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Abstract 

Grinding chatter is a self-induced vibration which is unfavorable to precision machining processes. This paper 
proposes a forecasting method for grinding state identification based on bivarition empirical mode decomposition 
(BEMD) and least squares support vector machine (LSSVM), which allows the monitoring of grinding chatter over 
time. BEMD is a promising technique in signal processing research which involves the decomposition of two-dimen‑
sional signals into a series of bivarition intrinsic mode functions (BIMFs). BEMD and the extraction criterion of its true 
BIMFs are investigated by processing a complex-value simulation chatter signal. Then the feature vectors which are 
employed as an amplification for the chatter premonition are discussed. Furthermore, the methodology is tested and 
validated by experimental data collected from a CNC guideway grinder KD4020X16 in Hangzhou Hangji Machine Tool 
Co., Ltd. The results illustrate that the BEMD is a superior method in terms of processing non-stationary and nonlinear 
signals. Meanwhile, the peak to peak, real-time standard deviation and instantaneous energy are proven to be effec‑
tive feature vectors which reflect the different grinding states. Finally, a LSSVM model is established for grinding status 
classification based on feature vectors, giving a prediction accuracy rate of 96%.
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1  Introduction
Grinding is an abrasive machining process which is 
widely used in modern manufacturing practice to pro-
duce high surface quality and close tolerance [1–4]. 
Particularly with the increasing mature of ultra-high 
speed grinding, its advantages are further improved, 
that providing convenient conditions for development 
of aerospace technology, transportation, military and 
other industries [5, 6]. However, grinding chatter is one 
of the most unfavorable dynamic phenomena in grind-
ing operations including regenerative chatter, frictional 
chatter and mode coupling chatter. In practice, grinding 
chatter has negative impacts on the ultimate geometri-
cal workpiece accuracy, surface quality and productivity 
of machinery. Moreover, it leads to increased wheel wear 
and adds time and costs to manufacturing [7, 8]. Many 

theories have been proposed and experiments carried 
out to discover exactly what mechanism underlies grind-
ing chatter, with the aim of developing reliable suppres-
sion methods subsequently [9].

At present, only a few methods for chatter detec-
tion have been successfully and practically applied in 
industry. It is common for trained machine operators to 
identify the appearance of chatter through experience 
or observation, meaning that corresponding measure-
ments are not taken at the time that resulting in irrepa-
rable loss for the industry. Signal processing techniques 
and appropriate feature vectors are very important for 
chatter detection. In the past few decades, either non-
linear time series modeling [10] or spectral analysis [11, 
12] has been applied for chatter detection. Additionally, 
Tansel et  al. [13], adopted s-transformation to extract 
the damping index, making a very descriptive feature of 
chatter available for inspection in turning operations. 
Yao et al. [14], presented a two-dimensional feature vec-
tor for chatter detection based on the standard deviation 
of wavelet transforms in drilling machining which had 
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an advantageous identification time. In another study, 
Gradisek et al. [15] used the coarse-grained entropy rate 
as a chatter index in grinding and turning, as its value 
exhibits a drastic drop at the onset of chatter.

It is important to note that the signal processing meth-
ods proposed above were mostly based on the theory 
of Fourier transformation and that these traditional 
methods are not applicable to processing grinding sig-
nals (which are almost non-stationary and nonlinear). 
They can only detect chatter if it is already in an almost 
fully developed stage and easily to extract spurious fre-
quency and error information from chatter signals. In 
order to highly meet the demand of real-world produc-
tion, it is necessary to detect the onset of chatter before 
chatter marks have been made on the workpiece. Given 
this requirement, Rilling et  al. [16] proposed a novel 
method called the bivarition empirical mode decomposi-
tion (BEMD). In the third session of the HHT (Hilbert–
Huang Transform) International conference, BEMD was 
successfully applied to the monitoring of wind turbine 
conditions and displayed its feasibility as a method to 
determine weak features and integrate information from 
non-stationary and nonlinear signals [17].

The author of this paper also has made a compari-
son between EMD and BEMD in extracting features for 
grinding chatter signals to show the advanced perfor-
mance of BEMD, that the paper is accepted by the 2016 
11th International Conference on Reliability, Main-
tainability and Safety (ICRMS’ 2016). Thus will not be 
repeated in details here and just give out some brief 
conclusions about the distinctions between EMD and 
BEMD: (1) EMD is initially applied to a one-dimen-
sional signal and extracts zero-mean oscillating compo-
nents, whereas BEMD is applied to a bivariate signal and 
extracts zero-mean rotating components; (2) BEMD has 
calculation efficiency due to process complex-value sig-
nals simultaneously and only compute the upper enve-
lope using the maximum points, while EMD can only 
decompose signals one-by-one and has to obtain both 
upper and lower envelopes by connecting the extreme 
points; (3) The number of IMFs derived from signals 
by EMD are different, and can’t reveal any synchronous 
characteristics and phase shifting, nor can EMD extract 
an information fusion function. While the number of 
IMFs by BEMD is the same, it can extract an information 
fusion function well and preserve phase differences; (4) 
BEMD has facilitates the establishment of purified shaft 
vibration orbits and fully guarantees the correctness of 
results, which EMD cannot.

