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Abstract 

The remaining useful life (RUL) prediction of mechanical products has been widely studied for online system per-
formance reliability, device remanufacturing, and product safety (safety awareness and safety improvement). These 
studies incorporated many different models, algorithms, and techniques for modeling and assessment. In this paper, 
methods of RUL assessment are summarized and expounded upon using two major methods: physics model based 
and data driven based methods. The advantages and disadvantages of each of these methods are deliberated and 
compared as well. Due to the intricacy of failure mechanism in system, and difficulty in physics degradation observa-
tion, RUL assessment based on observations of performance variables turns into a science in evaluating the deg-
radation. A modeling method from control systems, the state space model (SSM), as a first order hidden Markov, is 
presented. In the context of non-linear and non-Gaussian systems, the SSM methodology is capable of performing 
remaining life assessment by using Bayesian estimation (sequential Monte Carlo). Being effective for non-linear and 
non-Gaussian dynamics, the methodology can perform the assessment recursively online for applications in CBM 
(condition based maintenance), PHM (prognostics and health management), remanufacturing, and system perfor-
mance reliability. Finally, the discussion raises concerns regarding online sensing data for SSM modeling and assess-
ment of RUL.
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Remanufacturing
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1 Introduction
With the quick development of science and technology, 
the increasing diversity of demand with growing prod-
uct complexity comes with many new products safety 
challenges. Today, global industrial accidents frequently 
occur and (unfortunately) product safety issues con-
tribute, at least partially, to these accidents. The issues 
of production safety and product safety not only cause 
casualties and property damage, but also environmental 
pollution. All of these issues affect the health of product 

life, and are not conducive to either social harmony 
or stability. According to the research [1], due to safety 
issues with some mechanical products, many accidents 
and property damages occur every year. Additionally, 
the world’s machinery accidents account for about 1/3 of 
the total number of accidents reported. This is especially 
the case with mechanical products related to civil and 
defense machinery, such as spaceflight, vehicles, elec-
tricity, weaponry, petrochemical, metallurgy. Mechani-
cal product safety and reliability has become a common 
theme that is of paramount concern around the globe.

Failure prognostics was the definition of “the estima-
tion of the Time to Failure (ETTF) and the risk of exist-
ence or later appearance of one or more failure modes” 
by the International Standard Organization (ISO) [2]. 
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The terminology of RUL was normally reported in the 
literature instead of ETTF [3]. If the remaining life of 
mechanical products can be accurately predicted, appro-
priate measures could be then taken before the prod-
uct fails, which will prevent accidents. RUL assessment, 
therefore, is very essential because it can provide not 
only important information for decision(s) in the condi-
tion based maintenance [4, 5], but it will contribute to 
make decisions on prognostics and health management 
(PHM). The system contains valuable information of 
installed equipment about the current health status, the 
critical components’ RUL, and diagnosis of potential fail-
ures [6, 7]. For emerging industries, remanufacturing and 
residual life prediction also play a pivotal role in prod-
uct remanufacturing feasibility analysis. Determining 
whether to remanufacture or recycle a product requires 
an estimate be made of its remaining life. Besides the 
environmental, economic, and technical effects of this 
estimate, it is also important to give a comprehensive 
consideration on retiring the product instead of remanu-
facturing [8]. The remaining life assessment is necessary 
for those remanufactured products that are in service to 
avoid abrupt mechanical failures. RUL prediction stud-
ies have been done and the proposals that have resulted 
from these studies have been introduced quite swiftly to 
the machinery industry. The RUL and its assessment are 
applied to online life estimation, forecasting, and perfor-
mance reliability for critical equipment and machinery.

Machinery system complexities, such as failure mecha-
nisms, extent of failures, and failure growth, when cou-
pled with the dynamics and randomness of a working 
environment, results in that feature vector extractions 
are complicated to perform. The relationship between 
the detected (failure) signals and the remaining lifetime 
is difficult to determine or model, especially for heavy 
equipment with complex structure and dynamic load-
ing. As long as the RUL prediction model for mechani-
cal products does meet assessment needs, the operation’s 
security and safety issues of the machinery will remain 
serious and restrict or limit economic health and sus-
tainable social development. Global information is in a 
state of rapid advancement and the efficient and accu-
rate residual life and reliability assessments are an urgent 
focus for academia research.

