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Abstract 

In order to solve the problem of substantial computational resources of lattice structure during optimization, a local 
relative density mapping (LRDM) method is proposed. The proposed method uses solid isotropic microstructures 
with penalization to optimize a model at the macroscopic scale. The local relative density information is obtained 
from the topology optimization result. The contour lines of an optimized model are extracted using a density contour 
approach, and the triangular mesh is generated using a mesh generator. A local mapping relationship between the 
elements’ relative density and the struts’ relative cross-sectional area is established to automatically determine the 
diameter of each individual strut in the lattice structures. The proposed LRDM method can be applied to local finite 
element meshes and local density elements, but it is also suitable for global ones. In addition, some cases are con‑
sidered in order to test the effectiveness of the LRDM method. The results show that the solution time of the LRDM 
is lower than the RDM method by approximately 50%. The proposed method provides instructions for the design of 
more complex lattice structures.
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1  Introduction
Additive manufacturing (AM), also known as 3D print-
ing, refers to a process by which a 3D digital model is 
used to build a part or product by depositing material 
in layers. The advantage of AM is that it can provide 
designers with great opportunities to maximize the per-
formance of their designed products through the synthe-
sis of shapes, sizes, hierarchical structures, and material 
composition [1]. To an extent, AM can not only reduce 
material costs but also speed up novel and/or concep-
tual designs, especially with the use of foam, honeycomb 
structures, and lattice structures. The area of lattice 
structures has received considerable attention owing 
to their excellent properties: they can be designed and 
used for multiple purposes, such as weight reduction, 
heat transfer, energy absorption, thermal and protec-
tion [2–6]. The lattice structure with a relative density of 
10% is approximately three times stronger than foam [1]. 

However, it is a challenging task to design lattice struc-
tures owing to their geometric complexities and pro-
hibitive computational costs in the design process. In the 
past few decades, several approaches were put forward 
for the design of lattice structures or mesoscale truss 
structures with a strut diameter in the range of 0.1 mm to 
10 mm, and these methods can be roughly classified into 
two categories: solid modeling techniques and optimiza-
tion techniques.

Wang and Rosen developed a computer-aided design 
tool for designing truss structures that could easily be 
incorporated into 3D printed parts [7]. Wallach et al. [8] 
designed a 3D periodic truss structure using the linear 
array command. They analyzed the elastic moduli as well 
as the uniaxial and shear strengths of the truss structures. 
Wang et al. [9] proposed a parametric modeling method 
for truss-like structures. Based on a unit cell approach, 
a conformal lattice structure is designed to enhance the 
performance of the cellular structure that was devel-
oped by Wang [10]. For large truss-like cellular struc-
tures, computational complexities can cause difficulties 
in CAD modeling, and therefore, Wang et al. [11] intro-
duced a hybrid geometric modeling method. From the 
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above analysis, we can see that solid modeling methods 
are primarily used for generating truss/lattice structures 
without considering the optimization problem. Moreo-
ver, optimization techniques can also be an effective tool 
for designing truss/lattice structures. Typical optimiza-
tion approaches, such as the ground truss approach and 
homogenization method, synthesize the topology and 
geometry of the truss structures [12, 13]. Chu et al. [14] 
presented a synthesis method using particle swarm opti-
mization and least-squares minimization for designing 
components comprised of cellular structures. The opti-
mization approaches of truss structures are limited by 
the computational demands of a great number of design 
variables and/or by the memory limitations of computers 
[15–18].

Therefore, one of the key problems is how to optimize 
lattice structures such that the potential for mass reduc-
tion and computational costs can be fully realized in the 
design process. A non-iterative size, matching, and scal-
ing (SMS) method was proposed by Graf et  al. [19]. It 
eliminates the need for time-consuming optimization by 
using a combination of a solid-body finite element analy-
sis and a pre-defined lattice configuration to generate a 
structure’s lattice topology. However, the non-iterative 
SMS approach lacked a truly systematic methodology 
[20]. To counter the traditional manufacturing limitation, 
Chang et al. [21] presented a new SMS method in order 
to take advantage of the potential of additive manufactur-
ing. To address the drawbacks of the SMS approach in 
determining the appropriate diameters for the structure’s 
struts, a new augmented SMS method that incorporates 
conformal lattice structure construction methods was 
presented by Nguyen et al. [22]. They studied the process 
of generation of lattice structures for a complex shape. 
However, the design of lattice structures using various 
SMS methods is only applicable in the case of targeted 
loading. These methods cannot be used in the case of 
multiple loading conditions. In addition, a relative den-
sity mapping (RDM) method was developed to obtain lat-
tice structures that are capable of handling multi-loading 
conditions without additional computational costs [23]. 
However, there exist some problems with the principles 
of the RDM method. Firstly, one of assumptions made is 
that the relative cross-section diameter of each strut is 
dependent on the contribution of all the relevant density 
elements. The distance calculation requires much com-
putational resources due to its exponential time com-
plexity. Moreover, the relative density elements include 
several 0 values, which do not contribution for the strut. 
Furthermore, the RDM method does not guarantee the 
structural strength of the generated lattice structures 
during the mapping process.

