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Minimum Time Overtaking Problem 
of Vehicle Handling Inverse Dynamics Based 
on Two Kinds of Safe Distances
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Abstract 

Overtaking accidents caused by improper operations performed by a driver occur frequently. However, most stud‑
ies on overtaking safety have neglected research into driver control input. A novel method is proposed to obtain the 
driver control input during the overtaking process. Meanwhile, to improve the safety of overtaking, two types of safe 
distances, and the time of the overtaking are considered. Path constraints are established when considering the two 
types of safe distances. An optimal control model is established to solve the minimum time maneuver under multiple 
constraints. Using the Gauss pseudospectral method, the optimal control problem is converted into a nonlinear pro‑
gramming problem, which is then solved through sequential quadratic programming (SQP). In addition, the effective‑
ness of the proposed method is verified based on the results of a Carsim simulation. The simulation results show that 
by adopting an inverse dynamics method to solve the manipulation problem of the vehicle’s minimum overtaking 
time, the manipulation capability of a vehicle in completing an overtaking safely within the minimum time can be 
obtained. This method can provide a reference for research into the active safety of manned and unmanned vehicles.
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1  Introduction
With continuous improvements in traffic conditions, 
vehicles have entered a high-speed era. It is thus neces-
sary to solve the “minimum time problem” in vehicle 
handling dynamics to satisfy the stability, safety, maneu-
verability, and high-speed characteristics of a vehicle. 
With the aim of eliminating the restrictions of slow vehi-
cles or other factors such as road structures, high-speed 
vehicles will choose when to change lanes to obtain a bet-
ter driving environment or achieve the desired driving 
purposes.

The driver’s control input will be affected by the driv-
er’s subjective feelings, previewing time, reaction time, 
and other uncertain factors, which lead to a lack of uni-
form and accurate mathematical models in the study of 
closed-loop systems [1–5]. The study of inverse dynamics 
in vehicle handling is in contrast to the positive problem. 

When setting up a model without a driver, the driver’s 
input can be obtained if the model of the vehicle and 
the motion state are known [6, 7]. This method is able to 
compare the maneuverability of different vehicles oper-
ated in the most efficient manner. The specified maneu-
verability involves accurately reaching a given state 
variable [8, 9], tracking a given path accurately [10–12], 
and passing through the given path within the shortest 
time without deviating from the given path boundary 
[13, 14]. The latter situation is the issue studied in this 
research.

Bernard et  al. [15, 16] presented a nonlinear inverse 
model of a vehicle that simulates combined steering 
and braking/driving, the results of which show that the 
inverse method is useful in solving the problem of path 
tracking under different braking/driving scenarios. Their 
model has provided a new idea regarding the devel-
opment and application of vehicle handling dynam-
ics. Fujioka et al. [17] used a transient vehicle dynamics 
model to represent a vehicle with different driving and 
steering configurations, and a conjugate gradient descent 
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method was used to solve the minimum time handling 
problem in which the starting point, ending point, and 
trajectory are not constrained. However, this will not 
occur so universally in general application. Hendriks 
et al. [18] studied the optimal handling inverse problem 
by applying an optimal control theory and Pontryagin’s 
minimum principle, the results of which show that dif-
ferent vehicle configurations have different optimal con-
trol strategies, and their method can be used to evaluate 
the optimal transient handling performance of a vehicle. 
Their algorithm is rather robust with respect to inaccu-
rate starting values, but is the least efficient in terms of 
speed of convergence. Casanova et al. [19, 20] established 
a vehicle steering control model based on the linear opti-
mal discrete time preview control theory, and obtained 
the control input and optimal completion time using an 
inverse dynamics method. Andreasson et al. [21, 22] used 
the inverse dynamics method to study the vehicle chas-
sis control, the results of which show that the method is 
effective for dealing with the complex problems of chassis 
control. Boyer et al. [23] used a handling inverse dynam-
ics method to study the multi-body dynamics of a vehicle 
and analyzed its maneuverability. Wang et  al. [24] used 
a multiple shooting method to study the emergency col-
lision avoidance problem. However, the linearization 
applied in this method makes the quadratic programming 
problem deviate significantly from the original model. 
Liu et al. [25–27] used the Gauss pseudospectral method 
to study the optimal path tracking control problem. Their 
method shows many advantages compared to previous 
traditional methods. However, all research in this regard 
was based on the assumption that obstacles are station-
ary, and dynamic obstacles were not considered.

