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Investigation on Mesh and Sideband 
Vibrations of Helical Planetary Ring Gear 
Using Structure, Excitation and Deformation 
Symmetries
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Abstract 

Time-variant excitations in planetary gear trains can cause excessive noise and vibration and even damage the system 
on a permanent basis. This paper focuses on the elastic vibrations of a helical planetary ring gear subjected to mesh 
and planet-pass excitations. Motivated by the structure, excitation and deformation symmetries, this paper proposes 
dual-frequency superposition and modulation methods to capture the mesh and sideband vibrations. The transi‑
tion between ring gear tooth and planet is introduced to address the excitations and vibrations. The phasing effect 
of ring gear tooth and planet on various deformations is formulated. The inherent connections between the two 
types of vibrations are identified. The vibrations share identical exciting rules and the wavenumber and modulating 
signal order both equal the linear combination of tooth and planet counts. The results cover in-plane bending and 
extensional, out-of-plane bending and torsional deformations. Main findings are verified by numerical calculation and 
comparisons with the open literature. The analytical expressions can be used to determine whether the sideband is 
caused by component fault or only by elastic vibration. The methods can be extended to other power-transmission 
systems because little restriction is imposed during the analysis.
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1  Introduction
Noise and vibration reductions are attractive top-
ics in planetary gear trains (PGT), especially for those 
induced  by the mesh and planet-pass excitations. The 
typical vibrations of a spur ring gear were analytically 
examined, and the relationships between mesh phase and 
in-plane elastic vibrations were identified based on sym-
metry [1]. While similar symmetry is held in helical PGT, 
the elastic vibration can be more complex to analyze. A 
question that can possibly be encountered during analy-
sis is how the vibrations change.

Published studies directly or indirectly use the struc-
ture and excitation symmetries  to capture vibration 

nature. The studies can be roughly considered in three 
groups: typical vibration modes [2–21], planet phasing 
[1, 3, 22–35], and sideband [35–44], where the first group 
relates free vibration, but the last two link forced and par-
ametric ones induced by the mesh or planet-pass excita-
tions. Regardless of excitation patterns, free or forced, 
rigid or elastic, or even rigid-elastic coupling vibrations, 
motivations on the problem-solution method or physical 
explanations on the vibrations can be gained because the 
symmetric structure and excitation account for the dis-
tinctive vibrations.

Existing studies on the distinctive vibrations are gen-
erally based on spur PGT with the exception of Refs. 
[3, 8, 17, 21, 24], etc. The results imply that the vibra-
tions can be classified into rotational, translational, and 
planet modes for spur PGT [5], but for helical one, it can 
be categorized as in phase, sequential phase, and coun-
ter phase [3], or rotational-axial, translational-tilting, and 
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planet modes [8, 19]. As an extended research, Shi et al. 
[45]  identified the typical vibration in centrifugal pen-
dulum vibration absorbers. Qin et al. [20] examined the 
vibration modes of a horizontal wind turbine drive train, 
and they also studied the effect of bearing stiffness on 
these modes. Bu et al. [21] investigated the herringbone 
PGT and found the rotational and axial modes, trans-
lational modes, planet modes, rotational and axial ring 
modes, and translational ring modes. The above studies 
are generally based on rigid body assumption.

The typical vibration modes also arise if the elastic 
components such as the thin ring gear are considered 
[11, 12]. Wu and Parker [11]  examined the PGT with 
elastic ring gear and identified the rigid-elastic vibration 
modes, and later Parker and Wu  [12] proved the vibra-
tion modes of the PGT with unequally-spaced planets 
and elastic ring gear. Tanna and Lim [15, 16]  examined 
the ring gear’s free vibration and proved the elastic 
vibration modes, including in-plane extensional, radial 
inextensional, out-of-plane bending, and torsional defor-
mations. It seems that similar modes to those in Refs. [11, 
12] can be found for the helical planetary ring gear even 
when considering various deformations owing to the 
symmetries. However, it could be a challenge to develop 
an analytical model incorporating many deformations. 
Even so, the theoretical analysis is another difficulty to 
be overcome.

Planet phasing is also a typical  vibration, which has 
been well examined based on spur and helical PGT. 
Kahraman et  al. [3, 24] addressed it and  obtained gen-
eral results governing the occurrence or suppression 
of the forced vibration for arbitrary number of plan-
ets. Parker et  al. [25]  proved the three forced vibration 
modes induced by the mesh excitation using superposi-
tion method, and then they extended it to helical PGT 
[19]. The phasing behaviors of the spur and helical PGT 
are in essence the same except for the specific excitations 
and vibration patterns. Canchi and Parker [28]  stud-
ied the influence of mesh phase on parametric instabil-
ity of the planetary ring gear and closed-form results 
were  obtained. Yang and Dai [33] formulated the effect 
of mesh phase on primary and combination resonances 
by Multiple Scale method. As a common feature, most 
of the above studies employ the excitation superposition, 
through which the resulting response can be obtained 
and typical vibrations are identified.

Alternatively, Wang et al. [1] used the response instead 
of the excitation superposition to predict vibration of 
an elastic spur ring gear and found the phasing effect 
of basic parameters on typical flexural-extensional vibra-
tions. The results imply that if the wavenumber is zero or 
unity, the rigid vibration modes are identical with those 
in Ref. [25]. While the responses of the helical ring gear 

can be more complex, typical vibrations could remain 
due to the mechanics similarities in their common sym-
metries, and  the correspondence between the rigid and 
elastic vibrations could exist in helical PGT. These are 
the primary concerns of this work.