To further reduce the computational costs and to 
improve the performance of the lattice structures,an 
LRDM method is presented. First, the SIMP method is 
used to gain a topology optimization result at the mac-
roscopic scale. The relative density contour is then 
extracted using the density contour approach and a tri-
angular mesh is generated using a mesh generation 
algorithm. Finally, a new mapping relationship between 
the local relative densities and local finite element mesh 
(FEM) is established to generate the lattice structures. 
The rest of this paper is organized as follows. We first 
describe a mesh generating process in Section 2. In Sec-
tion 3, we present the LRDM method, and in Section 4, 
some case studies are used to verify the effectiveness 
and efficiency of the proposed method. The conclusions 
drawn are presented in the final section.

2 � Mesh Generating Process
The LRDM method uses the triangular FEM because it is 
difficult to approximate the part’s surface for the unit-cell 
type mesh used in the RDM method. In order to gener-
ate the mesh configuration in the optimized region of the 
topology optimization result, three following steps are 
required to be taken.

2.1 � Generating Relative Density Point Cloud
First, a density threshold value is set to obtain the point 
cloud data. The cloud point is set as 1 where the relative 
density is greater than or equal to the threshold value 
else, it is set as 0. The formula for the could points is 
given in Eq. (1). In addition, in order to ensure that the 
sum of the relative density values remains unchanged, the 
total number of grayscale elements must be a constant 
during their conversion to cloud points.

where f (x, y) is the set of the relative density, and g(x, y) is 
the set of cloud points. The sum of f (x, y) and g(x, y) must 
be zero. The suitable density threshold value T can then 
be determined by using the bisection algorithm.

2.2 � Density Contour Approach
Although there is no intermediate relative density value 
in the point cloud data obtained from step (1), there is 
still a jagged border. In order to obtain a smooth bound-
ary, a density contour method is used to reassign the 
relative density of each element to each node point, and 
the density contour is obtained using the interpolation 

(1)g(x, y) =

{

255, if f (x, y) ≥ T ,
0, otherwise,

(2)�V =
∑

f (x, y)−
∑

g(x, y).
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approach. The relative density of the nodes can be calcu-
lated by using an average weight function, and the inter-
polation formula is given in Eq. (3). The contour line was 
reconstructed using the density contour approach and 
B-spline curves [24]:

where ρk is the relative density of the kth node, M is the 
number of neighboring elements at this node, and ρk,i is 
the relative density of the ith neighboring element of the 
kth node.

2.3 � Triangular Mesh Generation
After obtaining the relative density contour from step (2), 
the triangular mesh is generated using a mesh generation 
algorithm [25, 26]. The Delaunay algorithm cannot gen-
erate a high-quality triangular mesh as there is no cloud 
data inside the boundary contours. Thus, in order to gen-
erate a high-quality triangular mesh, the following steps 
are required to be followed. First, the Delaunay algorithm 
is implemented to generate the initial triangular mesh. 
The mesh can then be optimized and adjusted locally 
using the mesh generation [26, 27]. The advantage of this 
approach is that it does not generate an elongated trian-
gular mesh. The mesh generation process is illustrated in 
Figure 1.

3 � LRDM Method
3.1 � Formulation of LRDM Method
The computational cost can be further reduced by using 
our proposed schemes. Firstly, it seems reasonable to 
assume that the relative cross-section diameter of the 
strut must depend on the local relative densities. The 
local relative densities refer to the density elements that 
are located in the range of a circle of radius R having its 
center at the midpoint of the strut. Secondly, it is possible 
to reduce the number of FEM by using the mesh genera-
tion process in Section  2. Thirdly, an improved strategy 

(3)ρk =
1

M

M
∑

i=1

ρk ,i,

of the distance weight function is presented to reduce the 
calculation time. The conditions assumed for the RDM 
and LRDM methods are shown in Figure  2a, b respec-
tively. RDM uses the relative densities of the topology 
optimization and global FEM mesh. LRDM uses local 
relative densities having a non-zero value and the local 
FEM mesh. The local FEM mesh refers to the mesh that 
is located in the optimized region of the topology optimi-
zation result.