In summary, the above studies did not involve the 
minimum time handling problem while overtaking in a 
dynamic environment, that is, the lateral and longitudinal 
safety distances in the minimum time handling problem 
while overtaking were not considered. The longitudi-
nal safety distance refers to the idea that the overtaking 
vehicle should keep a certain distance with the overtaken 
vehicle during the overtaking process, thereby avoiding 
traffic accidents such as a rear-end collision. The lateral 
safety distance refers to the lateral lane constraint, as well 
as the constraint of the vehicle width variation caused 
by a roll. The lateral safety distance is used to ensure the 
vehicle completes the overtaking behavior only within 
its own lane and the left adjacent lane; this can avoid 
the scraping of two vehicles owing to variations in body 
width. Therefore, considering the influence of the longi-
tudinal and lateral safety distances, with the aim of over-
taking the front vehicle as quickly as possible, the optimal 
overtaking trajectory and the shortest overtaking time 
are figured out using the inverse dynamics method.

2 � Vehicle Motion Model
2.1 � 3‑Degree of Freedom Vehicle Model
Assuming that the tire cornering properties are within 
the linear range, the vehicle steering motion model is 
simplified as a 3-degree of freedom (DOF) linear vehicle 
model with lateral motion, yawing motion, and longitudi-
nal motion, as depicted in Figure 1, where the differential 
equations of motion are expressed as follows:

where v is the lateral velocity; u is the longitudi-
nal velocity; ωr is the yaw rate of the vehicle; m is the 
total mass of the vehicle; Iz is the moment of inertia 
around the vertical axis; a, b are the distances from the 
center of the mass to the front and rear axles, respec-
tively; k1, k2 are the comprehensive cornering stiff-
ness of the front and rear wheels, respectively; δ is the 
steering angle of the front wheel; Fyf  is the cornering 
force of the front wheel; Fyr is the cornering force of 
the rear wheel; Fxf  is the driving/braking force of the 
front wheel (when Fxf  ≥ 0, Fxf  is the driving force, and 
when Fxf  < 0, Fxf  is the braking force); Fxr is the driv-
ing/braking force of the rear wheel; Ff  is the roll-
ing resistance ( Ff = mgf  , where f is the coefficient 
of the rolling resistance); and Fw is the air resistance 
( Fw = CDA(3.6u)

2/21.15 , where CD is coefficient of air 
resistance and A is frontal area).

Considering the influence of the driving/braking force, 
the lateral forces of the front and rear wheels are

(1)
v̇ = −uωr +

Fyf cos δ + Fyr + Fxf sin δ

m
,

ω̇ =
aFyf cos δ − bFyr + aFxf sin δ

Iz
,

u̇ = vωr

Fxf cos δ − Fyf sin δ + Fxr
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Figure 1  3-DOF vehicle model
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where ϕ is friction coefficient of the road surface, and 
Fzf and Fzr are the vertical forces of the front and rear 
wheels, respectively.

Considering the longitudinal load transfer, the vertical 
forces of the front and rear wheels are

where hg is the height of vehicle’s center of mass.
To simulate the trajectory of the vehicle, we established 

a ground reference coordinate system (Figure 1). Letting 
the coordinates of the vehicle’s center of mass in the xoy 
coordinate system be x, y, and the angle between the x’ 
axis of the vehicle coordinate system and the x axis of 
the ground reference coordinate system be θ, the vehicle 
velocity in the ground reference coordinate is projected 
as

2.2 � Vehicle Overtaking Model Based on Two Kinds of Safe 
Distances

Overtaking is a common phenomenon in the process of 
vehicle driving. Inappropriate timing of an overtaking, 
or operational errors, can lead to traffic accidents. In this 
paper, the entire overtaking process is divided into three 
phases: lane changing, overtaking, and merging. Taking 
safety as the premise, aiming at overtaking the vehicle 
ahead as quickly as possible, and considering the safety 
distance and relationship between the overtaking and 
overtaken vehicles during the overtaking process, a new 
vehicle-overtaking model is established to provide judg-
ment and support.

In this paper, the simulated scenarios of a vehicle over-
taking are simplified as follows:

(1)	 The driving sections are assumed to be straight and 
flat roads within the city.