Additionally, there are several smart classifiers essential 
for grinding state identification, such as artificial neural 
network (ANN) [18, 19], fuzzy logic and support vector 
machines (SVM). Li et al. [20] used multilayer perceptron 

ANN to distinguish the tool breakage and cutting chatter. 
According to the trend of signal in time domain. Bedi-
aga, et  al. [21] established the fuzzy logical rule to ana-
lyze stability of cutting system. Moreover, Jiang et al. [22] 
adopted multi-class SVM to identify and classify cutting 
states that accuracy rate reached 95%. The ANN usually 
suffers from the problem of intrinsic defeats such as slow 
study speed, multiple local minima and over-fitting. Also, 
the prediction ability of fuzzy logic is inaccurate and its 
theory is still imperfect. SVM overcomes these deficien-
cies by using the structural risk minimization principle 
to enhance extensive ability and it also stresses the study 
of statistical learning rules with a small sample. In order 
to further improve the learning speed [23]. Suykens pro-
posed a modified version of SVM, i.e. the least squares 
SVM (LSSVM). In the LSSVM, the non-sensitive loss 
function is replaced by a quadratic loss function and 
the inequality constraints are replaced by equality con-
straints. Through constructing a loss function, the quad-
ratic programming problem is translated into solving 
linear equation group problems, which simplifies the 
complexity of calculation [24, 25].

The advantages of BEMD and LSSVM are combined in 
this paper for detecting and identifying grinding chatter. 
Section two gives a brief review of BEMD and LSSVM, 
as well as the extraction criterion of true BIMFs. Moreo-
ver, the peak to peak, real-time standard deviation and 
instantaneous energy are presented as feature vectors for 
the grinding chatter. In section three, a simulation chat-
ter signal is constructed and then processed by BEMD. 
Afterwards, peak to peak, real-time standard deviation 
and instantaneous energy are extracted from BIMFs. In 
section four, the benefits of the proposed method are 
further validated experimentally by processing grinding 
signals which are derived from the grinder KD4020X16, 
and then a LSSVM model is established to predict the 
grinding state. Finally, conclusions are presented in sec-
tion five, which also gives new directions for future work.

2 � BEMD and LSSVM
2.1 � A Brief Review of BEMD
2.1.1 � Algorithm of BEMD
The BEMD is proposed as an enhancement of EMD while 
inheriting all of its merits [26, 27]. BEMD is devoted to 
decomposing sequentially a complex-value signal into 
a collection of complex-value BIMFs which range from 
high frequency to low frequency, plus a non-zero mean 
low-degree polynomial remainder named the residue. 
Generally, the residue is considered as the trend of the 
signal. All BIMFs derived from the grinding signals are 
characterized as rotation components. Each of the BIMFs 
must satisfy the following conditions.
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(1)	 The number of extrema and zeros must be equal or 
different at most by one.

(2)	 The mean value of the envelope at any point defined 
by the local maximum points and the envelope as 
defined by the local minima must be zero.

The fundamental sifting process of BEMD can be 
depicted as follows.

S1	� Select a bivariate signal s(t) = x(t)+ iy(t) and a set 
of projection directions: ϕk = 2kπ/N , 1 ≤ k ≤ N

S2	� For 1 ≤ k ≤ N .

�S21	� Project the signal s(t) on directions ϕk : 

S22	� Extract all partial maximum points of pϕk (t) : 
{(tki , p

k
i )} , where i indicates number of individual 

maxima.
S23	� Interpolate the set of points 

{(

tki , p
k
i exp(iϕk)

)}

 by 
cubic spline interpolation to obtain the partial 
envelope curve in direction ϕk , namely, eϕk (t).

S3	� Calculate the mean of all envelop curves: 

S4	� Subtract the mean m̄(t) from s(t) to obtain g(t) : 

S5	� Examine if g(t) is a BIMF: 

�S51	� If not, replace s(t) by g(t) and repeat the procedure 
from step S2 until g(t) is a BIMF.

S52	� If it is, record the obtained BIMF and repeat the 
procedure from step S2 on the residual signal g(t).

As well as referring to the sifting process of BEMD, the 
s(t) can be expressed by the procedure:

where gm(t) denotes the mth complex-valued BIMF and 
rn(t) denotes the residue.

2.1.2 � Extraction Criteria of True BIMFs
It is worth noting that the above-generated BIMFs basi-
cally incorporate two components: true BIMFs and spuri-
ous BIMFs. These spurious BIMFs cannot exactly reflect 
the vibration peculiarities of grinding systems in a physi-
cal sense and this seriously interferes with the researchers’ 

(1)pϕk = Re[s(t) exp(−iϕk)].