Residual life assessment for mechanical products, the 
world research hotspot, is reviewed in this paper. The 
assessment methods are separate into three catego-
ries: physics based method, data driven method, and a 
hybrid method of these two. The merits and drawbacks 
of each method are discussed and compared. A newer 
method based on the state space model (SSM) in assess-
ing remaining life, widely cited in recent literatures, is 
also presented. By establishing an appropriate state space 

model for a dynamic system (RUL assessment from prod-
uct performance degradation) by state transfer equation 
and observation equation, the product performance sta-
tus (degradation) at a different time can be predicted. 
Using a predetermined condition or threshold, the 
remaining life is regarded as the duration from current 
time and then extending out to the time when the state 
(degradation) meets or exceeds the critical threshold. 
This paper introduces the state space method in detail 
for the RUL prediction model, comprehensive analysis 
of the particle filter methods and the best approxima-
tion method today for most systems with nonlinear, non-
Gaussian degradation characteristics. The methodology 
of assessing the remaining life based on particle filter 
method is provided for researchers’ application refer-
ence. The paper concludes by raising, deliberating, and 
dispelling some of the practical issues with online sensor 
data modeling and RUL evaluation.

2  Basic Methods for RUL Assessment
There are three major methods used in RUL assessment: 
the physics based method, the data driven method, and 
a hybrid model of these two methods. The first one is 
based on physics dynamics and/or engineering princi-
ples. The physics based method is usually more flexible in 
the sense that this model could adapt with greater ease to 
new or unforeseen cases. If a system state deviates from 
the expected operation restrict, the model-based tech-
niques continues to update model parameters to describe 
the new condition. This capability allows the model based 
techniques to dispense with extensive training and his-
torical information that forms the hybrid model of the 
model based and data driven methods. The data driven 
method (usually model-free) works on comparative sta-
tus assessments of a system under testing in conjunction 
with other learned occurrences. The model needs to be 
trained from historical data and under suitable condi-
tions the new comparison is made in order to recognize 
the fault. The data driven method sets up nonlinear map-
ping between the input and output by training and the 
knowledge is stored by a set of parameter values. The task 
of performance assessment is done through the training 
of a classification arithmetic. The data driven method can 
be used in the situations where reliability of the physics 
model is low and the availability of comparative data is 
high. The hybrid model method should be employed if 
the reliability of the physics model and the availability of 
comparative data are both high.

2.1  Physics model
Physics model is one of the most important research 
area of life prediction and is based on theory of phys-
ics-mechanics and dynamics. There are four common 



Page 3 of 20Hu et al. Chin. J. Mech. Eng.           (2019) 32:15 

failure modes of mechanical products: wear, corrosion, 
deformation, and fracture. Substantially, products failure 
results from the interactions of materials, mechanics and 
chemicals [9]. Fatigue life depending on the process of 
crack initiation, propagation till final fracture, and phys-
ics based life prediction method have been considered 
in the initial stress analysis method, which obtains long-
term development by utilizing fracture mechanics and 
crack mechanics theory. In 1850s and 1860s, WÖHLER 
first introduced the S–N (stress-rpm) curve and fatigue 
limits [10] from the fatigue damage tests of rail vehicle 
axles. Then, mean stress effects on fatigue life attracted 
wide attention, such as the average stress theory intro-
duced by John Goodmab. Paris [11] raised the laws of 
crack propagation-Paris law, by crack technique in 1963, 
which offered a novel approach to estimate RUL. In 1971, 
Morrow et  al. [12] put forward a fatigue life estima-
tion method under the stress-strain (local stress-strain 
method) on the basis of Manson-Coffin. Subsequently, 
an amazing breakthrough in fatigue theory, the “damage 
tolerance design”, was developed. Researchers have since 
pursued more significant developmental strides based on 
Paris law. Ray et al. [13] and Mohanty et al. [14] proposed 
a nonlinear stochastic model of crack growth based on 
the measured signals, which could estimate the length of 
crack, the propagation rate of crack and residual life.