(2)	 There is only one overtaken vehicle, as shown in 
Figure 2, and vehicles A and B are in the same lane, 
with no other vehicles in the adjacent lane.

(3)	 Vehicle B is in front of vehicle A.

(2)

Fyf = k1

(

v + aωr

u
− δ

)

√

1−

(

Fxf

ϕFzf

)2

+

(

Fxf

k1

)2

,

Fyr = k2

(

v − bωr

u

)

√

1−

(

Fxr

ϕFzr

)2

+

(

Fxr

k2

)2

,

(3)















Fzf =
mgb− (Fxf + Fxr)hg

a+ b
,

Fzr =
mga+ (Fxf + Fxr)hg

a+ b
,

(4)
{

ẋ = ucosθ − vsinθ ,

ẏ = vcosθ + usinθ .

(4)	 Vehicle B drives straight ahead with a uniform 
velocity, while vehicle A overtakes B with a uniform 
velocity.

The vehicle should keep a certain distance, which is 
the safety distance of vehicle A, with the vehicle ahead 
during the overtaking to avoid a rear-end collision 
during a lane change. In addition, the safety distance, 
which is now the safety distance of vehicle B, should 
still be maintained after the overtaking is achieved. 
In view of driving safety, the normal overtaking pro-
cess is as follows: when the distance between the front 
and rear vehicles is in the longitudinal safety distance, 
vehicle B can start overtaking, and enters the original 
lane when the longitudinal distance is at least greater 
than the safety distance, as shown in Figure 2. Here, T0 
is the initial time of the overtaking, Tf is the terminal 
time of the overtaking, Da is the longitudinal safety dis-
tance when vehicle A is ahead of vehicle B, and Db is 
the longitudinal safety distance when vehicle B is ahead 
of vehicle A. The estimated time spent on overtaking is 
shown in the following:

where u1 and u0 are the speed of vehicles A and B, respec-
tively. The estimated driving distance of vehicle A in this 
process is S1 = u1t , the longitudinal safety distance of the 
two vehicles is Da , and the minimum distance for over-
taking is Db.

The 15th item in the “Measures for the Administration 
of Expressway Traffic,” published by the Chinese govern-
ment in March of 1995, stipulates that, “When driving a 
vehicle on a highway, it is necessary to maintain a suffi-
cient distance between the vehicle and the vehicle ahead 
which are in the same lane. Under normal conditions, 
when the driving speed is at 100 km/h, the distance head-
way should be 100 m or more, and when traveling at a 
speed of 70 km/h, the distance headway should be at least 
70 m.” In this paper, the speeds of the overtaking vehicle 
are 120 and 160 km/h, respectively. In addition, the speed 
of the overtaken vehicle is 80 km/h, and thus the safety 
distances are Da1 = 120 m, Da2 = 160 m, and Db = 80 m.

The side-slip angle of the vehicle will change when steer-
ing, resulting in a change in the width of the vehicle, the 

(5)t =
Da + Db

u1 − u0
,

0T fT2T1T

Figure 2  Process for minimum overtaking time
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variable quality of which is �L = hx sinφ , where hx is the 
height of the spring. In addition, the direction of the side-
slip angle will also change during this process. In order 
to ensure that no collisions will occur during the over-
taking process, assuming that the vehicle’s body width is 
Lo = L+ 2hx sinφm during the overtaking, where L is the 
body width of the vehicle when driving straight, and φm is 
the maximum slip angle when no rollover occurs, hxsinφm 
is thus considered to be the lateral safety distance in this 
study.

2.3 � Optimal Control Model
Optimal control is a method that uses a control law 
to make sure the controlled object can reach a certain 
required terminal state from the initial state, and ensures 
that the specified performance index reaches the minimum 
(or maximum) value. The driving safety of the vehicle can 
be enhanced a step further by adjusting the control input 
to the optimal value. The minimum time handling prob-
lem can be regarded as the optimal control problem. The 
control variables Z(t) are the angle of the steering wheel, 
δsw(t) , and the driving/braking force of the front wheel, 
Fxf (t) , and the control objective is to go through a given 
path within the minimum time.

Therefore, the performance index is

where t0 and te are the initial and terminal times, 
respectively.