Another phasing is the mesh sideband associated with 
the instance where the principal spectrum component is 
slightly moved from the meshing frequency. Mcfadden 
and Smith [38] addressed the asymmetry of modulation 
sideband. To precisely predict the amplitudes of the dom-
inant components, Mcnames [39] generalized their work 
using continuous-time Fourier series and presented more 
thorough and intuitive explanations on the observed 
spectrum. Zhang et  al. [41] studied the relationships 
between tooth count, planet count, and sideband orders. 
Kahraman [35] asserted that sorting and aligning the 
planet run-out error in an in-phase configuration during 
assembly can minimize and in some cases even eliminate 
the errors effect on the dynamic load sharing. Then Inal-
polat and Kahraman [36, 37] proposed a simplified model 
to describe the modulation sideband, and they developed 
an experimental PGT set-up to demonstrate the sideband 
from ring gear radial acceleration measurements. Based 
on the structure and mesh phase configurations, Vicuña 
[44] also obtained the analytical expressions govern-
ing the sideband. Aiming at the main excitation source, 
Singh [46, 47] presented a general physical understanding 
on the basic mechanism causing unequal load sharing. 
Gu and Velex [48] developed an original lumped param-
eter model and studied the influence of planet position 
errors. These researches gained valuable insights into the 
dynamic behaviors.

Among the aforementioned studies, Inalpolat and Kah-
raman [36], Mcfadden and Smith [38], Mcnames [39], 
Keller and Grabill [40], and Vicuña [44] introduced the 
assumption that the resulting vibration is equal to the 
sum of those at the ring-planet mesh positions. They 
found that the mesh frequency cannot be a component 
in response unless the ring gear tooth count is an inte-
ger multiple of planet count. Physically, it is the planet’s 
motion relative to the transducer that causes the trans-
mitted vibration to vary and thus the mesh vibration to 
be modulated. Further, it is the mesh phases of the plan-
ets that cause the sideband occurrence, asymmetry, or 
even suppression. Like the vibration modes and planet 
phasing, the sideband and its asymmetry are both deter-
mined by the timing-relation between the inner excita-
tions at different mesh positions. Based on these, more 
findings can be achieved when fully incorporating the 
structure and force symmetries of the helical PGT.

Since the two  types of  phasing phenomena link sym-
metry, a  correspondence can exist  between them. As a 
case in point, they share identical exciting rules [1, 38, 39, 
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41]. Wang et al. [1] employed the superposition principle 
to deal with the occurrence of spur planetary  ring gear 
vibrations, and found that they are simply determined by 
lZr ± n = qN, where l, Zr, N, and q are the mesh excita-
tion harmonic, ring gear tooth count, planet count, and 
arbitrary integer. n denotes wavenumber, which is associ-
ated with bending and extensional deformations instead 
of only the former. Mcfedden and Smith [38], Mcnames 
[39], and Zhang et al. [41] utilized the signal modulation 
principle to address elastic vibration and obtained the 
same expression. This expression governs the mesh side-
band as the same notation n, but it designates modulating 
signal order. To gain more physical insights into the two 
typical vibrations, further work is much needed. This  is 
another focus of this work.

The ring gear vibration is of a classical traveling-load 
dynamic problem. Such problem has been well studied 
by many researchers [49]. Compared with those of asym-
metric dynamic problems,  the vibrations of the helical 
PGT bear their own distinctions because of the symmetry 
and timing-relation between the mesh excitations. Based 
on the prior study [1], the present work analyzes  the 
unique forced vibration with  dual-frequency superposi-
tion and modulation methods. To facilitate the analysis, 
the scope is limited to the helical ring gear, though the 
three-dimensional mesh and sideband vibrations, includ-
ing the in-plane bending and extensional, out-of-plane 
bending and torsional deformations, and especially their 
relationships, are all incorporated. Main results are veri-
fied by numerical calculation and comparisons with the 
results in the open literature.

2 � Methods for Mesh and Sideband Vibrations
2.1 � Superposition and Modulation Methods
The prediction on the mesh and sideband vibrations 
can be difficult when using differential equations to 
describe the physical laws  because  the three-dimen-
sional excitations create various deformations. Other 
treatments include the Finite Element and experimen-
tal methods, which are sometimes employed as verifi-
cation tools. Motivated by the previous studies [25, 50, 
51], authors of this work uses superposition and modu-
lation methods to address the rigid and elastic vibra-
tions of symmetric power-transmission systems [1, 
52–54]. It is not based on an ordinary or partial differ-
ential equation but on the structure, force, and defor-
mation symmetries.

In the  previous work  [1], the elastic mesh-phasing 
vibrations of spur planetary ring gears were addressed 
by the superposition method, which was motivated 
by the ultrasonic motors [50] and PGT [25], but only 
in-plane bending and extensional deformations were 
incorporated. Practically, whatever the deformations 

are, the various free vibrations are of elastic  waves 
definitely with periodicity due to the ring gear’s closed 
shape. Since the vibrations at different mesh positions 
are identical except for a phase lag, the resulting vibra-
tion can be obtained via a simple  superposition either 
for bending or extensional deformation. The same can 
be true for the helical planetary ring gears.

As another point of view, since there exist two types of 
excitations with mesh and planet-pass frequencies on the 
ring and planet sides for each and every type of deforma-
tion, the resulting response can be explained  as a type 
of modulation. As a result, the same predictions can be 
made by the superposition and modulation treatments 
such that insights into the phasing behaviors especially 
the excitation harmonics can be gained. Authors of this 
work examined the elastic vibration of permanent mag-
net motors and obtained complementary results [52]. In 
another study [54], the rigid-elastic vibrations incorpo-
rating the frequency splitting and mode contamination 
were also analyzed by fully considering mechanical and 
magnetic symmetries. However, the above two studies 
are limited to the in-plane vibration. Following the simi-
lar procedure, various vibrations of the helical ring gears 
can be examined analytically.

