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Abstract

ment of RUL.

Remanufacturing

The remaining useful life (RUL) prediction of mechanical products has been widely studied for online system per-
formance reliability, device remanufacturing, and product safety (safety awareness and safety improvement). These
studies incorporated many different models, algorithms, and techniques for modeling and assessment. In this paper,
methods of RUL assessment are summarized and expounded upon using two major methods: physics model based
and data driven based methods. The advantages and disadvantages of each of these methods are deliberated and
compared as well. Due to the intricacy of failure mechanism in system, and difficulty in physics degradation observa-
tion, RUL assessment based on observations of performance variables turns into a science in evaluating the deg-
radation. A modeling method from control systems, the state space model (SSM), as a first order hidden Markov, is
presented. In the context of non-linear and non-Gaussian systems, the SSM methodology is capable of performing
remaining life assessment by using Bayesian estimation (sequential Monte Carlo). Being effective for non-linear and
non-Gaussian dynamics, the methodology can perform the assessment recursively online for applications in CBM
(condition based maintenance), PHM (prognostics and health management), remanufacturing, and system perfor-
mance reliability. Finally, the discussion raises concerns regarding online sensing data for SSM modeling and assess-
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1 Introduction

With the quick development of science and technology,
the increasing diversity of demand with growing prod-
uct complexity comes with many new products safety
challenges. Today, global industrial accidents frequently
occur and (unfortunately) product safety issues con-
tribute, at least partially, to these accidents. The issues
of production safety and product safety not only cause
casualties and property damage, but also environmental
pollution. All of these issues affect the health of product
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and indicate if changes were made.

life, and are not conducive to either social harmony
or stability. According to the research [1], due to safety
issues with some mechanical products, many accidents
and property damages occur every year. Additionally,
the world’s machinery accidents account for about 1/3 of
the total number of accidents reported. This is especially
the case with mechanical products related to civil and
defense machinery, such as spaceflight, vehicles, elec-
tricity, weaponry, petrochemical, metallurgy. Mechani-
cal product safety and reliability has become a common
theme that is of paramount concern around the globe.
Failure prognostics was the definition of “the estima-
tion of the Time to Failure (ETTF) and the risk of exist-
ence or later appearance of one or more failure modes”
by the International Standard Organization (ISO) [2].
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The terminology of RUL was normally reported in the
literature instead of ETTF [3]. If the remaining life of
mechanical products can be accurately predicted, appro-
priate measures could be then taken before the prod-
uct fails, which will prevent accidents. RUL assessment,
therefore, is very essential because it can provide not
only important information for decision(s) in the condi-
tion based maintenance [4, 5], but it will contribute to
make decisions on prognostics and health management
(PHM). The system contains valuable information of
installed equipment about the current health status, the
critical components’ RUL, and diagnosis of potential fail-
ures [6, 7]. For emerging industries, remanufacturing and
residual life prediction also play a pivotal role in prod-
uct remanufacturing feasibility analysis. Determining
whether to remanufacture or recycle a product requires
an estimate be made of its remaining life. Besides the
environmental, economic, and technical effects of this
estimate, it is also important to give a comprehensive
consideration on retiring the product instead of remanu-
facturing [8]. The remaining life assessment is necessary
for those remanufactured products that are in service to
avoid abrupt mechanical failures. RUL prediction stud-
ies have been done and the proposals that have resulted
from these studies have been introduced quite swiftly to
the machinery industry. The RUL and its assessment are
applied to online life estimation, forecasting, and perfor-
mance reliability for critical equipment and machinery.

Machinery system complexities, such as failure mecha-
nisms, extent of failures, and failure growth, when cou-
pled with the dynamics and randomness of a working
environment, results in that feature vector extractions
are complicated to perform. The relationship between
the detected (failure) signals and the remaining lifetime
is difficult to determine or model, especially for heavy
equipment with complex structure and dynamic load-
ing. As long as the RUL prediction model for mechani-
cal products does meet assessment needs, the operation’s
security and safety issues of the machinery will remain
serious and restrict or limit economic health and sus-
tainable social development. Global information is in a
state of rapid advancement and the efficient and accu-
rate residual life and reliability assessments are an urgent
focus for academia research.

Residual life assessment for mechanical products, the
world research hotspot, is reviewed in this paper. The
assessment methods are separate into three catego-
ries: physics based method, data driven method, and a
hybrid method of these two. The merits and drawbacks
of each method are discussed and compared. A newer
method based on the state space model (SSM) in assess-
ing remaining life, widely cited in recent literatures, is
also presented. By establishing an appropriate state space
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model for a dynamic system (RUL assessment from prod-
uct performance degradation) by state transfer equation
and observation equation, the product performance sta-
tus (degradation) at a different time can be predicted.
Using a predetermined condition or threshold, the
remaining life is regarded as the duration from current
time and then extending out to the time when the state
(degradation) meets or exceeds the critical threshold.
This paper introduces the state space method in detail
for the RUL prediction model, comprehensive analysis
of the particle filter methods and the best approxima-
tion method today for most systems with nonlinear, non-
Gaussian degradation characteristics. The methodology
of assessing the remaining life based on particle filter
method is provided for researchers’ application refer-
ence. The paper concludes by raising, deliberating, and
dispelling some of the practical issues with online sensor
data modeling and RUL evaluation.

2 Basic Methods for RUL Assessment

There are three major methods used in RUL assessment:
the physics based method, the data driven method, and
a hybrid model of these two methods. The first one is
based on physics dynamics and/or engineering princi-
ples. The physics based method is usually more flexible in
the sense that this model could adapt with greater ease to
new or unforeseen cases. If a system state deviates from
the expected operation restrict, the model-based tech-
niques continues to update model parameters to describe
the new condition. This capability allows the model based
techniques to dispense with extensive training and his-
torical information that forms the hybrid model of the
model based and data driven methods. The data driven
method (usually model-free) works on comparative sta-
tus assessments of a system under testing in conjunction
with other learned occurrences. The model needs to be
trained from historical data and under suitable condi-
tions the new comparison is made in order to recognize
the fault. The data driven method sets up nonlinear map-
ping between the input and output by training and the
knowledge is stored by a set of parameter values. The task
of performance assessment is done through the training
of a classification arithmetic. The data driven method can
be used in the situations where reliability of the physics
model is low and the availability of comparative data is
high. The hybrid model method should be employed if
the reliability of the physics model and the availability of
comparative data are both high.