China, as a manufacturing industry leader in the 
world, is working to vigorously strengthen scientific 
and experimental research. For example, Liu et al. [15] 
carried out a sprayed dust accelerated wear test on 
F6L912G diesel engine and established a mathemati-
cal model of reliability and wear-resistance (R-W-t). Liu 
established that as long as the acceleration coefficient 
can be calculated then wear-resist reliable life of the 
engine can be estimated. Another example of advancing 
scientific understanding includes Shang, who proposed 
a multi-axial fatigue damage parameter in shearing 
form on the basis of the multi-axial critical damage 
surface and established a new prediction model [16]. 
Through fracture mechanics analysis, Ringsberg [17] 
exploited the fatigue life estimation strategy of rolling 
contact fatigue crack initiation. And two examples, a 
twin disc test and a railway wheel-rail rolling contact, 
are presented to verify the effectiveness of methodol-
ogy. Fatemi [18] comprehensively reviewed cumula-
tive fatigue damage analysis theory, which is the key to 
assess component or structure life. Besides, a new tech-
nique based on cumulative damage rate was presented 
[19]. The logarithmic probability density of fatigue 
life in any stress could be derived and then the fatigue 
life under fatigue load spectrum would be predicated. 
Zheng et al. [20] proposed that the load spectrum size 
can be represented in the load spectrum by overloading 

that is caused by a maximum load. Under the interac-
tion of loads, it is possible to predict the cumulative 
fatigue damage at fatigue crack initiation (FCI) of ele-
ments with variable amplitude load by Miner’s rule, 
which could also be applied to assess the fatigue life 
and cumulative fatigue damage threshold. Such stud-
ies and research were quite popular in China in the late 
20th century, and achieved a greater amount of experi-
ence and new ideas to advance RUL prediction.

Due to the different mechanism of crack initiation and 
crack extension, various approaches are required in order 
to get more accurate results. A research method utiliz-
ing strain life methodology was proposed to compute the 
stress cycle numbers of FCI [21–23]. The Paris law was 
used to simulate the fatigue crack growth. For high accu-
racy of prediction, a physics-based approach, integrated 
observers and life models, was established for crack diag-
nostics and prognostics [24]. The fracture mechanism 
based approach assumes that there is a finite crack at 
the initial stage and that the extent of damage is related 
to the growth of the crack, whereas the energy-based 
approach is based on material properties. The strain 
energy dissipation of a single process cycle of fracture 
would be identified by measuring the area of monotonic 
true stress-strain curve and each hysteresis loop during 
the cycle.

Since energy is scalar that can be cumulative, many 
scholars have shown interest in the energy based fatigue 
life prediction. In the fatigue process, the life predic-
tion is calculated by dividing the total monotone strain 
energy by the strain energy each cycle [25, 26]. Sarihan 
[27] presented a new damage equation of solder depend-
ing on hysteresis energy to assess the damage and the 
fatigue life. However, the traditional life prediction mod-
els based on energy are under the assumptions that one 
cycle throughout the fatigue life has the same energy dis-
sipation. Some improved energy models were proposed 
by considering the aging factors in the calculation [28] or 
observing the experimental strain energy density of per 
cycle in cyclic strain energy density expression [29].