(2)m̄(t) =
1

N

N
∑

k=1

eϕk (t),

(3)g(t) = s(t)− m̄(t).

(4)s(t) =

n
∑

m=1

gm(t)+ rn(t),

efforts to extract the feature vectors from signals and elimi-
nate the mechanism faults of grinders. In general, the gen-
eration of spurious BIMFs are summarized by the following 
factors: (1) the definition of BIMFs is only based on numer-
ical analysis, without referring to its physical significance; 
(2) the stopping criterion of the sifting process results in 
an excessive decomposition phenomenon; (3) end effect 
which can lead to serious deviation from the actual features 
of the signal is not fully eliminated; (4) either white noise 
or pulse interference which is superimposed on the vibra-
tion signal may produce high frequency spurious compo-
nents. Considering that the majority of people rely heavily 
on their experience to estimate the authenticity of BIMFs, 
this is not conducive to facilitating the expansion of the 
BEMD method. It is therefore necessary to use an efficient 
and reliable method to identify and eliminate the spurious 
BIMFs, a procedure which is of great importance to the 
extraction of the actual vibration mode and corresponding 
features of the time-frequency domain.

As the BIMFs are recognized as the orthogonal expres-
sion of the signal, the true BIMFs will have a higher correla-
tion with the original signal compared to the spurious 
BIMFs. Therefore, it is reasonable to employ the correlation 
coefficient as a measurement index to remove the spurious 
components and then classify it as part of a residual [28]. 
The specific sifting process could be described as in Table 1, 
if the correlation coefficient of each complex-value BIMF 
ζm =

√

∣

∣ζ 1m

∣

∣×
∣

∣ζ 2m

∣

∣, (m = 1, 2, . . . , n) , has been obtained 
(where, ζ 1m and ζ 2m denote the correlation coefficient of the 
real and imaginary parts of BIMFs, respectively).

The η in Table  1 is a fixed threshold that is generally 
adopted as a ratio of the maximum correlation coefficient, 
where δ is a ratio coefficient larger than 1:

2.2 � Brief Review of LSSVM
The LSSVM is an improved algorithm based upon 
standard SVM that a two-norm is taken with equality 
instead of inequality constraints so as to obtain a linear 
set of equations instead of a quadratic programming 
problem in the dual space [29, 30]. It shows specific 
powerful capability in processing small sample, non-
linear and high-dimension pattern. The formulation of 
LSSVM can be described as follows:

(5)η = max(ζm/δ), m = 1, 2, . . . , n.

Table 1  Extraction criterion of  true BIMFs based 
on correlation coefficient

If ζm ≥ η,

        Reserve the mth BIMF gm;

Else

        Estimate mth BIMF, and rn = rn + gm .
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(1)	 Using a training set of the data points 
D = {(xi, yi)|i = 1, 2, . . . , n} , where xi ∈ Rn is the 
ith input data, and yi ∈ {−1,+1} is the output class.

(2)	 The regression function in high-dimensional space 
is constructed: 

where ω is the weight vector, ϕ(x) is a nonlinear 
function that maps the input data x into a low-
dimension space and b is the bias parameter.

(3)	 According to the structural risk minimization prin-
ciple, the optimal ω and b can be obtained by mini-
mizing the following function: 

where C is the penalty coefficient to balance the 
structural risk and experience risk and εi is the slack 
variable.

(4)	 The Lagrange function can be constructed to solve 
the optimization problem: 

where αi represent Lagrange multipliers that can 
be either positive or negative values. Eq. (8) can be 
changed to the following equivalent equations: 

(5)	 Eliminating ω and εi and expressing in matrix form 
gives: 

where 

(6)y(x) = ω · ϕ(x)+ b,

(7)
min
ω,b,ε

J (ω, ε) =
1

2
�ω�

2
+

C

2

n
∑

i=1

ε2i ,

s.t. yi = ω · ϕ(xi)+ b+ εi,

(8)

L(ω, b, ε,α) = J (ω, ε)−

n
∑

i=1

αi(ω · ϕ(xi)+ b+ εi − yi),

(9)































∂L
∂ω

= 0 ⇒ ω −

n
�

i=1

αiϕ(xi) = 0,

∂L
∂b

= 0 ⇒

n
�

i=1

αi = 0,

∂L
∂εi

= 0 ⇒ Cεi − αi = 0,
∂L
∂αi

= 0 ⇒ ω · ϕ(xi)+ b+ εi − yi = 0.