2.1 Physics model

Physics model is one of the most important research
area of life prediction and is based on theory of phys-
ics-mechanics and dynamics. There are four common
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failure modes of mechanical products: wear, corrosion,
deformation, and fracture. Substantially, products failure
results from the interactions of materials, mechanics and
chemicals [9]. Fatigue life depending on the process of
crack initiation, propagation till final fracture, and phys-
ics based life prediction method have been considered
in the initial stress analysis method, which obtains long-
term development by utilizing fracture mechanics and
crack mechanics theory. In 1850s and 1860s, WOHLER
first introduced the S—N (stress-rpm) curve and fatigue
limits [10] from the fatigue damage tests of rail vehicle
axles. Then, mean stress effects on fatigue life attracted
wide attention, such as the average stress theory intro-
duced by John Goodmab. Paris [11] raised the laws of
crack propagation-Paris law, by crack technique in 1963,
which offered a novel approach to estimate RUL. In 1971,
Morrow et al. [12] put forward a fatigue life estima-
tion method under the stress-strain (local stress-strain
method) on the basis of Manson-Coffin. Subsequently,
an amazing breakthrough in fatigue theory, the “damage
tolerance design’, was developed. Researchers have since
pursued more significant developmental strides based on
Paris law. Ray et al. [13] and Mohanty et al. [14] proposed
a nonlinear stochastic model of crack growth based on
the measured signals, which could estimate the length of
crack, the propagation rate of crack and residual life.
China, as a manufacturing industry leader in the
world, is working to vigorously strengthen scientific
and experimental research. For example, Liu et al. [15]
carried out a sprayed dust accelerated wear test on
F6L912G diesel engine and established a mathemati-
cal model of reliability and wear-resistance (R-W-t). Liu
established that as long as the acceleration coefficient
can be calculated then wear-resist reliable life of the
engine can be estimated. Another example of advancing
scientific understanding includes Shang, who proposed
a multi-axial fatigue damage parameter in shearing
form on the basis of the multi-axial critical damage
surface and established a new prediction model [16].
Through fracture mechanics analysis, Ringsberg [17]
exploited the fatigue life estimation strategy of rolling
contact fatigue crack initiation. And two examples, a
twin disc test and a railway wheel-rail rolling contact,
are presented to verify the effectiveness of methodol-
ogy. Fatemi [18] comprehensively reviewed cumula-
tive fatigue damage analysis theory, which is the key to
assess component or structure life. Besides, a new tech-
nique based on cumulative damage rate was presented
[19]. The logarithmic probability density of fatigue
life in any stress could be derived and then the fatigue
life under fatigue load spectrum would be predicated.
Zheng et al. [20] proposed that the load spectrum size
can be represented in the load spectrum by overloading
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that is caused by a maximum load. Under the interac-
tion of loads, it is possible to predict the cumulative
fatigue damage at fatigue crack initiation (FCI) of ele-
ments with variable amplitude load by Miner’s rule,
which could also be applied to assess the fatigue life
and cumulative fatigue damage threshold. Such stud-
ies and research were quite popular in China in the late
20th century, and achieved a greater amount of experi-
ence and new ideas to advance RUL prediction.

Due to the different mechanism of crack initiation and
crack extension, various approaches are required in order
to get more accurate results. A research method utiliz-
ing strain life methodology was proposed to compute the
stress cycle numbers of FCI [21-23]. The Paris law was
used to simulate the fatigue crack growth. For high accu-
racy of prediction, a physics-based approach, integrated
observers and life models, was established for crack diag-
nostics and prognostics [24]. The fracture mechanism
based approach assumes that there is a finite crack at
the initial stage and that the extent of damage is related
to the growth of the crack, whereas the energy-based
approach is based on material properties. The strain
energy dissipation of a single process cycle of fracture
would be identified by measuring the area of monotonic
true stress-strain curve and each hysteresis loop during
the cycle.

Since energy is scalar that can be cumulative, many
scholars have shown interest in the energy based fatigue
life prediction. In the fatigue process, the life predic-
tion is calculated by dividing the total monotone strain
energy by the strain energy each cycle [25, 26]. Sarihan
[27] presented a new damage equation of solder depend-
ing on hysteresis energy to assess the damage and the
fatigue life. However, the traditional life prediction mod-
els based on energy are under the assumptions that one
cycle throughout the fatigue life has the same energy dis-
sipation. Some improved energy models were proposed
by considering the aging factors in the calculation [28] or
observing the experimental strain energy density of per
cycle in cyclic strain energy density expression [29].

This paper compared and summed up the advantages
and disadvantages of the physics model from six per-
spectives by comprehensively analyzing the theoretical
support and application of physics methods, as shown in
Table 1. It shows that the life prediction methods based
on the cumulative fatigue damage and fracture mechan-
ics are more mature, and are widely used to do failure
analysis testing of mechanical parts. However, the appli-
cation of the versatile, energy based method is difficult in
application. Although its recent developments have been
achieved, there is still more information gathering and
study required.
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For the past few years, further experimental studies on
physics mechanics methods for life prediction have been
reported. The improved methods feature a deeper under-
standing of the knowledge as well as an advanced fatigue
theory and integrated modeling method. The experi-
mental data is expected to be more accurate, meaning-
ful for the information of real situations. Special research
results are obtained on important structures or compo-
nents, which has been greatly strengthened the study
and achieved many surprising results. However, mod-
eling based on physics mechanics and dynamics becomes
more and more intractability because of the highly com-
plexity of the life prediction theory. On one hand, there
is a high demand for insight into the dynamic details; on
the other hand, the error of model prediction increases
with the enhancement of model nonlinearity and com-
plexity. Hence, the life prediction based on physics mod-
els and engineering principle is difficult to satisfy the life
study for remanufacturing in spatial state.

2.2 Data Driven Based Methods

As social modernization advances so does the complex-
ity and uncertainty of modern machinery. Products that
include industrial equipment, manufacturing equipment,
and aerospace equipment, are expanding, which makes it
difficult to determine the physics model. Chai academi-
cian pointed out that complex industrial processes often
have integrated and complex features, such as multiple
variables, strong coupling/correlation, nonlinearity, fre-
quent boundary-condition change, and dynamic char-
acteristics under variable working conditions [37]. The
mathematical models are hardly described by a closed
analytic form, thus a data driven based method is con-
sidered as a feasible method to figure out the complex
system controls, decision making, optimization, etc. This
paper summarizes the research within recent years on
this aspect. The data driven approach is classified mainly
into probabilistic methods, artificial intelligence meth-
ods, and stochastic methods.