This work examines the mesh and planet-pass excita-
tions and vibrations of helical ring gears in order to clar-
ify the structure-excitation-vibration relation. To obtain 
more general results and avoid a specific mathemati-
cal model, this work employs the  model-free dual-fre-
quency superposition and modulation methods. No over 
restriction is imposed during the analyses except for the 
symmetries.

2.2 � Periodic Excitations of Gear Meshing
As well known, the PGT generally has excitations with 
mesh and planet-pass frequencies, which affect the 
system through the superposition or modulation via 
mechanical contact. Compared with the existing lit-
erature, the mesh frequency here is the same as that 
in the existing studies, but the meaning of the planet-
pass frequency is different. To demonstrate these, Fig-
ure 1 depicts six typical instantaneous relative positions 
between ring gear teeth and planets, schematically show-
ing the transition effect that naturally leads to two typical 
excitations with distinct frequencies. The two-dimen-
sional case is used here for clarity purpose, but  similar 
behaviors can be found in the axial direction.

Figure 1(a)‒(c) illustrate the planet P passes over ring 
teeth T1 and T2. During this process, the time-variant 
mesh  excitation occurs. By contrast, Figure  1(d)‒(f ) 
show the process between ring gear tooth T and plan-
ets P1 and P2, where planet-pass excitation is produced. 
Symmetry ensures that  the excitations on each planet 
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and tooth are the same except for phase lags. The two 
types of excitations can co-exist even in healthy PGT, 
and consequently the mesh and planet-pass phasings 
arise simultaneously. Compared with the mesh-fre-
quency phasing in spur PGT, those in the helical one are 
more complicated.

2.3 � Mesh and Planet‑Pass Vibrations
Figure  2 illustrates a helical ring gear with equally-
spaced N planets and Zr teeth, where the elastic 
vibrations are excited by the mesh and planet-pass 
excitations. Only the elstic  waves traveling in an anti-
clockwise  direction  are given for clarity purpose. In 
Figure 2(a), the rotating frame {Oc − rc, θc} is attached 
on the carrier, where the polar axis is directed towards 
the first planet center such that the spatial initial phase 
ψc
1 is zero. V lm+

i  is the lmth harmonic of the traveling 
wave excited by the ith ( i = 1, 2, 3, . . . , N  ) mesh excita-
tion. ϕc

i  and Alm
i  are the time initial phase and ampli-

tude, respectively.
In Figure  2(b), {Or − rr, θr} is a ring-fixed frame, 

where the polar  axis is also  directed towards the first 
tooth center such that the spatial initial phase ψ r

1 is 
zero. Wls+

j  is the lsth harmonic of the traveling wave 
excited by the excitation on the jth ( j = 1, 2, 3, . . . , Zr ) 
ring gear tooth. Similarly, ϕr

j  and Bls
j  are the initial phase 

and amplitude, respectively. Note that  Figure  2 only 
presents the in-plane bending deformation, but the fol-
lowing analyses also apply to the out-of-plane case.

2.3.1 � Mesh‑Frequency Vibration
The deformations induced by the mesh excitation in 
the carrier-fixed frame are periodic with  distinct time 
and position phases, the superposition of which results 
in the mesh-frequency response. Following the similar 
steps to those in the previous work [1], analytical results 
on the relationships between basic parameters and wave 

vibration can be formulated. However, as an impor-
tant distinction, the vibrations here include more possi-
bilities, including the in-plane bending and extensional, 
out-of-plane bending and torsional deformations. They 
are all characterized as geometrically closed shape and 
can be expressed by Fourier series as a general form. For 
instance, the elastic  vibration in Figure  2(a) induced by 
the lmth harmonic excitation at the ith mesh position can 
be written as

where Alm
i  , m , θm , and ωf are amplitude, wavenumber 

(depicting the deformation’s period), position angle and 
rotating speed of planet, respectively. γ c

θ
 and γ c

t  are intro-
duced to demonstrate the position and time lags between 
the excitation and response. Equation (1) describes a 
wave response excited by the ith mesh excitation, which 
is given in the carried-fixed frame.

(1)
V

lm
i = A

lm
i cosm

(

θm + γ c
θ
+ ψc

i

)

cos lm
(

Zrωft + γ c
t + ϕc

i

)

,a b c
1T 2T 1T 2T 1T 2T

P P P

d e f
T T T

1P 2P 1P 2P 1P 2P

Figure 1  Typical excitations, where a–c imply the mesh excitation 
on a planet, and d–f show  the planet-pass excitation on a ring gear 
tooth

a

b

Figure 2  Elastic vibrations around helical ring gear excited by a 
mesh frequency excitation and b planet-pass frequency excitation
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Symmetry  leads to  Alm
i = A

lm
1  . Although the coeffi-

cients and lags are unknown, they do not affect the final 
results except for amplitude (this work does not care 
about it). Since the first planet is at ψc

1 = 0 , the ith plan-
et’s position is

The time initial phase of the ith mesh position is [27]

Eq. (3) and the subsequent Eq. (8) are crucial for the 
superposition analysis. The net response can be obtained 
by superposition as

 The following identities hold for integer values of G [25]

According to Eqs. (1)‒(5), the relationships between 
the tooth count, planet count, mesh harmonic order, and 
elastic vibration order can be identified, as summarized in 
Table 1. While the results are identical with those of spur 
ring gear [1], they describe more  deformations because 
the wavenumber designates the period only. Namely, the 
superposition method is only concerned about the defor-
mation’s period no matter what the excitation patterns and 
specific deformations are.