The key process in the RDM method is the calculation 
of the distance of all the relative density elements from 
each line segment in the FEM mesh. The RDM method 
requires a substantial amount of computing resources 
because of its exponential time complexity. Moreover, it 
implements three judgement conditions for determining 
which relative density element is at the shortest distance 
from the two endpoints or pedals of each line segment, as 
shown in Figure 2a. The algorithm efficiency is low for a 
unit-cell of a few millimeters. To alleviate these deficien-
cies, three steps can be taken to improve the efficiency of 
the RDM algorithm. First, the local relative densities are 
used to replace the global ones. Secondly, we can reduce 
the number of meshes with a local mesh in the optimized 
region. Thirdly, a new distance formula is derived for 
the LRDM method. Let us assume that there are m rela-
tive density elements within the range of the circle j (as 
shown in Figure 2b), and thus, the improved formula for 
mapping the relative density of m elements to the struts 
is given in Eq. (4):

(4)
Arj =

m
∑

i=1

ρiω(rij)

m
,

a b c
Figure 1  Mesh generation process: a topology optimization result; b 
obtaining density contour; c generating triangular mesh
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Figure 2  Illustration of two different mapping methods: a RDM 
method; b LRDM method
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where Arj is the relative cross-sectional area of the strut, 
ρi is the relative density, ω is a weight function, m is the 
number of elements within the radius R, and rij is the 
distance of element i from strut j. The advantage of the 
new formula is that it can reduce the computational costs 
incurred by reducing the number of relative density ele-
ments that are far away from the strut during the map-
ping process. In addition, a general weight function is 
also proposed, and its formula is given in Eq. (5):

To ensure the strut diameter is neither too large nor 
too small, a lower value min(Ar) and a higher value 
max(Ar) = 1 for the relative cross-sectional area are set 
during the mapping process. Therefore, the scaling and 
adjustment of the strut can be performed according to 
[23]:

The next step is to calculate the scaling factor between 
the relative cross-sectional area and actual cross-sec-
tional area of each strut for the lattice structures. How-
ever, it does not guarantee the structure strength of the 
generated lattice structures because the RDM method 
uses a fixed volume constraint. Moreover, the strength 
of lattice structures is governed by their relative den-
sity. Therefore, the appropriate relative density may be 
required to ensure that the elastic modulus of the gener-
ated lattice structure is equivalent to the corresponding 
elastic constants of the topology optimization. According 
to the Gibson–Ashby model [28], the elastic modulus has 
a polynomial law relationships with the relative density. 
For example, for a plane stress problem, the anisotropic 
constitutive law is σ = Cε. A scaling law between rela-
tive density and elastic matrix of lattice structures can be 
written as follows:

where C (i =  0, 1, 2, ···) are constant symmetric matri-
ces that can be determined using a finite element analysis 
method. The scaling law for the lattice cellular structure 
can be formulated from the FEA simulation results as 
a function of the density. Based on Hashin–Shtrikman 
bounds the valid range of relative density is 0.41 to 0.76 
for 2D lattice structures [29]. Similarly, the valid range of 
relative density is 0.44 to 0.79 for 3D lattice structures. 
Therefore, the lower actual cross-sectional area of the 
strut is obtained using Eqs. (8) and (9):

(5)ω(rij) = exp(−krij).

(6)

Arj =

[

1−min(Ar)

max(Ar)−min(Ar)

]

× [Arj −max(Ar)] + 1.

(7)C(ρ) = C0 + C1ρ + C2ρ
2
+ · · · ,

(8)ρv =
ρ∗

ρs
= c0

dmin

l
,

where c0 is a near-unity numerical constant, dmin is the 
diameter of the strut, l is the length of the strut, and 
Armin is the lower value of the actual cross-sectional 
area. Therefore, the scaling factor Sf can be calculated 
to determine appropriate values for the cross-sectional 
areas of all the struts. The values of Ar are then scaled 
accordingly:

Using Eqs. (4)–(11), the lattice structures can be gener-
ated, and the structural strength of the obtained design 
can be guaranteed based on the equivalent elastic modu-
lus of lattice structures. The overall process of the pro-
posed LRDM method is summarized in Figure 3.