2.2.1 Probabilistic Methods

Probability statistical mode-based analytical approach
on life and reliability is a traditional reliability theory.
Life cycle information is taken as the object for statistical
analysis. The researchers first obtained failure data from
plenty of tests and then use statistical criteria to choose
the best fit statistical distribution to get distribution of
lifetime. The life of mechanical parts was predicted by
probabilistic method [38] in 1924. On the basis of test
results, an acceptable life was proposed when the sam-
ple has 10% failure rate or 90% survival rate. Probability
Miner Cumulative Damage theory was developed on the
basis of the original Miner formula and the secure life
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by introducing P-S—N curve instead of S—N curve. To
improve the analysis accuracy, Goode et al. [38] pointed
out that the fault process of many equipments (such as
hot rolling mill pump) can be divided into two processes,
stationary or non-stationary, which can be distinguished
by statistical control method. Later on, autoregressive
moving average model (ARMA) and autoregressive inte-
grated moving average model (ARIMA) were extensively
used in time series modeling and forecasting.

The performance of the device using the statistical pat-
tern recognition (SPR) method was assessed [39, 40],
which predicted the remaining life of the processing
equipment’s cutting tools using ARMA model. Cui et al.
[40] introduced a genetic algorithm (GA) to optimize
ARMA model, which resolved the RUL prediction accu-
rately problem of aerogenerator.

However, the above-mentioned methods are directly
using the experimental data to statistically predict trends
that follow probability distribution under certain condi-
tions. Logistic regression and the proportional hazards
model are more acceptable which regarded the obtained
information as the conditional probability. Yan et al. [41]
suggested to apply logistic regression to build the rela-
tionships between characteristic variables of the device
and the failure probability. At the same time, it recom-
mended to use ARMA model for forecasting the charac-
teristic variables and the trained logistic model for RUL
prediction. Chen et al. [42] presented a reliability assess-
ment method based on logistic model, which was able to
accurately estimate the reliability indicators and failure
time of running tools. Volk et al. [43, 44] put forward the
RUL prediction by proportional intensity model, which
could evaluate the effect of preventive maintenance as
well. Jardine et al. [45] used the proportional hazards
model (PHM) to predict equipment’s reliability func-
tion and the residual life. Gorgian et al. [46] reviewed
two RUL assessment method, PHM and Proportional
Covariate Model (PCM), which based covariate hazard
models using both condition monitoring data and failure
data. From the results showed in this paper, two meth-
ods above have achieved considerable prediction preci-
sion. Besides, PCM always performed better because the
posterior hazard function could be updated with current
conditional data.

In early 1990s, Vapnik [47] put forward Support vec-
tor machines (SVM) and the concept of VC (Vapnik-
Chervonenkis) dimension. These can deal with small
sample prediction effectively and are widely adopted in
life prediction research [48—50]. But the application of
SVM is basically aimed at univariate time series. Chen
et al. [51, 52] proposed multivariable support vector
machine while taking into account the multiple factors
affecting the residual life. The extractions of as much
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information as possible that are related to the RUL veri-
fied the validity of the method by experiments.

The life prediction method that is based on proba-
bilistic model is simple, but does neither consider the
difference of the operating conditions and failure mecha-
nisms, nor does it make full use of relevant operational
information before failure. In addition, this probabil-
ity statistics-based life analysis and prediction method
should be supported by large amounts of experimental
data, without emphasizing individual nuances. There-
fore, the results of life prediction are the “average nature”
for a given circumstances. Despite the life analysis and
forecasting method can accumulate large amounts of
data efficiently to calculate the product’s life distribu-
tion, it is difficult to meet the needs of product opera-
tional life research in spatial state and dynamical working
environment.

2.2.2 Artificial Intelligence Methods

The main purpose of artificial intelligence technology is
to make the computer accomplish what only people are
able to do (such as reasoning, understanding, decision-
making, and learning). As a branch of artificial intelli-
gence, expert systems resort to knowledge and inference
procedures to solve complex problems that require a
large number of experts to work out. In 1985, the air-
craft control system monitor developed by Regenie, the
automotive fault diagnostic system (FIXER) developed
by Malin in 1987 and the aircraft fault diagnosis expert
system (Fault2finder) explored by the Development
Research Center of NASA. Langleg, etc. had all reached a
level of practical application and put into use. In Pawar’s
work [53], fuzzy logic system is adopted to establish com-
posite helicopter rotor mechanical damage and global
online prediction of lifetime consumption. This worked
well to process noisy data. Neural network with a strong
ability of approaching non-linear mapping can effectively
present the relationship between real time trends of the
actual working conditions of machinery and its state sig-
nals. Meantime, in terms of the ability to perform multi-
step prediction with multi-factor inputs, artificial neural
networks are considered as a quite promising approach
in prediction. Subsequently, the application of the arti-
ficial neural network in lifetime prediction has rapidly
developed. Du et al. built a RUL prediction model of
large-scale mechanical systems based on artificial neural
networks [35].

In recent years, artificial neural network is in-depth
developed towards simulating the human cognition.
Combined with fuzzy systems, genetic algorithms,
evolutionary mechanism, it has become an important
direction of artificial intelligence. From perspective of
fault prediction, Zhang et al. [54] explored a combining
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prediction model based on neural network, and the best
combination of traditional prediction method was given.
Vachtsevanos et al. [55] proposed a prediction technique
based on dynamic wavelet neural network, and verified
the practicable of the method in the rolling bearing case.
Fu et al. [56] used an improved neural network method
predict the RUL of coke drum thermal mechanical,
designed a corresponding program, and proved its valid-
ity in the practical application. Xu et al. [57] used genetic
algorithms to train Back-Propagation neural network,
developed a learning algorithms of evolutionary neural
network, and predicted the residual life of cutting tools
with higher accuracy. Study of artificial neural network
has received much attention by the developed countries
in the world.

It should be noted there are some critical points when
applying neural network in engineering applications:
(1) the neural network is basically a ‘black box’ method,
there is no analytical formulas that can make a full expla-
nation for the neural network learning; (2) because the
neural network design is very flexible, there are many
variable parameters to determine and there is no gen-
eral rule to follow in design and parameter selection of
a neural network; (3) neural network technology has its
featured over-leaning or over-fitting problem in the train-
ing, which results too much noise components in model
and significantly limited the model capability of gener-
alization and prediction; (4) neural network training may
require considerable time; and (5) data preparation for a
neural network application is a huge and tedious work.
There is still not a complete and systematic way in data
preparation for neural network applications.