2.3.2 � Planet‑Pass Frequency Vibration
The deformation induced by the planet-pass frequency 
excitation under the ring-fixed frame can be described as 
an elastic  vibration with unique time and spatial lags, as 
shown in Figure 2(b). The vibration caused by the lsth har-
monic excitation on the jth ring gear tooth is assumed as

where Bls
j  , n, and θs are amplitude, wavenumber (also 

depicting the deformation’s period), and position angle, 
respectively. The notations γ r

θ  and γ r
t  imply the position 

and time lags between the excitation and response. With 
the same principle as Eq. (1), Eq. (6) also describes a wave 
response but excited by the planet-pass frequency excita-
tion at the jth ring gear tooth.

(2)ψc
i = 2π(i − 1)

/

N .

(3)ϕc
i = ψc

i Zr.

(4)V lm =

N
∑

i=1

V
lm
i .

(5)















N
�

i=1

sin
�

2π(i − 1)G
�

N
�

= 0,

N
�

i=1

cos
�

2π(i − 1)G
�

N
�

=

�

0 G
�

N �= integer,

N G
�

N = integer.

(6)
W

ls
j = B

ls
j cos n

(

θs + γ r
θ + ψ r

j

)

cos ls

(

Nωft + γ r
t + ϕr

j

)

,

Similarly, symmetry leads to  Bls
j = B

ls
1
 . The vibration 

here is different from the previous work [1] in the physical 
meaning due to the difference in excitations.

Since the first tooth is at ψ r
1 = 0 , the position angle of the 

jth tooth becomes

thus the time initial angle becomes [55]

The net response is obtained by the superposition as

Eqs. (6)‒(9) present the connections between the tooth 
count, planet count, planet-pass frequency harmonic order, 
and elastic  vibration, as summarized in Table  2. Various 
deformations are included here, just as the above mesh-
frequency response. Comparison between Tables  1 and 2 
implies that there can be certain correspondence between 
the physical meanings of the harmonic excitation orders.

(7)ψ r
j = 2π

(

j − 1
)/

Zr,

(8)ϕr
j = ψ r

j N .

(9)Wls =

Zr
∑

j=1

W
ls
j ,

Table 1  Exciting conditions for  elastic mesh-frequency 
phasing

where “m”, “qm”, “+” and “−” are the wavenumber, integer value (qm > 0), 
backward and forward traveling waves, respectively

Exciting conditions Mesh-frequency 
vibrations

m = ±qmN ± lmZr The mth vibration is excited 
by the lmth mesh excita‑
tion

m �= ±qmN ± lmZr The mth vibration induced 
by the lmth mesh excita‑
tion is suppressed

Table 2  Exciting conditions for elastic planet-pass phasing

where “n”, “qs”, “+” and “−” are the wavenumber, integer value (qs>0), backward 
and forward traveling waves, respectively

Exciting conditions Planet-pass frequency 
vibrations

n = ± qsZr ± lsN The nth elastic vibration is excited 
by the lsth planet-pass-fre‑
quency excitation

n �= ± qsZr ± lsN The nth elastic vibration induced 
by the lsth planet-pass-fre‑
quency excitation is suppressed
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2.3.3 � Transition between Ring and Planets
This section addresses the correlation between the mesh 
and planet-pass vibrations using the modulation principle. 
As mentioned above, the two types of excitations are on the 
ring and planet sides, respectively, and thus the net response 
is obtained by the excitations’ interaction, which is embod-
ied as a modulation process. Without any loss of general-
ity, the harmonic excitations in the carrier- and ring-fixed 
frames can be, respectively, expressed by the Fourier series 
as

and

where lτ1 , θτ1 ( τ1 = m, s ) and γ τ2
t
−

 ( τ2 = c, r ) imply the 
harmonic order, position angle, and time phase, respec-
tively, and Clm

c  and Dls
r  are the amplitudes. With Eqs. (10) 

and (11), the resulting excitation becomes

where Elm,ls
c,r  ( Elm,ls

c,r = Clm
c Dls

r  ) is a combined coefficient.
Eq. (12) is rewritten by the trigonometric identity as

Since the position angles are satisfied with 
θm = θs −�ft , where �f is the rotation speed of the 
carrier, with this knowledge, Eq. (13) becomes

Eq. (14) implies that the resulting excitation is a func-
tion of the time and space, where lmZr ± lsN  is the 
wave order, denoting the elastic vibration with the same 
order. The results are summarized in Table 3. It can be 
observed from Eqs. (10) and (11) that there exist two 
types of fundamental excitation frequencies related to 
the ring gear tooth count and planet count. In fact, the 

(10)fm(θm, t) = Clm
c cos

(

lmZrθm + γ c
t
−

)

,

(11)fs(θs, t) = Dls
r cos

(

lsNθs + γ r
t
−

)

.

(12)
f lm,ls
m,s (θm, θs, t) = Elm,ls

c,r cos

(

lmZrθm + γ c
t
−

)

cos

(

lsNθs + γ r
t
−

)

,

(13)

f lm,ls
m,s (θm, θs, t) =

Elm,ls
c,r

2

[

cos

(

lmZrθm + lsNθs + γ c
t
−
+ γ r

t
−

)

+ cos

(

lmZrθm − lsNθs + γ c
t
−
− γ r

t
−

)]

.

(14)
f lm,ls
m,s (θm, θs, t) =

Elm,ls
c,r

2

{

cos

[

lmZr�ft − (lmZr + lsN )θs −

(

γ c
t
−
+ γ r

t
−

)]

+ cos

[

lmZr�ft − (lmZr − lsN )θs −

(

γ c
t
−
− γ r

t
−

)]}

counts describe their geometrical topologies on the 
ring gear side and the planet side.