(10)
[

0 eT

e �i,j + C−1I

][

b
α

]

=

[

0
y

]

,

e = [1, 1, . . . , 1]Tn ,

y = [y1, y2, . . . , yn],

α = [α1,α2, . . . ,αn]
T,

 �i,j = (xi)× (xj) = K (xi, xj) is the kernel function.
	 The commonly used kernel functions are listed as 
follows [31, 32].
	 Polynomial kernel function: 

	 RBF kernel function: 

	 Sigmoid kernel function: 

(6)	 Lastly, the linear model for function estimation is 
achieved after the optimization problem is solved: 

2.3 � Chatter Feature Vectors Extraction
Numerous experiments have shown that the amplitude 
of the vibration signal fluctuates within a certain range 
when the grinder is in a stable grinding state, while the 
amplitude substantially increases when in a transition 
state. It later becomes steady again when the grinder is 
in a chatter state; Therefore, early grinding chatter can be 
preliminary detected by comparing changes in the time-
domain statistical parameters of the signal. In this paper, 
the peak to peak (pp), real-time standard deviation (Rsd) 
and instantaneous energy (IE) are conceived as ideal fea-
ture vectors that can detect and identify the chatter.

The peak to peak represents the difference between the 
maximum and minimum values of the signal, which is 
recognized as the most intuitive indicator for amplitude 
change in the signal [33]:

where N represents the sampling points.
The real-time standard deviation indicates the devia-

tion degree from the mean chatter signal, which in 
a sense reflects the oscillation trend [34]. Rsd can be 
described as:

(11)K (xi, xj) = ((xi, xj)+ θ)d , d = 1, 2, . . .

(12)K (xi, xj) = exp

(

−
∥

∥xi − xj
∥

∥

2

σ 2

)

.

(13)K (xi, xj) = tanh(υ(xi, xj)+ c).

(14)y(x) =

n
∑

i=1

αiK (xi, xj)+ b.

(15)pp = |{xi}|max − |{xi}|min, i = 1, 2, . . . ,N ,

(16)

Rsd2 =
1

n

n
∑

i=1

(|xi| − x̄)2

=
1

n

n
∑

i=1

x2i −
1

n

n
∑

i=1

xi

=

(

x21
n

−
x1

n

)

+

(

x22
n

−
x2

n

)

+ · · · +

(

x2n
n

−
xn

n

)

,
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where x̄ represents the mean of the signal.
In practice, any internal fluctuation may result in a 

vibration of instantaneous energy, which means that the 
change in instantaneous energy has a direct relation to 
abnormal system operation [35]. Thus, instantaneous 
energy can be defined as follows:

where αi and ψi represent the instantaneous amplitude of 
the real and imaginary parts of signal respectively [36].

Using these definitions, the pp, Rsd and IE of each 
BIMF can be monitored every second, achieving initially 
detecting grinding chatter in real time.

3 � Application of BEMD to Simulate Chatter Signal
3.1 � Construction of a Simulation Chatter Signal
In order to evaluate whether BEMD could be a reliable 
technique employed for grinding chatter detection, a 
simulation of a complex-value chatter signal s(t) was con-
structed according to the mechanism of chatter and char-
acteristics of the time-frequency domain:

where

It is clearly seen that the real and imaginary parts of sig-
nal s(t) are composed of two sine signals and white noise, 
respectively, and that the frequency components of both 
are 50 rad/s and 100 rad/s. Additionally, the phase of the 
imaginary parts of signal is shifted by 0.08 rad and 0.024 
rad. The output is a harmonic vibration signal which 
simulates the stable grinding process when t ≤ 2.5 s. The 
output is the harmonic vibration signal multiplied with a 
slant sign also as to simulate the grinding chatter when 
2.5 < t ≤ 3  s. Moreover, the output is the original har-
monic vibration signal multiplied by gain coefficients in 
order to simulate the stable chatter status when 3 < t ≤ 5 s.

The chatter signal is shown in Figure 1. The blue solid 
lines represent the real part of signal while the red dash 
lines indicate the imaginary part. It is clearly seen that 
the amplitude of the signal is small in a stable grind-
ing process, while the amplitude significantly increases 

(17)IE =
1

2

∣

∣

∣
α2
i + jψ2

i

∣

∣

∣
, j =

√
−1, i = 1, 2, . . . ,N ,

(18)

s(t) =











x(t)+ c1(t)+ i(y(t)+ c2(t)), 0 ≤ t ≤ 2.5,
(x(t)+ c1(t))(1+ 4(t − 2.5))+ i((y(t)+ · · ·

· · · + c2(t))(1+ 5(t − 2.5)), 2.5 < t ≤ 3,
2.5(x(t)+ c1(t))+ i3(y(t)+ c2(t)), 3 < t ≤ 5,

(19)

x(t) = 3 sin(50t)+ 4 sin(100t)+ 0.4,

y(t) = 2 sin(50t + 4)+ 3 sin(100t + 2.4)− 0.2,

c1(t) = 1.5rand(2001, 1)− 0.75,

c2(t) = rand(2001, 1)− 0.5.

after 2.5 s, then after 3 s the amplitude become steady as 
the grinder settles into stable chatter. Hence it’s change 
trend and distribution are similar to experimental chatter 
images in Refs. [14, 37], that this chatter signal well simu-
lates the chatter process.

