multi-element fitting residual errors 

(7)u =
A+ 1

2
− EA

√
DA

,

δ(t) met the conditions of time series analysis. At present, 
there are three common models for time series analy-
sis, namely, autoregression model-AR (p), moving aver-
age model-MA (q) and autoregressive moving average 
model- ARMA(p, q) [21]. At the beginning, a model type 
of the time series modeling need to be determined based 
on the above three common models. Meanwhile, the fea-
tures of the two function values, autocorrelation function 
(ACF) and partial autocorrelation function (PACF), affect 
the selection of the model type. The relationship between 
the features of two function values and the model type 
are shown in Table 4.

The MATLAB was used to calculate autocorrelation 
function (ACF) and partial autocorrelation function 
(PACF) of the multi-element fitting residual errors δ(t) . 
The function values are shown in Figure 10.

As shown in Figure  10, the features of autocorrela-
tion function (ACF) and partial autocorrelation function 
(PACF) of the multi-element fitting residual errors δ(t) are 
both “trail off”. According to Table 4, the model type is the 
autoregressive moving average model-ARMA(p, q).

4.2.3 � Model Order Determination and Fitting
As mentioned above, the model type was selected as 
ARMA(p, q), and then the model order determination, 
namely the number of “p” and “q”, should be determined.

The order determination needed to meet three crite-
ria—the AIC criterion, the FPE criterion and the white 
noise criterion [20]. To start with, the function of time 
series analysis, the function of the AIC criterion and the 
function of the FPE criterion in MATLAB were used to 
primarily determine the model order as ARMA(6, 4). The 
time series fitting residual errors δ(t)′ was then got and 
the corresponding formula was shown as follows:

Figure 9  Residual curve of the multi-element fitting errors and the 
detected errors

Table 4  Selection criterions of the model type [22]

Model type ACF PACF

AR(p) Trail off Cut off

MA(q) Cut off Trail off

ARMA(p, q) Trail off Trail off

(8)

δ(t)′ =0.1821δ(t − 1)′ + 0.7783δ(t − 2)′ − 0.9575δ(t − 3)′−
0.1277δ(t − 4)′ + 0.2992δ(t − 5)′ − 0.4679δ(t − 6)′+
ε(t)− 0.03235ε(t − 1)− 1.781ε(t − 2)+ 0.02422ε(t − 3)+
0.8183ε(t − 4),
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where δ(t)′ is the residual errors of the time series fit-
ting, and ɛ(t) is the unknown and unpredictable residual 
errors.

4.2.4 � Equivalent Long Auto‑regressive Algorithm
In Eq.  (8), the residual errors ɛ(t) were unknown in the 
model ARMA (6, 4), so the time series fitting residual 

ARMA(p, q). And the residual errors ɛ(t)′ of the model 
AR(w) could also replace the unknown residual errors 
ɛ(t) in the model ARMA (6, 4).

In the following, the equivalent long auto-regressive 
algorithm was used to fit model AR(w) for the multi-ele-
ment fitting residual errors δ(t), and the model order w 
was calculated by the below formula [21]:

where w is the order of the model AR(w).
After the model order was determined, the model 

AR(w) of the multi-element fitting residual errors δ(t) 
was fitted with MATLAB:

where ɛ(t)′ is the residual errors of the model AR(w), and 
δ(t)′′ is the fitting values of the model AR(w).

In Eq. (9), N = 27, and then w = 13. So the high-order 
auto-regressive model was AR(13), and the formula of 
the model AR(13) was shown as below:

(9)w = (2 ∼ 5)N 0.3
,

(10)δ(t)′′ =
w
∑

i=1

−Φiδ(t − i)′′ + ε(t)′,

Figure 10  ACF and PACF of the multi-element fitting residual errors

Figure 11  Residual errors ɛ(t)′ curve of the model AR(13)

(11)