Comparison between Tables 1 and 2  implies that qm 
can be the lsth harmonic in the planet-pass excitation, 
and qs can be the lmth harmonic in the mesh excita-
tion. Table 3 unifies the previous results and shows that 
whatever the tooth and planet counts are, the excited 
wavenumber is mathematically equal to their linear 
combination, where the coefficients are the harmonic 
orders of the excitations on the planet and ring gear 
teeth, respectively.

3 � Mesh Sideband Analysis
The mesh and planet-pass excitations interact with one 
another leading to sideband. This section addresses it 
on the basis of symmetries, where the distinction is the 
treatment using two types of signal collection patterns 
with the modulation between the mesh and planet-pass 
signals.

3.1 � Signal from Ring‑Planet Meshes
For the convenience of signal collection, the accelerome-
ter is normally fixed on the ring gear such that the signals 
from planets can be easily collected. This section takes 
the radial direction as  an example to address the side-
band behaviors. The distinction here is the introducing 

Table 3  Exciting conditions for  mesh and  planet-pass 
vibrations

where “w”, “+” and “−” are wavenumber, backward and forward traveling waves, 
respectively

Exciting conditions Mesh and planet-pass frequency vibrations

w = ±lmZr ± lsN The wth elastic vibration is excited by the lmth 
mesh-frequency and the lsth planet-pass-
frequency excitations

w �= ±lmZr ± lsN The wth elastic vibration related to the lmth 
mesh-frequency and the lsth planet-pass-
frequency excitations is suppressed

of mesh phase. The amplitude-modulating signal induced 
by the ith planet motion is written as

where avmi  , θm , and vm are amplitude, position angle, 
and harmonic order, respectively. Similar to the mesh 
and planet-pass vibration analyses, the amplitude in the 

(15)x
vm
i = a

vm
i cos vm

(

θm + ψc
i

)

,
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following derivation is also unknown but does not affect 
the desired results.

Assuming that the lmth signal generated by the ith 
mesh position is

where blmi  is also an unknown amplitude.
Wherever the static accelerometer is, the harmonic sig-

nal from the ith planet is the product of the amplitude-
modulating and meshing vibration signals [39, 41],

The overall signal is the superposition of those gener-
ated from N mesh positions, which is written as

From Eqs. (5) and (15)–(18), the sidebands are sum-
marized in Table  4. They are determined by basic 
parameters, though only those orders being multiples 
of planet count can survive. In this table, vm and Q′

m are 
the modulating order and integer, respectively.

3.2 � Signal from Ring Gear Tooth
The existing studies are generally focused on the vibra-
tion signal from the planets, but there exists an alter-
native view. The resulting signals can be determined by 
examining the excitation upon the ring gear teeth. 
If the accelerometer is still  fixed on ring gear and the 
radial direction is used, the amplitude-modulating sig-
nal induced by the excitation on the jth ring gear tooth 
can be written as

where avsj  , θs , and vs are the unknown amplitude, position 
angle, and harmonic order, respectively. The lsth signal 
generated from the jth ring gear tooth is assumed as

(16)y
lm
i = b

lm
i cos lm

(

ZrΩft + ϕc
i

)

,

(17)zi = x
vm
i · y

lm
i .

(18)Zm =

N
∑

i=1

zi.

(19)x
vs
j = a

vs
j cos vs

(

θs + ψ r
j

)

,

(20)y
ls
j = b

ls
j cos ls

(

Nωft + ϕr
j

)

,

where blsj  is the amplitude.
Similarly, the harmonic signal from the jth ring gear 

tooth is the product of amplitude-modulating and 
meshing vibration signals

The net signal is obtained by the superposition of 
those from Zr gear teeth as

From Eqs. (5) and (19)‒(22) and after some opera-
tions similar to the preceding sections, the mesh side-
bands are determined, as given in Table 5, where only 
the orders that are multiples of ring gear tooth count 
can survive.

3.3 � Comparison between Signal Collections
Similar to the elastic vibration induced by the mesh 
excitation, the sidebands collected from the ring-planet 
meshes and ring gear teeth also have inherent connec-
tions. While their physical natures are different, the side-
band ranges are the same due to the modulation between 
the two types of excitations, especially the act-react 
relation between planets and ring gear. A comparison 
between Tables 4 and 5 shows that the sidebands equals 
the linear combination of ring gear tooth and planet 
counts; Q′

m can be the harmonic ls in the planet-pass 
excitation, and Q′

c can be the lmth harmonic in the mesh 
excitation. Consequently, the results in Tables 4 and 5 are 
unified in Table 6, where v is the modulating order.

4 � Unique Vibration of Helical Ring Gear
This work uses analytical methods to deal with various 
excitations and presents simple expressions governing 
the occurrence or suppression of the mesh and planet-
pass vibrations. The results imply that the  two types 
of  apparently isolated vibrations have inherent con-
nections and share the same exciting conditions. The 
excited wavenumber is the linear combination of the 
ring gear tooth and planet counts, which is equal to the 

(21)zj = x
vs
j · y

ls
j .

(22)Zc =

Zr
∑

j=1

zj .