This paper compared and summed up the advantages 
and disadvantages of the physics model from six per-
spectives by comprehensively analyzing the theoretical 
support and application of physics methods, as shown in 
Table 1. It shows that the life prediction methods based 
on the cumulative fatigue damage and fracture mechan-
ics are more mature, and are widely used to do failure 
analysis testing of mechanical parts. However, the appli-
cation of the versatile, energy based method is difficult in 
application. Although its recent developments have been 
achieved, there is still more information gathering and 
study required.
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For the past few years, further experimental studies on 
physics mechanics methods for life prediction have been 
reported. The improved methods feature a deeper under-
standing of the knowledge as well as an advanced fatigue 
theory and integrated modeling method. The experi-
mental data is expected to be more accurate, meaning-
ful for the information of real situations. Special research 
results are obtained on important structures or compo-
nents, which has been greatly strengthened the study 
and achieved many surprising results. However, mod-
eling based on physics mechanics and dynamics becomes 
more and more intractability because of the highly com-
plexity of the life prediction theory. On one hand, there 
is a high demand for insight into the dynamic details; on 
the other hand, the error of model prediction increases 
with the enhancement of model nonlinearity and com-
plexity. Hence, the life prediction based on physics mod-
els and engineering principle is difficult to satisfy the life 
study for remanufacturing in spatial state.

2.2  Data Driven Based Methods
As social modernization advances so does the complex-
ity and uncertainty of modern machinery. Products that 
include industrial equipment, manufacturing equipment, 
and aerospace equipment, are expanding, which makes it 
difficult to determine the physics model. Chai academi-
cian pointed out that complex industrial processes often 
have integrated and complex features, such as multiple 
variables, strong coupling/correlation, nonlinearity, fre-
quent boundary-condition change, and dynamic char-
acteristics under variable working conditions [37]. The 
mathematical models are hardly described by a closed 
analytic form, thus a data driven based method is con-
sidered as a feasible method to figure out the complex 
system controls, decision making, optimization, etc. This 
paper summarizes the research within recent years on 
this aspect. The data driven approach is classified mainly 
into probabilistic methods, artificial intelligence meth-
ods, and stochastic methods.

2.2.1  Probabilistic Methods
Probability statistical mode-based analytical approach 
on life and reliability is a traditional reliability theory. 
Life cycle information is taken as the object for statistical 
analysis. The researchers first obtained failure data from 
plenty of tests and then use statistical criteria to choose 
the best fit statistical distribution to get distribution of 
lifetime. The life of mechanical parts was predicted by 
probabilistic method [38] in 1924. On the basis of test 
results, an acceptable life was proposed when the sam-
ple has 10% failure rate or 90% survival rate. Probability 
Miner Cumulative Damage theory was developed on the 
basis of the original Miner formula and the secure life 

by introducing P–S–N curve instead of S–N curve. To 
improve the analysis accuracy, Goode et al. [38] pointed 
out that the fault process of many equipments (such as 
hot rolling mill pump) can be divided into two processes, 
stationary or non-stationary, which can be distinguished 
by statistical control method. Later on, autoregressive 
moving average model (ARMA) and autoregressive inte-
grated moving average model (ARIMA) were extensively 
used in time series modeling and forecasting.

The performance of the device using the statistical pat-
tern recognition (SPR) method was assessed [39, 40], 
which predicted the remaining life of the processing 
equipment’s cutting tools using ARMA model. Cui et al. 
[40] introduced a genetic algorithm (GA) to optimize 
ARMA model, which resolved the RUL prediction accu-
rately problem of aerogenerator.

However, the above-mentioned methods are directly 
using the experimental data to statistically predict trends 
that follow probability distribution under certain condi-
tions. Logistic regression and the proportional hazards 
model are more acceptable which regarded the obtained 
information as the conditional probability. Yan et al. [41] 
suggested to apply logistic regression to build the rela-
tionships between characteristic variables of the device 
and the failure probability. At the same time, it recom-
mended to use ARMA model for forecasting the charac-
teristic variables and the trained logistic model for RUL 
prediction. Chen et al. [42] presented a reliability assess-
ment method based on logistic model, which was able to 
accurately estimate the reliability indicators and failure 
time of running tools. Volk et al. [43, 44] put forward the 
RUL prediction by proportional intensity model, which 
could evaluate the effect of preventive maintenance as 
well. Jardine et  al. [45] used the proportional hazards 
model (PHM) to predict equipment’s reliability func-
tion and the residual life. Gorgian et  al. [46] reviewed 
two RUL assessment method, PHM and Proportional 
Covariate Model (PCM), which based covariate hazard 
models using both condition monitoring data and failure 
data. From the results showed in this paper, two meth-
ods above have achieved considerable prediction preci-
sion. Besides, PCM always performed better because the 
posterior hazard function could be updated with current 
conditional data.