2.2.3 Stochastic Methods

Condition monitoring data-based RUL modeling and
forecasting is defined as the time from the current to the
time when a system failure occurs or the time of arrival
for predefined system failure. Banjevic et al. [58] pre-
sented RUL as: X; = {w; : T — ¢|T > t,Z(t)}, where ¢ is
the current time, T represents lifetime, which is a ran-
dom variable and vector Z(t) are the available observa-
tions at time ¢. Engel et al. [59] used a polynomial model
to predict the RUL of the helicopter gearbox and derived
characteristic variables. In addition, he indicated that
an effective life forecasting method not only needed the
expected value of RUL, but uncertainty to be predicted
(expressed in confidence intervals). In the turn of the
century, Hidden Markov Model (HMM) CBM method
was first proposed [60], and study the remaining life esti-
mation, finally applied to verify in a helicopter gearbox.
HMM is a model based on Markov processes, mainly
for modeling implicit discrete degradation states [61].
In HMM method, the state of the hidden process cannot
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be observed directly, but it can infer by the observation
sequences, each displays every states by probability den-
sity distribution, and each observation vector is gener-
ated by the state of the corresponding probability density
distribution. Baruah et al. [62, 63] recommended an inde-
pendent HMMs to be established for per health state in
the case of equipment failure, and then the state change
points of every sample were built. Finally the condition
distribution of state change points were obtained. Camci
et al. [64, 65] considered hierarchical HMM as dynamic
Bayesian network in diagnosis and forecast method. The
methods in the research [62, 64] can be used directly to
assess the transition probability for device health sta-
tus. A direct transition probability estimation method
between the health status of the device was propose [45,
64, 65], and hierarchical HMM used for diagnosis and
prediction was regarded as a dynamic Bayesian network.
But, the calculation of the method is very expensive and
only the numerical results of the assessment of RUL are
available.

In order to relax the requirements of the state to obey
the demands of the Markov property, an improved HMM
algorithm-Hidden semi-Markov model (HSMM) was
proposed [66], to estimate the remaining life of equip-
ment. The method takes multi-source sensor monitor-
ing data, assuming the equipment health status holding
time as Gaussian distribution. Further, Dong et al. [67]
pointed out the disadvantages of traditional HMM,
which requires clearly portrayed interval length for each
state. As the expansion of HMM, HSMM overcome the
limitations of a constant probability of changing state in
HMM modeling by the presumption of Markov property,
has resulted in better modeling and analysis of complex-
ity of the hidden process capabilities than HMM [68-70].
The implementation of HSMM in the pump experiments
turned out to obtain better recognition rate than the tra-
ditional HMM. On this basis, Peng et al. took a further
consideration of correlations between the state interval
length and the aging of the device, and they introduced
the aging factor into HSMM to characterize interval
length distribution of each state at different time. This
method proved more accurate in predicting the RUL of
the pump [71]. Recently, there have been a number of
other extensions [72] to enhance HSMM modeling capa-
bilities for the status of the equipment and improve the
accuracy of the estimation [73], for practical issues such
as the status of the dwell time, has established a reason-
able HSMM and introduced a fast recursive algorithm,
highly reducing the computational complexity and stor-
age space. Ma et al. [74] based on the understanding of
the continuality of state identification and remaining life
prediction, has developed a framework of RUL predic-
tion using HSMM. The frame work has been modeled
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and validated by computer simulation. And the technol-
ogy is approved being a valid methodology on remaining
life prediction based on system performance gradation
model.

In recent years, with the boom of application of SSM in
economic time series analysis, the SSM is widely applied
in residual life and reliability assessment of mechani-
cal products [75]. The establishment of the two equa-
tions (system transition equation and transformation
equation), in dynamic system, SSM provides a consist-
ent modeling framework to fully describes the motion
characteristics. SSM with good dynamic analysis, Zheng
et al. [76] corrected its matrixes and obtained a steady-
state correction model which contributed to solving the
SSM test and correction problems of aero-engine. Hong
et al. [77] proposed a RUL prediction model for main
bearing state of the aircraft engines. The model com-
bined the condition monitoring data and analysis, and
the calculation is based on theoretical model, providing
one new approach for the assessment of the RUL of the
main bearing in aero-engine application. But there is a
great lag in the study of state recursive evaluation of SSM
and the Kalman filtering method is still in the level of lin-
ear model for a considerable period of time, for which
the optimal estimation is based on the assumption of
linear time-invariant system with Gaussian noise. Par-
ticle filtering techniques, a Markov Chain Monte Carlo
(MCMC) method, demonstrates the superiority in non-
linear non-Gaussian systems, determining its wide range
of applications. But the particle degradation problem
in the recursive algorithm has prevented its application
and the development till 1990s. Since Gordon proposed
the recursive re-sampling process [78], particle filtering
theory has been greatly developed. Freitas [79] proposed
Rao-Blackwellised particle filter and verified its validity
in nonlinear systems fault diagnosis through simulation.
The paper [80] put forward fault detection and isolation
algorithm according to Sequence Importance Resam-
pling (SIR) particle filter likelihood function. Multiple
fault subsets were divided in fault system by the algo-
rithm, each of which was estimated by particle filtering,
and all of which were running in parallel. This proposed
algorithm is simple and suitable for general nonlinear
systems. Recently, Jin et al. [81] proposed a Bayesian
framework for RUL prediction of secondary batteries,
which utilized history data to model population degra-
dation and on-line data to model individual degrada-
tion. For joint estimation of state and model parameter,
particle filter was employed to update the posterior deg-
radation model and state iteratively. Wang et al. [82] con-
structed an SSM for Lithium-Ion batteries capacity and
a spherical cubature particle filter was adopted to assess
the degradation of battery capacities.
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It is the difference from the physics model in the sense
that data driven model is not obtained by the mechanism
or experiment, but usually through statistical or sto-
chastic models. In the study of life prediction based on
data driven methods, the model still cannot leave phys-
ics model in essence, thus consideration of the hybrid
of model is required. However, currently there are only
few researches focusing on this aspect. The comparative
analysis of various life prediction methods based on data-
driven is shown in Table 2. The pros and cons of each
method and the corresponding application range are also
listed.

The establishment of life predication model of mechan-
ical products by SSM is a hot research topic in recent
years. In the SSM, the existing methods have limitations
in state estimation and model parameter estimation
(refer to Table 2), which greatly reduce the prediction
accuracy. There are still many technical issues to be
resolved when applying SSM to RUL evaluation. For non-
linear and non-Gaussian SSM, both the theoretical and
applied algorithms are still in their infancy.

3 State Space Method
3.1 State Space Model (SSM)
It is a degradation process of mechanical equipment from
normal to fault. Since usually the real states of degrada-
tion are unobservable and can only be perceived by the
observation variables, so the HMM is used to identify
potential degradation states. HMM is developed based on
the first order Markov chain property, that is degradation
state of future only depends on the current degradation
state, as p(x,+1 = X|X0,%1,%2, ..., %) = p(Kn+1 = %|xy),
which is often called memoryless, and the state of the
system can be displayed directly by the observation con-
dition monitoring (CM) information. On the basis of
above property, SSM, which is introduced in modern
control theory, has been widely used in HMM and Bayes-
ian recursive estimation. SSM was first presented by
Akaike [85] and further developed by Mehra [98]. SSM
provides a consistent analysis framework for dealing with
practical problems and adopts a similar model structure.
The ideas of creating SSM are: () the concept of state
variables without observable is introduced; (2) the model
describing the state change, called system state equation
(translation equation) is established; (3) the observation
equation (transformation equation), contains state trans-
formation from state to observation, is determined. One
SSM consists of two equations: the state (translation)
equation and the observation (transformation) equa-
tion. The state equation represents the relation between
the state of next and the current, meanwhile, the obser-
vation equation shows the internal relation between the
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observed values and the state. The definitions of SSM by
mathematical induction definitions of SSM are shown as
follows.