The main difference between RDM and LRDM is that 
the RDM process starts with two inputs: the information 
from the topology optimization and a coarse FEM, while 
the LRDM process starts with only one input: the topol-
ogy optimization. Secondly, the key principles of RDM 

(9)
Armin = π

(

dmin

2

)2

,

(10)Sf =
Armin

min(Ar)
,

(11)Ar = Sf · Ar.

Extract contour boundary
and generate local mesh

Start

Topology optimization

Obtain local relative
density information

Calculate strut relative area (Arj)

Screening process (Optional)

Adjust and scale Ar

Calculate equivalent elastic modulus
(C( ρ))

Generative lattice structures

End

Figure 3  LRDM method flowchart
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and LRDM are essentially different. The RDM method 
depends on the relative densities of all the elements 
and all the FEMs in the design region, while the LRDM 
method only requires the relative densities of the local 
elements and local FEM. Thirdly, different formulas are 
used to calculate the strut relative area in each method. 
A weighted average is used in the RDM method while a 
geometric mean is used in the LRDM. Furthermore, the 
formulas used to calculate the scaling factor Ar and the 
vector min(Ar) are also different.

3.2 � LRDM Method Validation
To validate the hypothesis of the LRDM method as well 
as to address the effect of the constant k and the distance 
rij on the weight function in Eq. (5), a simply supported 
beam is considered. The structure of the beam is simi-
lar to that in Ref. [29]. The design domain is discretized 
using 80 × 20 elements, the volume fraction is 0.35, and 
the properties of the beam are shown in Table 1 (case 1). 
A penalization factor of 3 is used in the optimization pro-
cess in all cases in this paper. Two 2D lattice structures 
are generated in the RDM method and LRDM method 
using the relative density information obtained from by-
products of the topology optimization. The same unit-cell 
type and unit-cell sizes are used in both the methods. The 
effects of different constant k and the distance rij on the 
weight function are shown in Figure 4a. As shown in the 
Figure, an increase in rij leads to a reduction in the weight 
function ω(rij) until a zero value is reached for a given dif-
ferent constant k (k = 0. 2, 0.3, 0.4, 0.6, 0.8, and 1.0). The 
trends in these curves show that the strut’s relative cross-
sectional area has no effect on the relative density ele-
ments that are beyond a certain distance from the strut 
his result is also shown in Figure  4b. It was found that 
an increase in the radius R leads to a reduction in the tip 
displacement until a final steady-state value is reached; 
however, the corresponding solution time has been sub-
stantially increased. Therefore, it is reasonable to rely on 
the contribution of local relative density elements.

In order to precisely test the solution time of the 
RDM and LRDM methods, the same unit-cell type is 
used to generate the 2D lattice structures. The second 

case (Table 1) is the same as that in Ref. [23], which is a 
cantilevered beam loaded at the middle of the right tip 
using the same topology optimization results. The lattice 
structures are generated using the RDM method with the 
lower relative cross-sectional value of 0.01, the size of the 
element is 2.5 mm×2.5 mm. While the LRDM method 
uses the same unit-cell type, R=6.5 mm and k=1.0.

The solution times for the RDM method are 30 s for 
generating the lattice structure and only 11 s for gener-
ating the lattice structure using the LRDM method. The 
RDM method requires more time to calculate the dis-
tance of all the relative density elements from each strut 
in the FEM. As for the LRDM method, it only calculates 
some of the relative density elements that are located 
in the range of a circle of radius 6.5 mm with its center 
at the midpoint of the strut. The RDM method pro-
duced the smallest tip displacement of 0.635 mm. The 
LRDM method result had a displacement of 0.613 mm, 
which is only 3.5% lower than that obtained with the 
RDM method. The results show that the LRDM method 

Table 1  2D and 3D beams

Properties Case 1 Case 2 Case 3 Case 4

Length (mm) 80 40 80 40

Height (mm) 20 10 40 10

Thickness (mm) 4 1 1 4

Loading magnitude (N) 100 1 1 1

Elasticity modulus (MPa) 1960 1960 1960 1960
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is more efficient with respect to computational costs as 
compared with the RDM method for almost the same 
structural strength. Here, we note that our method can-
not only be applied to the global FEM but is also suitable 
for the local FEM.