In early 1990s, Vapnik [47] put forward Support vec-
tor machines (SVM) and the concept of VC (Vapnik-
Chervonenkis) dimension. These can deal with small 
sample prediction effectively and are widely adopted in 
life prediction research [48–50]. But the application of 
SVM is basically aimed at univariate time series. Chen 
et  al. [51, 52] proposed multivariable support vector 
machine while taking into account the multiple factors 
affecting the residual life. The extractions of as much 
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information as possible that are related to the RUL veri-
fied the validity of the method by experiments.

The life prediction method that is based on proba-
bilistic model is simple, but does neither consider the 
difference of the operating conditions and failure mecha-
nisms, nor does it make full use of relevant operational 
information before failure. In addition, this probabil-
ity statistics-based life analysis and prediction method 
should be supported by large amounts of experimental 
data, without emphasizing individual nuances. There-
fore, the results of life prediction are the “average nature” 
for a given circumstances. Despite the life analysis and 
forecasting method can accumulate large amounts of 
data efficiently to calculate the product’s life distribu-
tion, it is difficult to meet the needs of product opera-
tional life research in spatial state and dynamical working 
environment.

2.2.2  Artificial Intelligence Methods
The main purpose of artificial intelligence technology is 
to make the computer accomplish what only people are 
able to do (such as reasoning, understanding, decision-
making, and learning). As a branch of artificial intelli-
gence, expert systems resort to knowledge and inference 
procedures to solve complex problems that require a 
large number of experts to work out. In 1985, the air-
craft control system monitor developed by Regenie, the 
automotive fault diagnostic system (FIXER) developed 
by Malin in 1987 and the aircraft fault diagnosis expert 
system (Fault2finder) explored by the Development 
Research Center of NASA. Langleg, etc. had all reached a 
level of practical application and put into use. In Pawar’s 
work [53], fuzzy logic system is adopted to establish com-
posite helicopter rotor mechanical damage and global 
online prediction of lifetime consumption. This worked 
well to process noisy data. Neural network with a strong 
ability of approaching non-linear mapping can effectively 
present the relationship between real time trends of the 
actual working conditions of machinery and its state sig-
nals. Meantime, in terms of the ability to perform multi-
step prediction with multi-factor inputs, artificial neural 
networks are considered as a quite promising approach 
in prediction. Subsequently, the application of the arti-
ficial neural network in lifetime prediction has rapidly 
developed. Du et  al. built a RUL prediction model of 
large-scale mechanical systems based on artificial neural 
networks [35].

In recent years, artificial neural network is in-depth 
developed towards simulating the human cognition. 
Combined with fuzzy systems, genetic algorithms, 
evolutionary mechanism, it has become an important 
direction of artificial intelligence. From perspective of 
fault prediction, Zhang et al. [54] explored a combining 

prediction model based on neural network, and the best 
combination of traditional prediction method was given. 
Vachtsevanos et al. [55] proposed a prediction technique 
based on dynamic wavelet neural network, and verified 
the practicable of the method in the rolling bearing case. 
Fu et al. [56] used an improved neural network method 
predict the RUL of coke drum thermal mechanical, 
designed a corresponding program, and proved its valid-
ity in the practical application. Xu et al. [57] used genetic 
algorithms to train Back-Propagation neural network, 
developed a learning algorithms of evolutionary neural 
network, and predicted the residual life of cutting tools 
with higher accuracy. Study of artificial neural network 
has received much attention by the developed countries 
in the world.

It should be noted there are some critical points when 
applying neural network in engineering applications: 
(1) the neural network is basically a ‘black box’ method, 
there is no analytical formulas that can make a full expla-
nation for the neural network learning; (2) because the 
neural network design is very flexible, there are many 
variable parameters to determine and there is no gen-
eral rule to follow in design and parameter selection of 
a neural network; (3) neural network technology has its 
featured over-leaning or over-fitting problem in the train-
ing, which results too much noise components in model 
and significantly limited the model capability of gener-
alization and prediction; (4) neural network training may 
require considerable time; and (5) data preparation for a 
neural network application is a huge and tedious work. 
There is still not a complete and systematic way in data 
preparation for neural network applications.