The state equation can be expressed as

where X(t) =
{

v(t), γ (t), u(t), x(t), y(t) , θ(t)}T.
The longitudinal velocity u is constrained by the maxi-

mum vehicle velocity, and the lateral displacement y is con-
strained by the left and right boundaries of the trajectory. 
From Figure  2, we know that T0 is the initial moment of 
overtaking, and Tf is the terminal moment of overtaking, 
and thus we regard the space that vehicle B goes through 
from T0 to Tf as a fixed obstacle. The stake is arranged 
according to the technical requirements of the GB 6323-94 
test procedures, as shown in Figure 3. Therefore, the con-
straint for the lateral displacement y is f1(x) ≤ y ≤ f2(x), 
where f1(x) is the piecewise continuous function fit using 
the standard stake, and f2(x) is the upper bound of the left 
lane.

Here, δsw is bounded by the driver’s physiological limit, 
and the control variable Fxf is bounded by the road adhe-
sion. When the vehicle has front-wheel drive:

(6)J (Z) =

te
∫

t0

dt,

(7)Ẋ = f (X(t), Z(t)),

When the vehicle is under a braking force, and all 
wheels are assumed to be in a lock-braked condition, 
the constraints on Fxf and Fxr are expressed as follows:

The control variable Fxf is constrained by the maxi-
mum driving force provided by the power transmis-
sion system. According to the relationship between the 
engine speed and the speed of the vehicles, as well as 
the relationship between the engine output torque and 
the driving force, the relationship between the maxi-
mum driving force and the speed of the vehicles can be 
obtained based on the external characteristics of the 
engine.

The constraint used to prevent a rollover during the 
process of obstacle avoidance is

where B is the wheel track and K is a stability factor.
All constraints can be expressed through the following 

equation:

3 � Gauss Pseudospectral Method for Inverse 
Problem of Vehicle Handling Dynamics

For convenience, we summarized the inverse dynam-
ics problem above as the optimal control problem using 
Mayer as the optimization objective:

(8)

{

Fxf ≤
φmgb

a+b+φhg
,

Fxr = 0.

(9)

{

Fxf ≥ −
φmg(b+φhg)

a+b
,

Fxr =
a−φhg
b+φhg

Fxf.

(10)
u2δ

(a+ b)(1+ Ku2)g
≤

B

2hg
,

(11)ψ(X(t), Z(t)) = 0.

(11a)min J = ψ(x(te), te),

(11b)s.t., ẋ = f (x(t), z(t), t) t ∈ [t0, te],

(11c)ϕ(x(t0), t0, x(te), te) = 0,

(11d)C[x(t), z(t), t] ≤ 0,

 f 2(x)

 f 1(x)

T 0 T f

Figure 3  Test road for vehicle minimum overtaking time
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where 

 Equations (11a)‒(11d) can be obtained based on the 
objective function, dynamic equations, and constraints of 
the inverse dynamics problem.

The steps used to solve the inverse problem of the vehi-
cle handling dynamics through the Gauss pseudospectral 
method are as follows.

3.1 � Interval Transformation
Because the collocation points of the Gauss pseudospec-
tral method are distributed in the interval [−1, 1] , the 
time interval of the optimal control problem t ∈ [t0, te] 
should be converted into τ ∈ [−1, 1] when the above 
optimal control problem is solved using the Gauss pseu-
dospectral method, transforming the time variable 
t : τ = 2t/(te − t0)− (te + t0)/(te − t0) , and converting 
Eqs. (11a)‒(11d) into the following forms:

3.2 � Global Interpolation Polynomial Approximation 
of State Variables and Control Variables

The Gauss pseudospectral method selects N LG points 
and an initial point τ0 = −1 as nodes, constructs N+1 
Lagrange interpolation polynomials, Li(τ )(i = 0, . . . ,N ) , 
and uses them as the basis functions to approximate the 
state variables as

where a Lagrange interpolation polynomial function is 
presented as follows:

Let the approximate states on the nodes be equal to the 
actual states, that is, x(τi) = X(τi), (i = 0, . . . ,N ).

The Lagrange interpolation polynomials L∗i (τ ) are used 
as the basis functions to approximate the control variables, 
that is,

x(t) = [v(t) ωr(t) y(t) θ(t)u(t)],

z(t) = [δ(t) Fxf(t)]
T .