To test the computational accuracy and convergence of 
the RDM and LRDM methods, three elements of differ-
ent sizes are generated using RDM and LRDM and the 
same topology optimization result. There are two types of 
unit-cells with a set size L of 1 mm×1 mm, 2 mm×2 mm, 
3 mm×3 mm and 1 mm, 2 mm, and 3 mm, respectively. 
A regular triangular unit-cell is chosen for the compari-
son between the RDM and LRDM methods because it is 
convenient for controlling the unit-cell size. A 2D canti-
lever beam is used, and the design domain is discretized 
into 80×20 elements. Figure  5 shows the lattice struc-
ture generated using the RDM and LRDM methods for 
R = 3L. The results of the computation accuracy and con-
vergence of the RDM and LRDM methods are summa-
rized in Table 2.

Table  2 shows that the average computation accuracy 
of RDM is 2.05% higher than that of LRDM. One possi-
ble reason is that the total volume of the generated lattice 
structure must meet the volume constraint in the RDM 
method. The average iterative number for RDM is 43.62% 
higher than that for LRDM. The main reason for this is 
the use of the local relative density information and the 
triangular mesh.

4 � Case Illustrations and Analysis
4.1 � 2D Cantilever Beam
To demonstrate the performance of the LRDM method, 
a 2D cantilever beam is used with the SIMP method. 
The third case is similar to that in Ref. [30]. The design 
domain is discretized into 80×40 elements, and a vertical 
unit force is considered at the middle of the right end of 

the beam. The properties of the 2D cantilever beam are 
shown in Table 1 (case 3). Figure 6a, b show the results 
of the topology optimization and the generation of the 
FEM with the same unit-cell size of 1 mm. The lower rel-
ative cross-sectional area and the rejection ratio are set 
as 0.001 and 0.1, respectively for the RDM method. As 
for the LRDM method, the radius is 6.5 times the length 
of the cell of the density element. Figure 6c, d show the 
generated lattice structure with 616 and 587 struts using 
the RDM and LRDM methods respectively. The RDM 
method result showed the smallest tip displacement 
of 0.383 mm. The LRDM method result showed a dis-
placement of 0.347 mm, which was 9.4% lower than that 
obtained with the RDM method. The solution time for 
generating the lattice structure with the RDM method 
was 76 s and only 32 s in the case of the LRDM method.

The reason why different proportions for case 2 and 
case 3 is that the same FEM is used to map the topology 
optimization result to the lattice structure with RDM and 
LRDM methods respectively in case 2. The various FEMs 
are adopted to generate different lattice structures with 
RDM and LRDM in case 3. Thus, the various FEMs may 

Topology optimization result

RDM method LRDM method

Figure 5  Lattice structures generated with various unit-cell sizes 
using RDM and LRDM methods

Table 2  Test results of  computation accuracy 
and convergence for RDM and LRDM methods

Method Mesh size (mm) Target 
volume 
(mm3)

Optimized 
volume 
(mm3)

Iteration no.

RDM 1 × 1 50 48.1304 143

LRDM 1 50 47.7206 84

RDM 2 × 2 40 38.0690 86

LRDM 2 40 37.0607 51

RDM 3 × 3 30 27.8695 45

LRDM 3 30 27.0312 23

a b

dc
Figure 6  Generated 2D lattice structures using RDM and LRDM 
methods: a RDM 2D mesh; b LRDM 2D mesh; c RDM 2D lattice 
structures; d LRDM 2D lattice structures
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result in different proportions of the LRDM method to 
some extent.

4.2 � 3D Cantilever Beam
To verify the effectiveness of the proposed method, a 3D 
cantilever beam is used to generate a lattice structure 
using the LRDM method, which is then compared with 
that obtained using the RDM method. The beam has 
a length of 40 mm, height of 10 mm, and thickness of 4 
mm. The properties of the 3D cantilever beam are shown 
in Table  1 (case 4). The prismatic design is fully con-
strained at one end and a unit distributed vertical load 
is applied downwards on the lower free edge. Figure  7a 
shows the topology optimization result for solving the 
minimum compliance problem under a 30% volume frac-
tion constraint. Figure 7b shows the generated FEM with 
a unit-cell size of 2 mm × 2 mm, and the unit-cell type is 
the same as that used with the RDM method. Figure 7c 
shows the FEM generated using the Delaunay algorithm 
with a unit-cell size of 1 mm × 1 mm. Figure 7d, e show 
the 3D lattice structures generated using the RDM and 
LRDM methods, respectively, with the same volume 
constraint.