3.2 � Application of BEMD
Decomposing this chatter signal using BEMD sets 64 
projection directions and 10 iterations, generating the 
BIMFs shown in Figure 2. The blue solid lines represent 
the real part of the BIMFs while the red dash lines indi-
cate the imaginary part.

From Figure 2, it is seen that the simulation complex-
value chatter signal is decomposed into 6 BIMFs and a 
residue, which can significantly facilitate the establish-
ment of a pure vibration orbit and fully guarantees the 
correctness of the established result. The extraction cri-
terion of true BIMF introduced in Section  2.1.2 is then 
applied to the decomposed BIMFs and the correlation 
coefficients of the BIMFs are shown in Table 2.

Compared with the data in Table 2, only the first two 
BIMFs, which have a relatively high correlation with orig-
inal signals, should be reserved. The other four BIMFs 
have to be removed and classified as a part of the resid-
ual. The true BIMFs which are derived from simulation 
chatter signals are shown in Figure 3, where the real parts 
of BIMFs are plotted as blue solid lines and the imaginary 
parts are plotted as red-dashed lines.

In Figure  3, it is clearly seen that there is mutual 
dependence between the real and imaginary part of the 
true BIMFs (i.e., BIMF1 and BIMF2) and that the por-
tions where components are rotating can be identified 
by a constant phase shift. The cross-correlation function 
(CCF) of each true BIMF could therefore be obtained 
and then the phase parameters could be estimated from 
the CCF [38], as shown in Figure 4. Moreover, the ampli-
tude and the frequency components of the chatter signal 
which are initially set in the previous signal also could be 
revealed by carrying out the Hilbert transformation on 
the true BIMFs, as shown in Figure 5, where the marginal 
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Figure 1  Complex-valued chatter signal
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spectrum of real part of signal is plotted as blue solid line 
and imaginary part of signal is plotted as red-dashed line. 
The marginal spectrum expresses the amplitude of each 
frequency in space and represents accumulated ampli-
tude in a statistical sense.

According to Figure 4, it is clearly seen that the phase 
shifting and synchronization information about the real 
and imaginary parts of the true BIMFs are well pre-
served and easily detected. The phase shifting of BIMF1 
and BIMF2 is 0.025 rad and 0.08 rad, respectively, which 
is similar to the phase as described in the simulation sig-
nal. From Figure 5, the frequency components of the real 
and imaginary parts of the signal (8  Hz and 16  Hz) are 
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Figure 2  The so-generated BIMFs of simulation chatter signal

Table 2  Correlation coefficient of  BIMFs of  simulation 
chatter signal

No. BIMFs Correlation 
coefficient

1 BIMF1 0.8025

2 BIMF2 0.6281

3 BIMF3 0.0526

4 BIMF4 0.0176

5 BIMF5 0.0043

6 BIMF6 0.0147
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accurately revealed as corresponding with the same fre-
quency components, i.e., 50 rad/s and 100 rad/s, as set in 
the previous signal.

3.3 � Extraction of the Chatter Feature Vectors Based 
on BEMD

Through the decomposition of BEMD and the extraction 
of true BIMFs, the chatter signal is decomposed into a 
series of true BIMFs and a residue. Another main objec-
tive of this paper is to extract appropriate feature vec-
tors of each true BIMF and superpose them respectively 
to construct synthetic chatter feature vectors for chatter 
detection and identification. To compare and analyze the 
chatter feature vectors they should be normalized [39, 40] 
in order to keep the value between 0 and 1. As described 
in Section 2.3, the peak to peak, real-time standard devi-
ation and instantaneous energy are applied to the chatter 
signal and the superimposed and normalized feature vec-
tors of the BIMFs, along with time, are shown in Figure 6. 
The pp are plotted as blue solid lines, Rsd are plotted as a 
black dot lines, while IE are plotted as a red-dashed lines.

In Figure 6, it is clearly seen that all feature vectors in 
various grinding states exhibit different behaviors and 
that the amplitude of the feature vectors is almost con-
stant in a stable grinding state, while the amplitude 
drastically increases once the grinder turns into chatter. 
Moreover, the peak to peak and instantaneous energy 
fluctuation within a certain range when the grinder is 
in stable chatter state. The real-time standard deviation 
continuously increases with time and tends towards sta-
bility at the end, making it hard to exactly distinguish the 
transition state and chatter state. But all in all, it is fea-
sible to clearly find out the onset of grinding chatter of 
great important to take reliable method to suppress the 
chatter. In summary, the peak to peak, real-time standard 
deviation and instantaneous energy are significantly dis-
tinct and could be used as a predictor for early grinding 
chatter detection.