δ(t)′′ = − 0.1555δ(t − 1)′′ − 0.8027δ(t − 2)′′ − 0.9294δ(t − 3)′′

− 0.6108δ(t − 4)′′ − 1.122δ(t − 5)′′ − 0.832δ(t − 6)′′

− 0.9551δ(t − 7)′′ − 0.9243δ(t − 8)′′ − 0.5616δ(t − 9)′′

− 0.8522δ(t − 10)′′ − 0.3505δ(t − 11)′′ − 0.5723δ(t − 12)′′

− 0.147δ(t − 13)′′ + ε(t)′,

errors δ(t)′ were not calculated by the linear derivation. 
However, if the model order w was large enough, the 
model AR(w) could approximately substitute the model 

From the above, Eqs. (5) and (11), the residual errors 
ɛ(t)′ of the AR(13) was got. The residual errors ɛ(t)′ 
curve is shown in Figure 11.



Page 10 of 13Hu et al. Chin. J. Mech. Eng.  (2018) 31:87 

The white noise verification of the residual errors ɛ(t)′ 
of the model AR(13).

After calculating the residual errors ɛ(t)′ of the model 
AR(13), the residual errors ɛ(t)′ needed to be verified 
whether they were the white noise. Finally, the test 
function of the white noise in MATLAB was used and 
the residual errors ɛ(t)′ of the model AR(13) were veri-
fied to be the white noise. Thus the residual errors ɛ(t)′ 
of the model AR(13) could replace the residual errors 
ɛ(t) of the model ARMA(6,4).

4.2.5 � Residual Errors δ(t)′ Fitting of Time Series Analysis
Since the residual errors ɛ(t)′ of the model AR(13) 
could replace the residual errors ɛ(t) of the model 
ARMA(6,4), according to Eq. (8), Eq. (12) was got:

So the residual errors δ(t)′ of the time series analysis 
(this was also the residual errors of the comprehen-
sive compensation model) for the thermal errors were 
calculated. The residual errors δ(t)′ curve is shown in 
Figure 12.

The white noise verification of the residual errors δ(t)′of 
time series analysis.

After the residual errors δ(t)′ of time series analysis in 
Eq. (12) were calculated, the residual errors δ(t)′ needed 
to be verified whether they were the white noise. Finally, 
the test function of the white noise in MATLAB was used 
to verify that the residual errors δ(t)′ of the time series 
analysis were the white noise. Thus, combining with the 

(12)

δ(t)′ = 0.1821δ(t − 1)′ + 0.7783δ(t − 2)′ − 0.9575δ(t − 3)′

− 0.1277δ(t − 4)′ + 0.2992δ(t − 5)′ − 0.4679δ(t − 6)′

+ ε(t)′ − 0.03235ε(t − 1)′ − 1.781ε(t − 2)′

+ 0.02422ε(t − 3)′ + 0.8183ε(t − 4)′,

residual errors δ(t)′ of the time series analysis and the fit-
ting value of the multiple linear model yM(t), the compre-
hensive compensation model yC(t) of the thermal errors 
of the wear-depth detecting system was obtained.

4.2.6 � Comprehensive Compensation Model of the Thermal 
Errors

Combining with the multi-element fitting value yM(t), 
as shown in Eq.  (3), the comprehensive compensation 
model of the thermal errors of the wear-depth detecting 
system yC(t) was got:

where yC(t) is the fitting values of the comprehensive 
compensation model.

The real detecting thermal error curve of the wear-
depth detecting system, the thermal error curve of the 
multi-element model fitting and the thermal error curve 
of the comprehensive compensation model identification 
are shown in Figure  13, and the residual curves of the 
multi-element model fitting and the comprehensive com-
pensation model identification are shown in Figure 14.

As shown in Figure  13 and Figure  14, compared with 
the curve of the multi-element model fitting, the curve 
of the comprehensive compensation model identifica-
tion is more similar to the real detected thermal errors 
curve. In conclusion, the residual errors of the compre-
hensive compensation model identification are less than 

(13)yC(t) = yM(t)+ δ(t)′,

Figure 12  Residual errors δ(t)′ curve of the time series analysis
Figure 13  Comparisons of three thermal error curves
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that of the multi-element model fitting except for very 
few points. The maximum residual errors between the 
multi-element model fitting and the real detecting ther-
mal errors is 2 μm, and the maximum residual between 
the comprehensive compensation model identification 
and the real detected thermal errors is 1 μm.