The variation in the tip displacement and solution time 
of the generated lattice structures are displayed in Fig-
ures  8 and 9 for various volume fractions. An increase 
in the volume fraction leads to a reduction in the tip dis-
placement while the displacement gap of the RDM and 
LRDM methods is also gradually reduced. The gap reduc-
tion in the tip displacement is caused by the gradual 
removal of the partial volume in the topology optimiza-
tion process.

It should be noted that the solution time for the lat-
tice structure generated using the RDM method remains 
almost unchanged as the volume fraction of the topol-
ogy optimization increases. In the case of the LRDM 
method, the solution time of the generated lattice struc-
ture increases gradually as the volume fraction increases 
in the topology optimization, but the solution time is still 
less than that of the RDM method. The reason for this 
phenomenon is that the computational cost is relate to 
the number of FEMs and relative density elements. In the 
case of the RDM method, the number of FEMs is fixed 
once the initial design area is set; however, the number of 
FEMs increases with the increase in the volume fraction 
of the LRDM method during the mapping process.

In order to test the structural strength of the lat-
tice structures using the two models from Figure  7d, e, 
we print them with the help of a MakerBot Replicator 
2 printer using fused deposition modeling technology. 
We use a plastic PC-ABS material with a yield strength 
of 4.1×107 N/m2. An electromechanical universal test-
ing machine (HUALONG WDW-100) is used to evalu-
ate the strength of the printed lattice structures. We ran 
compression tests for the two printed lattice structures. 
The 2460.467 g lattice structure that was tested using the 
RDM method could resist a force of 983.7 N; the other 
lattice structure tested using the LRDM method, failed at 
an applied force of 1153.5 N with a mass of 2450.074 g. 
Therefore, the calculated strength-to-weight ratio of the 
LRDM method is 14.83% higher than that of the RDM 
method. Moreover, we can calculate the strength using a 
simple formula based on the volumetric density [23]. The 
volume fraction of the lattice structures optimized with 
the RDM and LRDM are 0.3045% and 0.3568%, respec-
tively. The theoretical calculation results are 14.65% 

a

c

d e

b

Figure 7  Generated 3D lattice structures using RDM and 
LRDM methods: a RDM 3D mesh; b LRDM 3D mesh; c Topology 
optimization result; d RDM 3D lattice structures; e LRDM 3D lattice 
structures
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higher than that obtained with the RDM, which almost 
the same as the experiment results.

4.3 � Micro Jet Engine Bracket
To demonstrate the applicability of the LRDM method 
for complex 3D structures, a micro jet engine bracket 
[31] is designed and optimized using a continuum topol-
ogy optimization (SIMP). The optimization problem can 
be stated as follows:

where c is the compliance, U and F are the global force 
vector and displacement respectively; K is the global stiff-
ness matrix, xe is the element density, V(x) is the lattice 
structure volume, V0 is the design domain volume, and 
f is the prescribed volume fraction. Here, V0 =  480000 
mm3, f=0.3, and F=42000 N. The bracket is to be sub-
jected to two loads and supported as shown in Fig-
ure  10b. Figure  10a shows the original bracket model. 
Figure 10c shows an optimized 3D model obtained using 
the topology optimization. Figure  10d shows the lattice 
structures with 5837 struts that are generated using the 
LRDM method. The solution time for the LRDM method 
is 2468 s. The RDM method would not be able to gener-
ate a complex mesh, as the RDM would not be a feasible 
choice in this case. As compared to the topology optimi-
zation, it can be estimated that LRDM saves 9.8% mate-
rial despite its longer generation time.

(12)

min c(x) = U
T
KU =

N
∑

e=1

Ee(xe)u
T
e k0ue,

s.t.,V (x)/V0 = f ,
KU = F ,
0 ≤ x ≤ 1,

5 � Conclusions

1.	 The average iterative number of RDM is 43.62% 
higher than that of LRDM, and the average compu-
tation accuracy of RDM is 2.05% higher than that of 
LRDM for the same two-dimensional mesh.

2.	 As compared to the continuum topology optimiza-
tion, the LRDM method can save approximately 9.8% 
3D printing material for the same 3D model.

3.	 It is no contributions to the strut’s relative cross-sec-
tional diameter to the relative density elements that 
are beyond a certain distance away from the strut for 
RDM and LRDM method.

4.	 The solution time of the lattice structures generated 
using the LRDM method is approximately 50% lower 
than that of the RDM method.
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