4 � Grinding Experiments and Application of BEMD 
and LSSVM

The ultimate purpose of this paper is to distinguish the 
onset of grinding chatter so that effective methods for 
chatter suppression can be applied as soon as possible. 
Therefore, a method based on BEMD and LSSVM is pre-
sented to detect and identify the grinding operation state. 
The process of this method is expressed in Figure 7.

4.1 � Grinding Experiments
In order to further validate the feasibility of BEMD in 
grinding chatter detection, an experimental method was 
designed to acquire the various vibration states of differ-
ent grinding parameters for the CNC guideway grinder 
KD4020X16 from Hangzhou Hangji Machine Tool Co., 
Ltd. The IEPE piezoelectric acceleration sensors with a 
supporting dynamic signal test and analysis system called 
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TST5912 was used to collect the grinding vibration sig-
nal, as shown in Figure 8.

In practice, the grinder is more sensitive to the rota-
tional speed, feeding speed and grinding depth of the 
grinding wheel, which contributes to the unbalance of 
the grinding vibration. The experiment was therefore car-
ried out in following steps:

Firstly, keep the feeding speed of the workpiece and 
grinding depth of the wheel constant, and then gradually 
increase the rotational speed.

Secondly, keep the feeding speed and rotational speed 
constant, and then gradually increase the depth of 
grinding.

Lastly, keep the rotational speed and depth of grinding 
constant, and then gradually increase the feeding speed.

The resulting parameters are listed in Table 3.
According to the experimental conditions shown in 

Table  3, eight piezoelectric acceleration sensors are 
used to test the vibration acceleration signals of grind-
ing wheel spindle, motor and machine column in various 
directions. The position of sensors and corresponding 
sensitivity are given in Table 4.

Using the above steps, we collected and recorded cor-
responding signals until 80 groups of grinding signals 
were obtained, where 45 groups were in a stable grinding 
state, while 35 groups are in a chatter state. It has been 
proven that chatter of the wheel spindle is more signifi-
cantly in the X-direction and Z-direction compared to 
the Y-direction based upon the practical experience and 
analysis of a considerable portion of the experimental 
data. For convenience of presentation, this paper selects 
parts of the X-direction and Z-direction chatter data to 
construct a complex-valued signal and then eliminates its 
noise based on the wavelet transform [41, 42]. The newly 
constructed complex-valued signal is shown in Figure 9, 
where the blue solid lines represent the Z-direction part 
and the red-dashed lines represent the X-direction.

From Figure  9, it is seen that the grinding chat-
ter emerges at about 6‒14  s and the transitional phase 
remains at almost 8 s. It is clearly seen that the amplitude 
of the vibration signal rapidly expands when the grinder 
turns into chatter, then the amplitude becomes steady 
when the grinder gets into stable chatter. However, the 
signal vibrates more markedly compared with the stable 
grinding state.

4.2 � Application of BEMD to Experimental Chatter Signals
As previously discussed, the BEMD demonstrates its 
powerful capability in terms of processing the two-
dimensional simulation chatter signal and extracting true 
BIMFs from it. Moreover, the simulation results illustrate 
the phase information and synchronization between real 

and imaginary parts of the BIMFs, which is of signifi-
cant value when applying the BEMD method to practical 
chatter. The BEMD is applicable to decompose the above 
experimental signal, which sets 64 projection directions 
at 10 iterations. Then the extraction criterion based on 
correlation coefficient could be applied to the extracted 

Figure 8  CNC guideway grinder KD4020X16 and TST5912 analysis 
system

Table 3  Grinding parameters

Parameter Value

Grinding wheel material Green silicon carbide

Size of wheel (mm × mm) φ600× 150

Work-piece material Gray cast iron 250

Size of workpiece (mm × mm × mm) 3050 × 500 × 500

Rotational speed (r/min) 700 ~ 1100

Feeding speed (m/s) 0.381, 0.254, 0.210

Grinding depth (μm) 5, 10, 15

Table 4  Position of sensors and corresponding sensitivity

Label of sensors Sensitivity (mV/g) Position

1 9.9 Column Z

2 10.6 Column X

3 10.4 Spindle Z

4 10.1 Spindle Y

5 10.4 Motor Z

6 10.5 Motor X

7 10.2 Motor Y

8 10.1 Column Y
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BIMFs so that the correlation coefficients are shown in 
Table 5.

From Table 5, it is clearly seen that the first four BIMFs 
which have a relatively high correlation with the original 
signals should be reserved. The other four BIMFs have to 
be removed and classified as a part of the residual so the 
first three BIMFs could be recognized as the true BIMFs, 
which contain the main frequency components of the 
signal. The resulting decomposition is shown in Fig-
ure 10, where the blue solid lines represent the real part 
while the red-dashed lines represent the imaginary parts 
of the BIMFs.

According to Figure  10, it is clearly seen that phase 
shifting between the real parts and imaginary parts of 
the true BIMFs are well preserved and detected. Thus, 
the CCF of each true BIMF could be obtained and then 
the phase parameter estimated from the CCF, as shown 
in Table 6.