Definition 1:  state vector x,, the state variables at time
t, usually random and unobservable, is used to repre-
sent the inherent characteristics of the dynamic system.
x, belongs to an N-dimensional Euclidean space, which
means x; € RN+, where R is the state space. Normally,
the sequence of states at t=1, 2, ..., s is written by x;
and x1.; = {x1,%2,...,%}

Definition 2: Observation vector y, which could be
observed in dynamic systems, is random also because of
noise, y, € R\?. The observation sequence at t=1, 2, ...,
nis denoted by y,.,and y,.,, = {¥1, 92, -+, ¥,

Assuming the state of the system be regarded as a first-
order Markov process, in which observations are inde-
pendent of each other. The model of the system (may be a
nonlinear and non-Gaussian system) would be expressed
as

Xt =f(xtflr U, €, 0)1 t e T: (1)

e = h(xg, uy, U 0), teT, (2)
where Eqgs. (1) and (2) are the state and observation
equations respectively. x, € R\ is the system state
vector, y, € R is observation vector, u#; € RN+ is the
input vector, and @ is the static parameter. 3,(y, € RY)
and e;(e; € RN*) denote the observation noise and
states noise respective, they are independent with
each other. f: R x RNe > RNx is the state function
and 4 : RN* x RN» — R™ is the observation function.
Assuming these two functions have known and depend
on u, (sometime it is omitted for simplicity). Prior distri-
bution of the initial state x,, is assumed to be P(x).

3.2 Model Coefficient and State Estimate

3.2.1 Model Coefficient Estimation

Model parameter 6 estimation is needed in establishing
the SSM for an application. Because of the asymptotic
optimality, maximum likelihood estimation (MLE) and
maximum posterior likelihood estimation are exten-
sively used methods for parameter estimation. However,
it’s hard to obtain the gradient of the likelihood function
in some cases, so it is necessary to seek other solutions
to meet the requirements. The expectation maximiza-
tion (EM) algorithm is the most popular method when
the potential variables exist. Dempster et al. [99] first
raised the EM algorithm, which could transform a more
complicated optimization issue of likelihood function
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into a series of relatively simple functions through data
enhancement technique. It provides a framework for
MLE of unknown parameters with incomplete data
(missing data points). EM algorithm is an iterative algo-
rithm and each iteration method includes two steps: the
E-step (expectation step) and the M-step (maximization
step) [100]. EM algorithm has aroused great interest of
statisticians over the last decade and widely used in the
field of statistics.

EM algorithm can be summarized as follows.

Initialized 0, and set as 6°.

Given the current estimates of the unknown parameter
0%~1, calculate the expectations of logarithmic likelihood
function with full data.

Q(G’okﬂ) = Eg1[log p(%1: 91,410 ]
= /logp(xu,yl;tw)p(xlztlylzt,l)"_l) dxi:
Ly |0
=/logp(xlztryl:tlo)wdxlm

p<y1:t‘0k71 )

Maximize the expectations to update 6:

ok arg m;ix Q<0, 0k_1)

arg max / log p (w10, 31010 ) (1 |91, 07" ) v
p(xlit’ylztlo )
p(ylzt‘ok_l )

= argmoax/10gp(x1;t,y1;t|0)p(xlzt,yml(’)dxu.

= arg max / log p(%1:6,31.410) dwy:

Iterate the above steps until H ok — g*1 H is sufficiently

small and the iteration stops.
Because p(yl:[‘Ok*I) is independent with the parame-

ters being estimated, therefore it can be omitted for sim-
plification without affecting the optimization results.

3.2.2 State Estimation

State estimation is divided into three classes on the basis
of the estimation output «, and the given data as predic-
tion, filtering, and smoothing. In the state sequence x1., s
is the current time point. (1) Prediction (when ¢>s), uses
available observations to predict the future states. (2) Fil-
tering (when t=s), make use of the obtained information
to express the current status. (3) Smoothing (when t<s),
put to use the available information to smooth the past
state. The principle of Bayesian filtering is to build the
posterior probability density of the state variables by the
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known prior statistical information, which belongs to a
statistical inference method [101].

The purpose of establishing SSM is that it provides
a convenient method to recursively estimate the state
x, (recursive Bayesian estimation). The estimation of
the current state variables &, is performed by observed
information y;,, through the state transition equation.
The posterior probability density p(x;|y;.,) will be recal-
culated once new observations come, so the calculation
will be very expensive. However, the basic estimation
theory of state, recursive Bayesian filter, was introduced
to update the estimation recursively in dynamic system.
The recursive updating will calculate the update by only
using one prior step information in each step, avoiding
mass storage of historical data and heavy calculations.
The state vector of discrete time, time-varying parame-
ters would be updated by recursive Bayesian estimation
method in SSM of nonlinear dynamic system, i.e. the
estimated current state vector x, uses the given current
observation y,, previous state vectors x,_; have no con-
nection with all previous states #,,_; (Markov property
of memoryless). In general, this estimate is carried out in
two steps.

Predictions: the prior probability density of current sys-
tem state is estimated by using the state equation. Due to
the influence of noise, there is a certain deviation between
the prior probability density and the actual value.

Updated: at time £+ 1, the new observation informa-
tion y,., was incorporated into the estimation of the
state vector, and the prior probability density was cor-
rected. The posterior probability density of the state was
obtained by Bayesian formula. The derivation formula of
the conditional probability density function is as follows.
Initial value:

p*xolyg) = p(xo).
Prediction:

p&Xely1e—1) = /p(xt|xt—1)p(xt—1|y1:t—1) dxs 1.
Update:

PWp Y11 x)p )
Py = PYeY1e-1)
_ POy 11 %P1 [P ()
POy 1P 14-1)
Y ACA)CT vy
POy

’

where p(y,|y1,_1) = [ PO 1%)p®ely1,_1)dx; s called
as normalized factor.