(12a)min J = ψ(x(τe), te),

(12b)s.t., ẋ =
te − t0

2
f (x(τ ), z(τ ), τ ; t0, te),

(12c)ϕ(x(τ0), t0, x(τe), te) = 0,

(12d)C[x(τ ), z(τ ), τ ; t0, te] ≤ 0.

(13)x(τ ) ≈ X(τ ) =

N
∑

i=0

Li(τ )X(τi),

(14)Li(τ ) =

N
∏

j=0,j �=i

τ − τj

τi − τj
.

where L∗i (τ ) =
∏N

j=1,j �=i
τ−τj
τi−τj

 . τi(i = 1, . . . ,N ) are the LG 
points.

3.3 � Convert the Dynamic Differential Equation Constraint 
into Algebraic Constraint

The derivative of the state variable can be obtained by 
taking the derivative of Eq. (12), thereby converting the 
dynamic differential equation constraint into an algebraic 
constraint, that is,

The differential matrix Dki ∈ RN×(N+1) is a constant 
value when the number of interpolation nodes is given, 
the expression of which is shown as follows:

where τk(k = 1, . . . ,N ) are the points in set κ, and 
τi(i = 0, . . . ,N ) belong to set κ0 = {τ0, τ1, . . . , τN }. Substi-
tute Eq. (16) for Eq. (11b), and convert it into a discrete 
state at the interpolation node τk(1 ≤ k ≤ N ). In this 
way, the dynamic differential equation constraints of the 
optimal control problem can be converted into algebraic 
constraints for k = 1, . . . ,N  , namely,

3.4 � Terminal State Constraint under Discrete Conditions
The nodes used in the Gauss pseudospectral method 
include N collocation points (τ1, . . . , τN ) , the initial point 
τ0 ≡ −1 , and the terminal point τe ≡ 1 . The terminal 
state Xe is not defined in Eq. (12), and the terminal state 
should also satisfy the dynamic equation constraint:

The terminal constraint is discretized and approxi-
mated through a Gaussian integration:

(15)z(τ ) ≈ Z(τ ) =

N
∑

i=1

L∗i (τ )Z(τi),

(16)ẋ(τ ) ≈ Ẋ(τ ) =

N
∑

i=0

L̇i(τ )X(τi) =

N
∑

i=0

DkiX(τi).

(17)Dki(τk) = L̇(τk) =

N
∑

l=0

∏N
j=0, j �=i, l(τk − τj)

∏N
j=0, j �=i(τi − τj)

,

(18)

N
∑

i=0

DkiX(τi) −
τe − τ0

2
f (X(τk), Z(τk), τk; τ0, τe) = 0.

(19)x(τe) = x(τ0)+

∫ 1

−1
f (x(τ ), z(τ ), τ ) dτ .

(20)

X(τe) = X(τ0)+
tf − t0

2

N
∑

k=1

ωk f (X(τk), Z(τk), τk , t0, te),
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where ωk =
∫ 1
−1 Li(τ ) dτ is the Gauss weight, and τk are 

the LG points.
The boundary value constraint Eq. (12c) and the path 

constraint Eq. (12d) are discretized at the interpolated 
points:

The solution to the optimal control problem trans-
formed from an inverse dynamics problem of vehicle 
handling is converted into solving the nonlinear pro-
gramming problem through the transformation men-
tioned above.

4 � Sequential Quadratic Programming Method 
(SQP)

The optimization method used in this paper is a type 
of SQP algorithm, namely, the Wilson–Han–Powell 
method, which is based on the general Lagrange–New-
ton method. The sequential quadratic programming 
method is a commonly used optimization method for 
solving the nonlinear programming problem. The basic 
thinking of SQP is to transform the nonlinear program-
ming problem into a series of quadratic programming 
problems according to the literature [28, 29].

Considering the optimal control problem with general 
nonlinear constraints,

where f (x) and  ci(x) are real-valued continuous func-
tions, at least one of which is nonlinear. Sub-problems 
are constructed as

where A(xk) = [a1(xk), . . . ,am(xk)] = ∇c(xk)
T, 

E = {1, 2, . . . ,me} , I = {me + 1, . . . ,m} , gk is the gradient 
of function f (x) at point xk, and Bk is the approximation 
of the Lagrange function’s Hessian matrix. The solution 
to the above sub-problems is dk. The Wilson–Han–Pow-
ell method used in this paper takes dk as the search direc-
tion of the kth iteration, which is the descent direction of 
the penalty functions.