5 � Applicability Verification of the Comprehensive 
Compensation Model of Thermal Errors

As mentioned above, the comprehensive compensa-
tion model had higher fitting precision. Then in order to 
verify the applicability of this compensation model, this 
comprehensive compensation model was used to fit other 
thermal experimental data.

As the selection of the optimal temperature detect-
ing points (in Section 4.1) showed, this experiment only 
collected the temperature changing values of the four 
detecting points, namely, (1) the base of the bearing fix-
ture, (4) the T-type plate, (8) the slender pole, and (9) the 
environmental temperature. In the thermal error experi-
ment, the corresponding temperature changing curves of 
the four optimal temperature detecting points are shown 
in Figure 15; the thermal deformation curve of the wear-
depth detecting system is shown in Figure 16.

As shown in Figure 15 and Figure 16, the total time of 
the experiment is 480  min, and the temperature of the 
four optimal temperature points gradually rises. The ini-
tial indicating value of the displacement sensor is 4.445, 
and the final value is 4.431. The maximum thermal error 
of the wear-depth detecting system is 0.02 mm.

The comprehensive compensation model identification: 
we put the four temperature varying data into the mul-
tiple linear model (Eq.  (3)), and got the multiple linear 
fitting values. Then we introduced the time series analy-
sis method and fitted the residual errors of the multiple 
linear model. At last, we got the comprehensive compen-
sation model. The curves of the comprehensive compen-
sation model identification and the detecting thermal 
errors are shown in Figure 17; the residual error curve of 
the comprehensive compensation model and the detect-
ing errors is shown in Figure 18.

As shown in Figure 17 and Figure 18, the comprehen-
sive compensation model curve is similar to the detect-
ing thermal error curve, and the maximum residual error 
is about 9 μm. The maximum thermal error of the wear-
depth detecting system is 0.02 mm, and the comprehen-
sive compensation model could offset the thermal errors 
about 0.01 mm. Depending on the above verification, the 
comprehensive compensation model, built through MLR 
and time series analysis method, had the higher fitting 
precision and better applicability.

Figure 14  Residual curves of the multi-element model fitting and 
the comprehensive compensation model identification

Figure 15  Temperature curves of the four optimal detecting points

Figure 16  Thermal deformation curve of the wear detecting system
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6 � Conclusions

(1)	 Under the operating condition of the low-speed 
oscillating and heavy-loading, the thermal defor-
mation of the T-type plate caused by the friction 
heat of spherical plain bearings is 0.074  μm when 
the spherical plain bearing oscillates 32000 times 
and the bearing outer race temperature rises about 
7  °C, and the bearing fixture temperature due to 
the friction heat of cylindrical roller bearings rises 
0.017 °C.

(2)	 The thermal deformation of the wear-depth detect-
ing system is approximately 0.01  mm when the 
room temperature rises 10.3  °C, and the show-
ing value of the displacement sensor gradually 

decreases with the rising of the temperature. In 
view of the above results, the environmental tem-
perature variation is the main cause of the two error 
factors.

(3)	 The comprehensive compensating model of the 
thermal error of the wear-depth detecting system is 
built with MLR and time series analysis. The fitting 
curve of the comprehensive compensation model is 
more similar to the real detecting curve of the ther-
mal errors, and the maximum residual of the two 
curves is only 1 μm. Finally, according to the experi-
mental verification, the comprehensive compensa-
tion model has higher fitting precision and better 
applicability.
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Figure 17  Curves of the comprehensive compensation model 
identification values and the detecting thermal errors

Figure 18  Residual curve of the comprehensive compensation 
model identification values and the detecting errors
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