Hu et al. Chin. J. Mech. Eng. (2019) 32:15

The Chapman—Kolmogorov equation

P&Xely1p—1) = /p(xt|xt—l)p(xt—1|y1:t—1)dxt—1

offers a relation between the prior density p(x;|y;.,_;) and

the previous posterior density p(x;—1|y;.,_;)- Therefore that

updating Eq. (3) establish the recursive relation for predica-

tion. The posterior probability density is presented by

1.4 1%0:0)P(X0:t)

(x0t|y1 L‘) _P yltp’g),t I)’ X0:¢

independent with each other, p(y;./Ix0.;) = H p;1%0:2).
i=1

Assume that the observed values are independent with all
t

, and with all observations are

other states at other moments p(y,.|xo.) = [[ p(y;lx:),
i=1
the posterior probability density is gotten as

t
[ pO;lxdpxilxi—1)

1] 4
P@osly1,) = p(xo) = Pi) !

)

t

where p(x0::) = p(xo) [[ p(#ilxi—1) because the system
i=1

follows Markov process.

Thus the recursive formula for Homt probability density

is p(x0:tly1..) = P(»’%:tb’l:t—ﬂ%-

Figure 1 depicts the recursive estimation of Bayesian
posterior density procedure.

As the uncertainty of the probability density func-
tions’ form, it is difficult to describe the probability den-
sity functions in a closed form of analysis. Therefore, in
practical application, it is hard to get an accurate solution
by analytical method. Particle filter, as an approximation
algorithms of Bayesian filtering, is on the basis of Monte
Carlo simulation. The recursive Bayesian filtering is car-
ried out by non-parametric Monte Carlo simulation, and
the posterior probability of non-Gaussian, nonlinear and
high-dimensional system is computed effectively from the
observations. The points of the idea is that utilizing random
independent samples, called particles, to approximate the
probability density p(xy|y,) with weights. The mean of the
samples can be used for an integral operation to achieve the
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minimum variance estimation of the state. Since each sam-
ple (particle) on behalf of the possible state, the probability
density function of particles is gradually tend to be the real
state with the increasing number of particles, which may
get the optimal Bayesian estimation results.

Mathematical description of particle filter is that it is
assumed the system’s posterior probability density at time
k—1is p(xg_1ly;_;) in the stationary random process.
According to a certain principle, # random samples are
selected from the density. When y, at time k is observed,
the posterior probability density p(xx|y;) of n particles will
be updated. Two phase, state estimation and correction
phase, are classified in the process of particle filtering. In
state estimation phase, numerous samples will be selected
first according to «,_; and its probability distribution. These
samples distributed in the state space are actually the prob-
ability distribution of the state x,_;. According to the state
translation equation in SSM, the state of every particle would
be transformed, and the original particles become predicted
ones. The weights of particles are updated in correction
phase by noise processing and the weight normalization
through substituting the predicted particles into the observa-
tion equation. The particle weights can be expressed as

(&)
O _ (yl "xOf) (xo t)
w. .
¢ (0
q\ Xo: t‘yl it

And the recursive formula of the particle weights is

gotten by
)p (xgi)
)a

(5)

O _ (y Lt ‘
¢ q< f’) (i)

X0:t—12 V1t
(J’l t‘x0t> (xl

)

0:t

(i) (i
X0:t— 1>P< %0:

i) ], t-1
P(yu 1 — 1) ‘I(xtl xOLt pyu)
(@) @],
( ‘ ) < *i- 1) 0
t—1
51<x§l) x(()l)t 10’1:)

Fosterior density
at(f-1)

Chapma.n—Ko].mu:ugomv
prediction for p(x | 3,

£=> ()

1
Fecursive estimation

I Cutrent observations yr |

at f

|
I
|
' Posterior density
I
I
|

Figure 1 Procedure of Bayesian posterior density recursive estimation
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In the 1950s, Zhao et al. [100] proposed sequential
importance sampling (SIS) algorithm, which was success-
fully used in the application of system control in the late
1960s. SIS method stimulates the wide research for par-
ticle filtering as a practical application of nonlinear and
non-Gaussian filtering.

The SIS algorithm can be explained as follows in
general:

YN
1. Initial values at t=0. Sampling particles {x(()l)}, .
i=
from prior distribution p(xg), and the weight of
each particles is set as wg) = % fori=1, 2,...,n
2. Fort=1,2,.., T,

i for i=1, 2, .., n, extracting the particles

(xtIth 1 t) from importance density

functlon (xt|x();t71y1:t) )

(@) (7) ~ (@)
X0t = (th ¥ )

and assuming

ii. for i=1, 2, .., n, updating the weight by
@ @ 1,.@
M _ P(yz *e )P(" ¥ 1) )
Wy = <(z) @ Wi 1
g\ x: | Xo.1— 1¢y1t>

iii. for i=1, 2 o1, normalizing the importance weight
Z w(l).

3. The updated particle {xé)t i=12,.
approximate the posterior probability dlStI‘lbuthIlS of
the state and the expectations of some functions such
as

bY W(l) —

is to

}:’[gt (%0:¢)]

n
- th (x(()l)t) .
t—1

The variance of the particle weights will increase
gradually over time with several algorithm iterations.
The large variance of the partial weights will cause
a few of particles to have larger weights, while most
particles with small values, which will lose their func-
tions of particle degrading. The degradation of the
particles with iteration process makes the case that
there is no enough particles to express the posterior
density distribution after new observation available.
Until 1993, Gordon proposed the concept of re-sam-
pling [101], which laid a foundation for the particle
filter algorithm and its applications. The concept of
effective resampling scale is defined as:

n

Ne = 57—
Z (ng))z
i=1

where w(l) i=12,.
particles welghts.

..,n are the un-normalized
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The formula is hard to determine the actual calcula-
tion results, but the approximation method is generally
adopted as

1
()
i=1

where w() i=1,2,...,nare normalized weights.

If Ngg < Ny, resampling should be used. In general,
N, =2NJ/3.

Now, the most commonly used re-sampling method is
introduced as follows: First, generate n random number

Neﬂz

{#y I=1, 2,...,n} in the [0, 1] uniform distribution, and
then apply the search method to find an integer number
m that satisﬁes the following formula
m—1

oW < < Z w;. The new samples x{"” are joined in
j=0 j=0
the new set of sampling particles. The interval [0, 1] is
5
divided into # intervals by 4 =Y w;(i=1,2,---,n).
j=0

When the random number y; belongs to the mth interval
Ly, = [2m—1, Am), the samples can be copied. Obviously,
samples with larger weights would be duplicated repeat-
edly, while in the case of n sample numbers, samples with
smaller weights will be discarded. Now the weights of
particles are re-distributed to 1/N, and the re-sampling
process is achieved.

Figure 2 shows a schematic diagram of the standard
particle filter algorithm with re-sampling function.