The steps used by the stepwise quadratic program-
ming algorithm proposed by Han (1977) are as follows:

(21)ϕ(X(τ0), t0, X(τe), te) = 0,

(22)C[X(τk), Z(τk), τk; t0, te] ≤ 0.

(23)







min
x∈Rn

f (x),

s.t., ci(x) = 0, i ∈ E,
ci(x) ≥ 0, i ∈ I ,

(24)











min
d∈Rn

gTk d + 1
2d

TBkd,

s.t.,ai(xk)
Td + ci(xk) = 0, i ∈ E,

ai(xk)
Td + ci(xk) ≥ 0, i ∈ I ,

Step (1): 

Step (2): Solve the sub-problems above to obtain dk ; 
if 
∥

∥dk
∥

∥ ≤ ε , stop, and seek αk ∈ [0, δ] such that

Step (3): xk+1 = xk + αkdk , and calculate Bk+1 ; 
k = k + 1 , and return to step (2).

The penalty function P(x, σ) in Eq. (25) is L1’s exact 
penalty function, and εk is a nonnegative sequence that 
satisfies the following equation:

Calculate Bk+1 by quasi-Newtonian iteration

Use BFGS correction formula to calculate Bk+1

The optimal control problem of the time-varying 
system considered in this study can be solved when 
transforming it into a finite-dimensional nonlinear pro-
gramming problem using the direct collocation method 
above:

1.	 Divide the given partition interval into n equal parts, 
and n + 1 nodes can then be obtained.

2.	 Using sj as the estimated value of the control variable 
at the selected node, if the control variable value is 
known, then use the initial value of the state vari-
able xj to find the state variable value of each node 
in the sequential iterations, and thus we obtain xn+1 
and the performance index J. Therefore, the solution 
to the state equation and the performance index are 
regarded as the control variable functions of each 
node.

The finite-dimensional nonlinear programming prob-
lem after transformation is solved using the sequential 
quadratic programming method described above.

(25)
x1 ∈ Rn, σ > 0, δ > 0, B1 ∈ Rn×n, ε ≥ 0, k = 1.

(26)P(xk + αkdk , σ) ≤ min
0≤α≤δ

P(xk + αkdk , σ)+ εk .

(27)
∞
∑

k=1

εk < +∞.

(28)sk = xk+1 − xk ,

(29)

yk = ∇f (xk+1)− ∇f (xk)−

m
∑

i=1

(�k)i[∇ci(xk+1)− ∇ci(xk)].

(30)Bk+1 = Bk −
Bksksk

TBk

sTk Bksk
+

ykyk
T

sTk yk
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5 � Simulation
5.1 � Contrast Verification
Assuming that the vehicle is traveling in a one-way two-
lane environment, there are no vehicles in the adjacent 
lane, and both vehicles are traveling at a uniform speed.

To verify the correctness of the model, the optimal path 
of the inverse dynamics model is tracked using the fully 
nonlinear vehicle model in Carsim. The model parame-
ters of Carsim and the vehicle motion model are shown 
in Table 1. The simulation speed is 160 km/h.

A full nonlinear vehicle model in Carsim is used to 
track the optimal path by importing the path data from 
MATLAB. Figure 4 shows the path tracking performance. 
It can be seen that the trajectories are in good agreement, 
which indicates that the optimal path satisfies the vehicle 
dynamics constraint. Figure  5 shows the steering wheel 
angle of MATLAB and Carsim. It can be seen that the 
outputs of both are basically consistent, and thus the cor-
rectness of the inverse dynamics method is verified.

5.2 � Simulation of Overtaking Process
After an analysis of the simulation results of the over-
taking process under different test scenarios, test sce-
narios using different relative velocities of �v = 40 km/h 
and �v = 80 km/h were conducted, where the expected 
velocity of the overtaken vehicle is 80 km/h, and the 
expected velocity of the overtaking vehicle is 120 km/h 
and 160 km/h, respectively.

After iterative optimization, the shortest time for com-
pleting the overtaking process is 19.5 s and 23.4 s, respec-
tively, where the motion law is as follows: driving straight 
for a certain distance, and then turning left to change 
lanes. During the first and second lane changes, the vehi-
cle can be regarded as driving straight when travelling 
between the road boundaries.