Table 4  Exciting conditions for sidebands excited by mesh 
excitations on planets

Exciting conditions Sidebands

vm = ±lmZr ± Q′
mN Sidebands at lmZr ± vm are excited

vm �= ±lmZr ± Q′
mN Sidebands at lmZr ± vm are sup‑

pressed

Table 5  Exciting conditions for sidebands excited by mesh 
excitations on ring gear teeth

where "vs" and " Q′
c " are the modulating order and integer, respectively

Exciting conditions Sidebands

vs = ±lsN ± Q′
cZr Sidebands at lsN ± vs are excited

vs �= ±lsN ± Q′
cZr Sidebands at lsN ± vs are sup‑

pressed
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modulating signal order. The mesh and corresponding 
planet-pass vibrations are excited simultaneously, and 
the sideband is the external behavior of the excitations’ 
modulation.

To further refine results, this section introduces the 
greatest common divisor (GCD) of the ring gear tooth 
and planet counts, C, where C = 1, 1 < C < N, and C = N, 
like those in Refs. [1, 52]. Based on Tables  3 and 6, the 
mesh and sideband vibrations are classified into three 
groups, and each has a specific wavenumber and modu-
lating signal order, as summarized in Table 7. The results 
clarify the relationships between basic parameters, 
dual-frequency excitations, and mesh and planet-pass 
vibrations.

This classification includes three types of phasing rela-
tions: the in-phase, sequential-phase, and counter-phase 
[3], which corresponds to the cases where phasing factors 
are zero, one, and others, respectively [25]. The forgoing 
analyses verify that the sideband can arise even in healthy 
PGT, in particular when the elasticity is significant for 
the thin ring gear subjected to heavy load. For this case, 
the sideband can be even more significant  because of 
the transition effect between the sensor and planets and 
the  traditional planet-pass errors. Whether the specific 
mesh-frequency, sideband, or its harmonics are excited 
or not depends on the lead or lag timing-relation between 
different mesh positions, that is, the combination of the 
ring gear tooth and planet counts, and to what degree the 
excitation frequency is close to a natural frequency.

5 � Numerical Verification
This section verifies the analytical results based on three 
sample helical PGT with equally-spaced planets and dis-
tinct mesh phases. For comparison purpose, the planet 
count is set to be fixed while the difference between the 
central gear tooth counts is small, as shown in Table  8. 
While most of the basic parameters are presented here, 
only those related to the ring gear are utilized because 
the focus is on the ring gear’s vibration.

More specifically, the ring gear tooth and planet counts 
are different from one case to another. In the three cases, 
the GCDs are four, two, and one, respectively. The con-
figurations create different mesh phases and lead to dis-
tinctive elastic vibrations. Since the tooth count is slightly 
changed to ensure comparability, the ring gear’s modal 
properties can be reasonably considered to be unchanged 
such that the main difference between the forced 
responses is mainly caused by the mesh phase.

5.1 � Free Vibration
The free vibration is first calculated to better inter-
pret the forced vibration. The Finite Element analysis 
is performed and the ring gear’s modal information is 
extracted, as given in Table  9 and Figure  3. Four types 
of vibration modes, according to deformation period, 
are categorized as radial inextensional (RIN) modes 
(Figure  3a), extensional (EXT) modes (Figure  3b), out-
of-plane bending (OPB) modes (Figure  3c), and tor-
sional (TOR) modes (Figure  3d). These modes provide 

Table 6  Exciting conditions for mesh sideband

Exciting conditions Sidebands collected from planets Sidebands collected from ring 
teeth

v = ±lmZr ± lsN Sidebands at lmZr ± vm are excited Sidebands at lcN ± vs are excited

v �= ±lmZr ± lsN Sidebands at lmZr ± vm are suppressed Sidebands at lcN ± vs are suppressed

Table 7  Exciting conditions for elastic mesh and sideband vibrations

where S1 = 2, 3, …, INT(N/2), S2 = C, 2C, 3C, …, C × INT[N/(2C)], and qs, qr, Q1, and Q2 are integers

GCDs Planet counts Exciting conditions Wavenumbers Modulating 
orders

C = 1 N = 2, 3 lmZr = qsN or lsN = qrZr Q1N Q2N

lmZr ± 1 = qsN or lsN ± 1 = qrZr Q1N ± 1 Q2N ± 1

N ≥ 4 lmZr = qsN or lsN = qrZr Q1N Q2N

lmZr ± 1 = qsN or lsN ± 1 = qrZr Q1N ± 1 Q2N ± 1

Others Q1N ± S1 Q2N ± S1

1 < C < N N = 2, 3 lmZr = qsN or lsN = qrZr Q1N Q2N

N ≥ 4 lmZr = qsN or lsN = qrZr Q1N Q2N

Others Q1N ± S2 Q2N ± S2

C = N – lmZr = qsN or lsN = qrZr Q1N Q2N
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necessary information for the verification of the analyti-
cal predictions. All modes exhibit periodicity due to the 
geometrically closed shape of the ring gear. 

5.2 � Forced Vibration
Harmonic response is performed. For the sake of con-
venience, the mesh excitation is simulated in the three 
orthogonal directions. This work  enters both the real 
and imaginary components of each harmonic excita-
tion  to accomplish the phase lags between different 
mesh positions. According to the PGT’  symmetries, 
the phase  lags can be written as 2πl(i − 1) × 64/4, 
2πl(i − 1) × 66/4, and 2πl(i − 1) × 65/4, respectively, 
where i = 1, 2, 3, 4, and l = 1, 2, 3,…. Owing to the simi-
larities between different harmonic responses, only the 
first harmonic in case I, the first and second harmonics 
in case II, and the first, second and fourth harmonics 
in case III are presented here. In order to illustrate the 
phasing effect, Figure  4 plots the mesh excitations  in 
the three directions, where  the three projections are 
different in amplitude and direction.