The brief procedures for SIS particle filter with
resampling:
01"

i. Initialization: At t=0, particles {xo from

i=1
prior distribution p(xo) are be chosen, and the
weight of each particles is Wé) = Ibforl—l 2,..

ii. Importance sampling: extracting the particles from

q(xtlx(()l:)t_lylzt for i=1, 2,.., mn, that is
fcgl) ~ q(xtlx((f)t i) Assuming
&) = (xg)t l,ﬁgl)) for i=1, 2,...,n. The weights by
20 ) (40,0
y  ply® )p(#E ;
wil) = (t (tl)> ( i 1)w£21 are updated. The
q(x xot 1vJ’1t)
importance ~ weight is  normalized by

WO = / 50,
iii. Re-sampling: calculatmg If Nop < Ny, re- samplmg

partlcles{xy) , 21} from particle set {x(” w(’)} ,

i=1
else{ @ w(’)} {A(’) ~(‘)} .
i=1 i=1

iv. The states posterlor distribution
peelyr) ~ Z w8 — ).
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SIS process

Re-sampling
process

Figure 2 Diagram of resampling process

SN
Initial particles {x,(i)l . with the weight 1/¥
=

SN
updated particles {x,( 3 } ~ witht
he weight w9 =1

SN
re-sampling particles {x,(J) } ~with the
weight 1/N J=1

v. Stop or return for ¢.

Resampling is not need to be done on every iteration
and the condition controlled by if Nog < Ny,

In spite of particle filter has been extensively used on
many occasions, there are still some shortages. In order
to further improve the performance and stability of parti-
cle filter algorithm, lots of improvements have been made
in two aspects, which are selecting more importance
function and ensuring the effective particles diversity
[102]. There have been many proposed modifications,
such as auxiliary particle filter, local linearization meth-
ods, evolutionary particle filter algorithm, genetic algo-
rithm operator. The topic of prognostics uncertainty has
been highly concerned, and how to reduce the uncer-
tainty is quite a challenging job [103]. In order to make
the estimation of states close to the true value, optimal
algorithms of particle filter need further study.

3.3 SSMin RUL Assessment—A Note

Much recent research has focused on SSM in RUL
assessment, where the products’ degradation process
is presented using the state in SSM and the degrada-
tion modeling is the assessment of the state variables.
The prediction of the degradation is the estimation of
the future state based on observations available up to
current time. The goal of the state estimation in Bayes-
ian estimation is to obtain the posterior distribution of

the state, which presents the unobservable degradation
process. To be more precisely, the joint posterior dis-
tribution p(xo:; |y1:t) is the key for predicting the deg-
radation and remaining lifetime for the states of the
degradation process. On the mechanism of the state
estimation above, the particles {x(()l:)[}j?:1 are generated in
the process of state estimation to predict future degra-
dation. The k-step ahead future state (®;41..4+%|¥1.,) pre-
diction is given as follows.

Forj=1,2, ...,k

Fori=1,2,...,n,sampling xiﬁ)rk ~ p(xt+k|x§2k71,y1;t)
and x, = (ng;+k—1’xgk

obtained.

). Finally the sample set

T, s : The

p(xt+1:t+k|y1:t) = % Z%m ) Fri 14k, where the
i=1 t+1:it+k

PG (®¢4+1:¢+%) denotes the Dirac delta mass located
(CISPITY)

{x estimation  of

at x4,

Once new observed data are obtained, the first is to
update the estimation of the state and parameters, then
undertake the future degradation prediction. Because
of the statistical characteristics of the Bayesian method,
the uncertainty of degraded state estimation and pre-
diction is quantified by the probability distribution
p(xt+1:t+k|y1:t). };he corresponding predicted degrada-
Pt

To obtain the prediction of the RUL, the specified
threshold value Y, the degradation state should be pre-
defined. The remaining lifetime 7 is determined by the

tion is &4 = = > &
=1
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Figure 3 Flow chart of the methodology of the remaining life assessment

estimated degradation X;,,. In order to derive the dis-
tribution of the remaining lifetime, compared Y with
each sample path xifi+,<,i =1,2,...,n and obtained n
times T),...,T,, and the T, represents the least time at
which the sample path xffZJrk equals or exceeds Y [81,
104].

Therefore, the methodology of the RUL assessment
using particle filtering method can be summarized as
shown in Figure 3.

The state and parameter estimation can be proceed at
the same time based on particle filter method [80, 105].
A recent advanced study in joint state and parameter
estimation is the method of particle MCMC proposed in
Ref. [104], which exploited the complementary strengths
of both the MCMC and Sequential Monte Carlo (SMC)
algorithms. Particle filtering algorithm of SSM (improved
MCMC method) is the most promising method and
widely studied for online RUL modeling and evaluation, as
expressed the HMM property in SSM and MCMC effec-
tiveness in nonlinear non-Gaussian system. In specific
application, SSM of system (the state translation equation
and the observation transformation equation) is based on
the given degradation dynamics, failure modes and fail-
ure mechanisms. System startup conditions can also be
resolved by applications. Based on the existing observa-
tions and Monte Carlo simulation, the model coefficients
are estimated by using EM algorithm. The degradation
can be evaluated by the state estimation in space model,
and the process of degradation is regarded as the hidden
stochastic process. Bayesian recursive estimation of poste-
rior probability density function of system states is carried
out by particle filter algorithm with updated observations.
This works in a recursive manner of closely simulation.
Once the observations are updated, numerical calculation
is much expensive at each step. The algorithm accuracy
is highly depends on the number of particles. Due to the
improved power consumption and calculating speed of
the digital computer system, particle filtering in SSM can
implement online recursion in RUL applications.

4 RUL Online Assessment through Performance
Sensing Data—A Discussion

Online assessment of RUL based on performance obser-
vations is an evaluation process to assess the probability
distribution of hidden degradation processes approach-
ing predefined threshold (failure). This online estimation,
as its first order Markov property, becomes recursive and
not only reduces storage space for the data and comput-
ing time, but also the model takes into account the sys-
tem nonlinearity and operating environmental variation.
However, there are also many issues about RUL predic-
tion and assessment on the basis of performance obser-
vations monitored in real-time.

(1) Underlying physics degradation of a system or
device decides the lifetime is limited. In other
words, no concept of RUL exists if there is no non-
reversible degradation in aging and usage. In most
applications of online RUL assessment, the per-
formance failures are defined by the physics deg-
radation, which reaches or exceeds a predefined
threshold. The underlying degradation is a random
process which is monotonically increasing (not
decreasing) with time. Hence, online RUL assess-
ment must be built on performance degradation.
Defining a performance threshold for failure in
industrial practice is basically determined through
engineers’ experience and/or historical mainte-
nance data analysis. Most of the time, the model
and assessment are not accurate enough because it
assumes that life information of the same products
apply to the same working environment. Therefore,
defining the degradation threshold for RUL assess-
ment is still an open topic in prognosis and health
management (PHM).