Figure  6 shows the trajectory centerline constraints 
of the overtaking vehicle during the overtaking process 

when v  =160 and 120 km/h. It can be seen from Figure 4 
that the time to change lanes is earlier with a speed of 160 
km/h, and the longitudinal distance the vehicle drives 
during the process of a lane change is greater at v  =160 
km/h. During the overtaking process, the higher the speed 
is, the smaller the resulting longitudinal distance, and the 
greater the lateral distance. The reason for this is that the 
roll angle increases when the speed increases during the 
process of steering, and the projection width increases. 
The lateral safe distance between the two vehicles then 
increases, and thus the lateral distance driven during the 
overtaking process is greater with a higher speed.

The longitudinal projection distance between the over-
taking vehicle and overtaken vehicle, and the longitudinal 
projection distance between the overtaking vehicle and 
the lane boundary, are as shown in Figure  7. When the 
projection distance is zero, it indicates that the two vehi-
cle projections coincide in the driving direction. It can be 
seen from Figure  7 that the longitudinal projection dis-
tance between the overtaking vehicle and the overtaken 
vehicle is greater at a higher speed, and the longitudi-
nal projection distance between the overtaking vehicle 
and the lane boundary is smaller at a higher speed. The 

Table 1  Simulation parameters

Parameter Value

Vehicle quality m (kg) 1818.2

Distance of front axle from the mass center a (m) 1.463

Vehicle width L (m) 1.8

Distance of rear axle from the mass center b (m) 1.585

Yaw inertia Iz (kg·m2) 3885

Synthesized stiffness of front tires k1 (N/rad) – 62618

Synthesized stiffness of rear tires k2 (N/rad) –110185

Friction factor μ 0.8

Mass center height hg (m) 0.53

Sprung height hx (m) 1.3
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reverse is true at a lower speed. The reasons for this are 
described above.

During the overtaking process, the relationship 
between the longitudinal distance of the two vehicles 
and the driving distance is as shown in Figure 8. When 
the distance between the two vehicles is zero, it indicates 
that the lateral projections of the two vehicles coincide 
in the driving direction. From Figure  8, it can be seen 
that the absolute value of the slope during the process 

of a lane change is greater than the absolute value of the 
slope when driving straight; in addition, the slope of the 
curve during the process of merging is less than the slope 
of the curve when driving straight. The reason for this is 
that the relative longitudinal velocity of the two vehicles 
increases during a lane change, whereas the relative lon-
gitudinal velocity of the two vehicles decreases during the 
merging process.

In terms of the longitudinal distance that the vehi-
cle drives during the overtaking process, it can be seen 
from Figures 6, 7, 8 that the distance the vehicles drive is 
shorter when at a higher speed, and the distance that the 
overtaking vehicle and the overtaken vehicle drive in par-
allel is also shorter when at a higher speed. Thus, a higher 
speed is more conducive to driving safety.

The simulation results of the steering angle, roll rate, 
and yaw rate of the overtaking vehicle at different speeds 
are shown in Figures 9, 10, 11, respectively. It can be seen 
from Figures 9 and 10 that, at a speed of 160 km/h, the 
steering angle and roll rate are greater. Figure 11 shows 
that the yaw rate is smaller at 160 km/h, but the integral 
value of the yaw rate is greater when at a higher speed.

Therefore, considering the control input and response 
of the vehicle, starting the overtaking process at a lower 
speed is beneficial to the safe driving of the vehicle.

6 � Conclusions

(1)	 Considering the required longitudinal and lateral 
safe distances during the overtaking process, an 
optimal control model is established, where the 
overtaking time is regarded as the performance 
index.

(2)	 The Gauss pseudospectral method is applied to dis-
cretize the optimal control problem, which is then 
solved through sequential quadratic programming.
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Figure 7  Simulation results of longitudinal projection distance
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(3)	 The inverse dynamics method is verified using Car-
sim, and the outputs of Carsim and MATLAB are 
highly consistent. The optimal path satisfies the 
vehicle dynamics constraint, and the correctness of 
the inverse dynamics method is therefore verified. 
This method can be used to solve the minimum 
time in an overtaking problem using the constraints 
of two different types of safe distances.

(4)	 Not only can this study be used to evaluate the 
dynamic overtaking performance of a vehicle, as 
well as provide certain guidance on high-speed 
overtaking, it also provides a reference value for 
research into unmanned vehicles.
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