Figure  5 illustrates the responses for a range of mesh 
frequencies. For case I, no matter what the harmonic is, 

the exciting condition is always satisfied when the wave-
number w  is zero or the multiple of the value of four. It 
can be observed from Figure 5(a) that the combinations 
of the harmonic l and wavenumber w satisfied with res-
onance are {l, w} = {1, 4(RIN)}, {1, 4(OPB)}, {1, 0(TOR)}, 
{1, 0(EXT)}, {1, 8(RIN)}, {1, 4(TOR)}, and {1, 8(OPB)}. 
That is, only the zero, four, and eight wavenumbers are 
excited, but others are absent. For case II, the com-
binations become {l, w} = {1, 2(RIN)}, {1, 2(OPB)}, {1, 
6(RIN)}, {1, 2(TOR)}, {1, 6(OPB)}, and {1, 2(EXT)}, and 
{l, w} = {2, 4(RIN)}, {2, 4(OPB)}, {2, 0(TOR)}, {2, 0(EXT)}, 
{2, 8(RIN)}, {2, 4(TOR)}, and {2, 8(OPB)}, as shown in 
Figures  5(b) and (c), respectively, which are also satis-
fied with that condition. For case III, the corresponding 

Table 8  Specifications of  three sample PGT with  distinct 
phases

Items Case I Case II Case III

Sun gear tooth count 40 38 39

Ring gear tooth count 64 66 65

Planet tooth count 12 14 13

Planet count 4

Ring gear

 Inner radius (m) 0.116

 Outer radius (m) 0.128

 Axial length (m) 0.020

 Elastic modulus (GN/m2) 206

 Density (kg/m3) 7.85 × 103

 Poisson ratio 0.3

Table 9  Natural frequencies (Hz)

Modes Wavenumber w

0 1 2 3 4 5 6 7 8 9

RIN – – 508 1428 2711 4328 6254 8462 10924 13616

OPB – – 715 2123 4086 6501 9284 12362 15677 –

EXT 6710 9466 14946 – – – – – – –

TOR 5753 6679 8937 11801 14929 – – – – –

w=2           w=3     w=4

a  Radial inextensional modes

w=0  w=1   w=2

b  Extensional modes

w=2   w=3              w=4

c  Out-of-plane bending modes

w=0      w=1    w=2

d  Torsional modes

Figure 3  Typical helical ring gear’s vibration modes
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combinations are {l, w} = {1, 3(RIN)}, {1, 3(OPB)}, {1, 
5(RIN)}, {1, 5(OPB)}, {1, 1(TOR)}, {1, 7(RIN)}, {1, 7(RIN)}, 
{1, 1(EXT)}, {1, 3(TOR)}, {1, 7(OPB)}, and {1, 9(RIN)}, {l, 
w} = {2, 2(RIN)}, {2, 2(OPB)}, {2, 6(RIN)}, {2, 2(TOR)}, 
{2, 6(OPB)}, and {2, 2(EXT)}, and {l, w} = {4, 4(RIN)}, 
{4, 4(OPB)}, {4, 0(TOR)}, {4, 0(EXT)}, {4, 8(RIN)}, {4, 
4(TOR)}, and {4, 8(OPB)}, as shown in Figures  5(d) to 
(f ), respectively, also well consistent with the analytical 
predictions.

The wavenumber in the analytical results governs vari-
ous deformations. The distinct behaviors of the mesh and 
sideband vibrations are the excitation or neutralization 
of the harmonic mesh and planet-pass excitations  due 
to their distinct phases. The fundamental reason behind 
this  is the structure, excitation, and deformation perio-
dicities (symmetries) in the three orthogonal directions. 
According to the current results, if the transducer is 
mounted in the axial direction, the same results can be 
obtained because the symmetries are still held.

6 � Comparison and Discussion
The above sections examine the typical vibrations of the 
helical planetary ring gears. The analytical results regard-
ing mesh vibrations have been verified by numerical 
method, though the sideband vibration has been not yet. 
This section makes the following comparisons with  the 
existing results and discusses  the mesh and planet-pass 
vibrations.

6.1 � Analysis Method
This work employs  the superposition  and  modulation 
methods to examine the mesh and sideband vibrations. 
Different from Refs. [1, 52–55], this work introduces 
the dual-frequency excitations to deal with the elastic 
vibration and signal analysis. The modulation method 
has been used by the existing literature to address sig-
nal modulation between the classical mesh and shaft 
frequency excitations, though this work uses this idea 
to examine the excitation interaction between the heli-
cal ring gear and planets. Further, the deformations 
here cover more possibilities, including in-plane bend-
ing and extensional, out-of-plane bending and torsional 
deformations. The superposition and modulation meth-
ods have different views toward the mesh and side-
band vibrations. The former is focused on the response 
related to individual component and phase lag needs to 
be introduced, but the later is concerned with the exci-
tation  on concentric components without introduc-
ing the phase lag. In spite of the differences, they have 
been successfully used to deal with the elastic vibration 
and signal analysis  by introducing the dual-frequency 
excitations and signals.

6.2 � Mesh Vibration
Mesh vibrations have been studied by previous research-
ers with various methods. Wu and Parker [11] and Parker 
and Wu [12] built up an elastic-discrete model and exam-
ined the rigid-elastic vibration of spur PGT, and they 
proved the rotational, translational, planet, and purely 
ring modes, each of which has specific ring gear wave-
number. Authors of this work obtained the first three 

a  Case I b  Case II c  Case II 
(1st harmonic) (1st harmonic) (2nd harmonic)

d  Case III    e  Case III   f  Case III 
(1st harmonic) (2nd harmonic) (4th harmonic)

Figure 4  Mesh excitations on the helical ring gears
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elastic modes by using the superposition method [1, 
52]. Since only the ring gear and ring-planet mesh are 
included there, the purely ring modes in Ref. [11] cannot 
be found. Similar vibration  modes have been found  for 
spur and helical ring gears, though the wavenumber 
links more deformations. The reason behind this is that 
the methods focus on the deformation’s period instead of 
its amplitude such that they have general meaning. This 
has been verified by the comparison between the results 
in this work and those in Ref. [1].