(2) Underlying system degradation and system physics
performance are different concepts in RUL assess-
ment engineering. The underlying system deg-
radation is a random process, time-varying, and
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undiminished. It is usually material and substantial
changing, monotonic, and not reversible. This is
the basis for RUL assessment. But the system per-
formance measured using some physics variable(s),
which, unlike the degradation could fluctuate show-
ing sometimes high and sometimes low, depending
on the devices” working conditions. For example, a
secondary battery’s performance (charging and dis-
charging and/or output voltage and current) could
fluctuate, sensitive to environmental temperature,
but the materials consumption and the electro-
chemical reaction on electrodes and electrolyte
are monotonically degrading. In practice, the true
physics degradation is difficult to measure on-line.
Instead physics variable measures should be used.
Almost all observations of sensing data in perfor-
mance condition monitoring show fluctuations.
The rise and fall of the signal are because (1) it is a
performance variable; or (2) it is a degradation pro-
cess with high noise of measurement errors. Usu-
ally a signal process will be applied to the signal for
noise filtering and/or finding underlying degrada-
tion components.

In industrial practice, to assess observable degrada-
tion for RUL, some other measurable physics varia-
bles are selected and sensed instead. These variables
are highly related to the underlying degradation or
sometimes they are the factors causing degrada-
tion which directly affect the degrading process.
For those factors of the degradation, referred to
as covariates of the process, some covariate-based
models are proposed. One of the widely reported
covariate based models is the PHM, which models
hazard rate of a system degradation process in two
components: baseline hazard function and a func-
tion of covariates. In this model, historical failure
and censored data, and CM data are able to be used
for RUL assessment without a predefined failure
threshold of degradation. For those related online
variable measurements, the statistical properties
between the degradation and performance obser-
vations should be known and able to model. There
are at least two stochastic processes recognized and
the measurable one will be sensed for observations
and modeled to assess the underlying unmeasur-
able degradation, which leads to a hidden Markov
process model.

A HMM is proposed for degradation modeling.
There are two random processes, one is the hid-
den Markov process, which represents the actual
degradation state, and the other is the observable
process, which is the performance observation data
from monitoring or tests. The state of the system

(5)

(6)

(7)
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can only be assessed using updated observations
expressed by probability density distributions of
observations. Each observation vector is gener-
ated by the a sequence of states with a correspond-
ing probability density distribution. The HMM has
been extensively studied and applied. However,
there is no unified method to determine the direct
relationship between observation and state, and
there is no uniform way to identify model param-
eters either. Those are unsolved focuses in RUL
research. However, the first order of HMM is natu-
rally connected to a state space model and particle
sequence Monte Carlo method.

A SSM with a state equation (translation function)
and an observation equation (transformation func-
tion) naturally presents a first order hidden Markov
process. It has been studied in depth for a general
system, which has high nonlinearity, time-variant
parameters, and non-Gaussian noise. A nonlinear
SSM with particle filtering (sequence Monte Carlo)
method using a recursive estimate of both model
parameters and system state will serve as the funda-
mental methodology for online RUL assessment at
a given time. Limitations to linear and constant sys-
tem dynamics, the optimization, in minimum vari-
ance, of Kalman filtering and state estimation are no
longer effective in the industrial applications of RUL
modeling and assessment. With the rapid growth of
computer computation capability, the general SSM
plus particle filtering technology might be the key
methodology to RUL modeling and online assess-
ment.

Building a SSM for a specific application in practice
is not a trivial thing. There are still no valid and sys-
tematic procedures yet. The degradation process is
expressed in the state equation and the transforma-
tion dynamics from observation to the hidden state
is expressed in the observation equation. Currently,
the most suggested method is the hybrid one that
combines both model based and data driven meth-
ods with model parameter online identification.
Measures in practice always contain measurement
errors. This concern exists also in the sensing data
observations in RUL assessment. Researchers have
understood the concern for a long time, yet it might
be the time for them to look for the solution to the
problem in the form of SSM since nonlinear sto-
chastic filtering theory and digital computation
capabilities have been greatly improved.

In the field of RUL prediction, theories are stud-
ied from different aspects, which does not form a sys-
tem of integration application. As an industry-leading
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international business innovation and research and
development (R&D) project, IMS (Intelligent Manufac-
turing Systems) is proposed to develop next-generation
manufacturing and processing technologies. Online
RUL prediction based on the degradation is especially
motivated in emerging applications of automatic pre-
diction system, whose main goal is to evaluate the cur-
rent and future health states of an individual system in
order to make cost-effective decisions about maintenance
activities.

5 Conclusions

RUL modeling and assessment is becoming increas-
ingly important in reliability and PHM systems. Man-
agement system needs to determine the performance
status and the RUL of key systems for maintenance plan-
ning, decision making, and system global optimization.
This paper reviewed basic methods in RUL modeling
and categorized them into three types. They are physics
model-based method, data-driven method and a hybrid
method of both. Its advantages and disadvantages are
also discussed. RUL of all devices is decreasing because
of the physics performance degradation. The physics
performance degradation is assumed monotonic and
nonreversible. And the RUL, a random variable affected
by the system aging and its working environment condi-
tions, is modeled and assessed based on the degradation
measures. Usually, because of the complexity of the sys-
tem and failure mechanism, physics degradation is not
directly observable. Therefore, RUL evaluation becomes
a course for assessing the degradation process based on
other available physics performance data. Some variables
are causes of the degradation and some variables are
indirect measures of the degradation, which are highly
related to the underlying degradation. Normally, there
are two random processes in RUL evaluation, the hidden
degradation process and the observation of measurable
processes. The aim is to use the observation process and
the data to estimate the degradation process and convert
the degradation state into a probability density distribu-
tion that forms the mechanism of HMM and Bayesian
recursive estimation, which can be best expressed in a
state space model.

A SSM with a system equation and an observa-
tion equation is actually a format of a (first order) hid-
den Markov process. Originally, the success of SSM and
the Kalman filter in aerospace applications stimulated
more industrial application. However, soon enough, the
attempts showed the mismatch between the assump-
tion of the Kalman filter and the industrial state estimate
problems, which are dynamics with high noise and non-
linearity. The SSM, as a first order hidden Markov, is pro-
viding the exact format for particle filtering algorithm on

Page 17 of 20

Bayesian posterior distribution estimation. The nonlinear
SSM using an online recursive particle sequence Monte
Carlo method is a hot topic in online RUL prediction,
which covers both online model parameter estimates and
state estimates across time. It is a promising methodol-
ogy, providing online information of RUL for PHM and
CBM. However, building an SSM for a particular appli-
cation is not a trivial thing. There are still no systematic
procedures to follow. To model the system equation and
the observation equation of the SSM, the suggested way
is the combination of the physics model-based method
and historical data fitting for parameter initiation-a data
driven hybrid method.
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