Then the amplitude and frequency components could 
be calculated by performing the Hilbert transform on 
each true BIMF to obtain the marginal spectrum, as 
shown in Figure 11.

In Figure  11, the marginal spectrum of both the 
Z-direction and X-direction shows the same frequency 
components, which represent about 300  Hz, 580  Hz, 
1200  Hz and 1400  Hz. Yet the Z-direction BIMFs have 
a larger amplitude relative to the X-direction, and signal 
vibrates more significantly in the Z-direction according 
to the practical data.

4.3 � Chatter Feature Vectors Extraction 
for the Experimental Signal

Based on the same principle and method, the feature vec-
tors could also be extracted from the experimental true 
BIMFs, where the superimposed and normalized pp, Rsd 
and IE of real and imaginary parts of the BIMFs, along 
with time, are shown in Figure 12. The pp of the BIMFs 
are plotted as blue solid lines, Rsd are plotted as black dot 
lines, while IE are plotted as red-dashed lines.

We can see that the behavior of these three feature vec-
tors exhibit the same change in regulation as the previous 
simulation chatter signal in Section  3.3, that it can ini-
tially find out the onset time of chatter is nearly 6 s. How-
ever, in order to detect and identify the onset of grinding 
chatter in time, it is very crucial to extract feature vectors 
during an early stage of its development. Therefore, the 
chatter feature vectors could be selected at the maximum 
value of the transition state. Then the feature vectors of 
the 80 collected grinding signals could be calculated and 
are shown in Figure 13, after superposing and normaliz-
ing, where the first 45 signals are stable grinding and the 
latter 35 signals are chatter grinding. The pp is plotted as 
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Table 5  Correlation coefficients of the experimental BIMFs

No. BIMFs Correlation 
coefficient

1 BIMF1 0.9656

2 BIMF2 0.0700

3 BIMF3 0.0336

4 BIMF4 0.0156

5 BIMF5 0.0032

6 BIMF6 0.0016

7 BIMF7 0.0021

8 BIMF8 0.0014
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blue solid line, Rsd is plotted as black dot line, while IE is 
plotted as red-dashed line.

From Figure  13, it is seen that the pp, Rsd and IE of 
chatter grinding are increased to a different degree com-
pared with stable grinding, that it is considered as the 
significant characteristic to distinguish the grinding state. 
Therefore, they are all employed as input data for the 
LSSVM.

4.4 � LSSVM Model Prediction
In accordance with the theory of LSSVM, the model 
should be established using training samples, which uti-
lize feature vectors of 30 stable signals and 25 chatter sig-
nals at a random as the training set, with the remaining 
15 stable signals and 10 chatter signals used for testing. 
The training of the LSSVM is performed in Matlab and 
the process of LSSVM training is actually the learning 
process from the expert knowledge mentioned in Sec-
tion 2.2. Thus, two classifiers should be defined where − 1 
represents stable state and + 1 represents chatter state. It 
is important to choose a suitable kernel function as it can 
strongly influence the reliability of the LSSVM results. 
In this paper, after a grid search and cross validation, an 
RBF kernel function was selected which sets the penalty 
coefficient C = 1 and ε = 0.1. The grinding parameters, 
feature vectors, and corresponding prediction results are 
shown in Table 7.

According to the data in Table  7, the 14 stable grind-
ing signals and the other 10 chatter grinding signals are 
exactly identified by the LSSVM model, while the third 
stable signal is wrong for a chatter signal which is mostly 
caused by the concentrated load shock. The accuracy of 
this prediction model is 96%, which could be considered 
an appropriate model to be applied for chatter detec-
tion and identification in the CNC guideway grinder 
KD4020X16. For convenience of presentation, the pre-
diction model can be made into a diagram form, as 
shown in Figure 14, where the red asterisks and blue cir-
cles represent feature vectors of the stable state and chat-
ter state, respectively.

It is seen that Figure 14 is the visual expression of the 
LSSVM prediction model. It is clearly divided into two 
parts: a stable state area and a chatter state area. More-
over, the feature vector distribution of chatter is more 
extensive than the stable state. Thus, in view of this 
grinding machine, the feature vectors could be extracted 
out from the real-time acquired signals by BEMD 
method, and then tested by this LSSVM model which has 

Table 6  Phase and  maximum of  CCF from  each 
of the experimental BIMFs

Parameter BIMF1 BIMF2 BIMF3 BIMF4

Estimated phase (rad) 0.0562 0.0141 0.0350 0.0562

Maximum of CCF 6517.1 148.55 74.647 7.1760
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high accuracy and efficiency. If the feature vectors are in 
stable area, it means that the grinder is operating well. 
Otherwise, the grinding machine is suffering from the 

chatter, that effective measures should be taken immedi-
ately to reduce the damage of chatter. It is also necessary 
to collect more sample data as training set to improve 