6.3 � Sideband Vibration
Mcfadden and Smith [38], Mcnames [39], and Zhang 
et  al. [41] examined the sideband vibration and gained 
much valuable insights. Compared with the previous 
studies, the distinction here is the dual-signal collection 
aimed at the two typical excitations. In doing so, the 
relationships between the sideband vibrations are iden-
tified. They are similar in mathematical expressions for 
different excitations. The sideband order is equal to the 
modulating signal order. This has practical meaning in 
fault diagnosis, where special attention needs to be paid 
to the recognition between the normal elastic vibra-
tion and those excited by planet-pass errors in order 
to identify the actual fault, especially for thin ring gear 
subjected to heavy load. While this work takes the radial 
direction as an example, the results are not confined by 
this. The same results can be obtained by detecting axial 
deformation without any essential changes to the above 
analyses.

6.4 � Relation between Mesh and Sideband Vibrations
The mesh and planet-pass excitations interact with 
one another through amplitude modulation leading 
to mesh sidebands. The present results imply that the 
elastic  vibration and sidebands share the same exciting 
rules. That is, the excited wavenumber is determined 
by the mesh and planet-pass excitations, and the same 
is true for the sideband order. The excited wavenumber 
and modulating signal order are always  mathematically 
equal to each other. Whether the mesh, sideband, or their 
harmonics can be excited or not depends on the phase 
lag, and to what extent the exciting frequency is close 
to the natural frequency. Although some insights have 
been gained  in this work, only the amplitude modula-
tion is considered. More efforts can be made to identify 
the source of additional harmonics induced by frequency 
modulation, and in particular the connections  between 
the mesh and sideband vibrations of the helical ring gears 
when incorporating the base motions [56], worm gear 
[57], and even integrated system [58].

7 � Conclusions

(1)	 This paper examines the mesh and sideband vibra-
tions of the helical planetary ring gears. Meth-
ods and results have been verified by numerical 
approach and strict comparisons with the existing 
studies.

(2)	 Dual-frequency  superposition  and  modulation 
methods are used to address the mesh and sideband 
vibrations. The relationships between the ring gear 
tooth count, planet count, and unique vibrations 
are obtained as simple closed-form expressions.

(3)	 Two types of excitations are combined to examine 
the mesh and sideband vibrations, which is based 
on  the structure and excitation  symmetries and 
action-reaction relation between the engaged com-
ponents.

(4)	 The wavenumbers regarding the three distinct mesh 
phases are QN, QN ± 1, and QN ± (C, 2C, 3C,…, 
C × INT(N/(2C))), each of which creates distinct 
sidebands and covers in-plane bending and exten-
sional, out-of-plane bending and torsional deforma-
tions.

(5)	 Sidebands can be induced by elastic vibration 
instead of the planet-pass errors  only, where the 
wavenumber is equal to modulating harmonic 
order. The mesh and sideband vibrations are deter-
mined by  the lead or lag timing-relation between 
the mesh positions and the excitations.

(6)	 Symmetry provides a basis for the superposi-
tion and  modulation methods, which is also the 
root cause of the typical vibrations. Since no other 
restriction is imposed except for symmetry, the 
methods can find application in the symmetry-
related issues in other power-transmission systems.

List of Symbols
N: planet count; Zr: tooth count of ring gear; ψc

i : spatial phase of the ith (i = 1, 
2, 3, …, N) planet; ψ r

i : spatial phase of the ith tooth of ring gear; ϕc
i : time 

phase of the mesh excitation wave at the ith mesh position; ϕr
j : time phase 

of the planet-pass excitation wave on the jth (j = 1, 2, 3, …, Zr) ring gear tooth; 
V

lm
i : the lmth harmonic excitation at the ith mesh position; W

ls
j : the lsth 

harmonic excitation on the jth ring gear tooth; lm: harmonic order of mesh 
excitation; ls: harmonic order of planet-pass excitation; A

lm
i : amplitude of 

lmth mesh excitation at the ith mesh position; B
ls
j : amplitude of lsth planet-

pass excitation on the jth ring gear tooth; m: wavenumber regarding mesh 
excitation; n: wavenumber regarding planet-pass excitation; θm: position 
angle in carrier-fixed frame; θs: position angle in ring-fixed frame; ωf : rotating 
speed of planet; γ c

θ
: position lag between mesh excitation and response; γ c

r
: time lag between mesh excitation and response; γ r

θ : position lag between 
planet-pass excitation and response; γ r

r : time lag between planet-pass 
excitation and response; qm, qs: integers; γ c

t
−

: harmonic excitation phase in 
carrier-fixed frame; γ r

t
−

: harmonic excitation phase in ring-fixed frame; x
vm
i

: amplitude-modulating signal at the ith planet; a
vm
i : amplitude of the ampli‑

tude-modulating signal; vm: harmonic order of the amplitude-modulating 
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signal; y
lm
i : the lmth signal generated at the ith mesh position; b

lm
i : amplitude 

of the mesh signal; Q′
m , Q′

c: integers; C: GCD of the ring gear tooth and 
planet counts; fm(θm, t): harmonic excitation in the carrier-fixed frame; fs(θs, t): 
harmonic excitation in the ring-fixed frame; Clm

c : the lmth harmonic ampli‑
tude; Dls

r : the lsth harmonic amplitude.
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