Table 7  Prediction results of the LSSVM model

Test No. Input Target Output Result Rotational speed 
(r/min)

Feeding speed 
(m/s)

Grinding 
depth (μm)

pp Rsd IE

1 01710 0.4626 1.9618 1 1 Correct 992 0.381 5

2 0.0382 0.0111 0.0353 − 1 − 1 Correct 763 0.381 5

3 0.0830 0.2870 0.2765 − 1 1 Wrong 1034 0.381 5

4 0.0336 0.0113 0.0361 − 1 − 1 Correct 808 0.381 10

5 0.0288 0.0115 0.0383 − 1 − 1 Correct 943 0.381 5

6 0.4903 0.0631 0.3030 1 1 Correct 808 0.381 15

7 0.0920 0.0163 0.0636 − 1 − 1 Correct 853 0.381 15

8 0.0522 0.0176 0.0925 − 1 − 1 Correct 992 0.381 15

9 0.1109 0.1937 0.5600 1 1 Correct 1074 0.254 15

10 0.0327 0.0131 0.0363 − 1 − 1 Correct 804 0.254 10

11 0.0851 0.1218 0.3987 1 1 Correct 803 0.254 15

12 0.0394 0.0147 0.0513 − 1 − 1 Correct 844 0.254 15

13 0.1162 0.2798 0.3863 1 1 Correct 936 0.254 10

14 0.0421 0.0124 0.0570 − 1 − 1 Correct 989 0.254 5

15 0.0470 0.0149 0.0996 − 1 − 1 Correct 1035 0.254 5

16 0.1037 0.1263 0.3676 1 1 Correct 1040 0.254 15

17 0.1602 0.5510 2.0361 1 1 Correct 760 0.210 5

18 0.0325 0.0115 0.0245 − 1 − 1 Correct 760 0.210 10

19 0.0431 0.0122 0.0427 − 1 − 1 Correct 853 0.210 5

20 0.1031 0.1823 0.6225 1 1 Correct 893 0.210 10

21 0.0471 0.0133 0.0702 − 1 − 1 Correct 935 0.210 5

22 0.1787 0.3055 1.5177 1 1 Correct 936 0.210 10

23 0.0507 00218 0.0884 − 1 − 1 Correct 1075 0.210 5

24 0.1480 0.3681 0.9967 1 1 Correct 904 0.210 15

25 0.0396 0.0139 0.0417 − 1 − 1 Correct 860 0.210 15
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identification accuracy of the LSSVM model. Using 
the diagram makes it more intuitive and convenient to 
judge which area the feature vector is in and then find 
out whether the grinder is in a stable grinding or chat-
ter state. Consequently, the chatter detection and iden-
tification method based on BEMD and LSSVM in this 
paper has an excellent use for chatter prediction, which is 
robust under different grinding conditions.

5 � Conclusions
In this paper, the BEMD was further investigated by pro-
cessing a simulation chatter signal and an experimen-
tal chatter signal. Then the extraction criterion of true 
BIMFs based on the correlation coefficient successfully 
distinguished the true BIMFs from the spurious compo-
nents. Phase shifting of the BIMFs were calculated, as 
well as the peak to peak, standard deviation, and instan-
taneous energy being presented as chatter feature vectors 
for detecting different vibration states of grinding. Lastly, 
the LSSVM model was established for grinding status 
classification based on feature vectors. From the research 
described above, the following conclusions can be drawn.

(1)	 The BEMD decomposes the simulation chat-
ter signal derived from a grinding vibration sig-
nal generator and is validated by the experimental 
data which was collected from the CNC guideway 
grinder KD4020X16 in Hangzhou Hangji Machine 
Tool Co., Ltd. The results illustrate the suitability of 
BEMD in terms of processing non-stationary and 
nonlinear signals and indicating the phase shifting 
and synchronization information of signals. Mean-
while, the marginal spectrum accurately revealed 
the actual peculiarities of the signal.

(2)	 The extraction criterion of the true BIMFs based 
on the correlation coefficient is a reliable technique 
which successfully identifies and estimates the spu-
rious components. It reserves the main frequency 
bands which are of great import to the extraction 
of the actual vibration mode and corresponding fea-
tures of the time-frequency domain.

(3)	 The peak to peak, standard deviation, and kurtosis 
values are demonstrated as appropriate feature vec-
tors for early grinding chatter detection.

(4)	 The prediction model based on BEMD and LSSVM 
shows its feasibility for chatter detection and iden-
tification, where the accuracy of this LSSVM model 
is 96%.

For future work it should be notes that, although the 
feature vectors based on BEMD showed good perfor-
mance, these vectors might not be the optimal choice. 
How to choose and estimate the feature vector is still 

a challenge for pattern recognition. Furthermore, the 
selection of the kernel function and the penalty coeffi-
cient is also a problem that needs further investigation. 
In addition, researching smart algorithms for optimi-
zation of the vector would be another interesting work.
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