2.2.3  Stochastic Methods
Condition monitoring data-based RUL modeling and 
forecasting is defined as the time from the current to the 
time when a system failure occurs or the time of arrival 
for predefined system failure. Banjevic et  al. [58] pre-
sented RUL as: Xt = {xt : T − t|T > t,Z(t)}, where t is 
the current time, T represents lifetime, which is a ran-
dom variable and vector Z(t) are the available observa-
tions at time t. Engel et al. [59] used a polynomial model 
to predict the RUL of the helicopter gearbox and derived 
characteristic variables. In addition, he indicated that 
an effective life forecasting method not only needed the 
expected value of RUL, but uncertainty to be predicted 
(expressed in confidence intervals). In the turn of the 
century, Hidden Markov Model (HMM) CBM method 
was first proposed [60], and study the remaining life esti-
mation, finally applied to verify in a helicopter gearbox. 
HMM is a model based on Markov processes, mainly 
for modeling implicit discrete degradation states [61]. 
In HMM method, the state of the hidden process cannot 
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be observed directly, but it can infer by the observation 
sequences, each displays every states by probability den-
sity distribution, and each observation vector is gener-
ated by the state of the corresponding probability density 
distribution. Baruah et al. [62, 63] recommended an inde-
pendent HMMs to be established for per health state in 
the case of equipment failure, and then the state change 
points of every sample were built. Finally the condition 
distribution of state change points were obtained. Camci 
et al. [64, 65] considered hierarchical HMM as dynamic 
Bayesian network in diagnosis and forecast method. The 
methods in the research [62, 64] can be used directly to 
assess the transition probability for device health sta-
tus. A direct transition probability estimation method 
between the health status of the device was propose [45, 
64, 65], and hierarchical HMM used for diagnosis and 
prediction was regarded as a dynamic Bayesian network. 
But, the calculation of the method is very expensive and 
only the numerical results of the assessment of RUL are 
available.

In order to relax the requirements of the state to obey 
the demands of the Markov property, an improved HMM 
algorithm‒Hidden semi-Markov model (HSMM) was 
proposed [66], to estimate the remaining life of equip-
ment. The method takes multi-source sensor monitor-
ing data, assuming the equipment health status holding 
time as Gaussian distribution. Further, Dong et  al. [67] 
pointed out the disadvantages of traditional HMM, 
which requires clearly portrayed interval length for each 
state. As the expansion of HMM, HSMM overcome the 
limitations of a constant probability of changing state in 
HMM modeling by the presumption of Markov property, 
has resulted in better modeling and analysis of complex-
ity of the hidden process capabilities than HMM [68–70]. 
The implementation of HSMM in the pump experiments 
turned out to obtain better recognition rate than the tra-
ditional HMM. On this basis, Peng et  al. took a further 
consideration of correlations between the state interval 
length and the aging of the device, and they introduced 
the aging factor into HSMM to characterize interval 
length distribution of each state at different time. This 
method proved more accurate in predicting the RUL of 
the pump [71]. Recently, there have been a number of 
other extensions [72] to enhance HSMM modeling capa-
bilities for the status of the equipment and improve the 
accuracy of the estimation [73], for practical issues such 
as the status of the dwell time, has established a reason-
able HSMM and introduced a fast recursive algorithm, 
highly reducing the computational complexity and stor-
age space. Ma et al. [74] based on the understanding of 
the continuality of state identification and remaining life 
prediction, has developed a framework of RUL predic-
tion using HSMM. The frame work has been modeled 

and validated by computer simulation. And the technol-
ogy is approved being a valid methodology on remaining 
life prediction based on system performance gradation 
model.

In recent years, with the boom of application of SSM in 
economic time series analysis, the SSM is widely applied 
in residual life and reliability assessment of mechani-
cal products [75]. The establishment of the two equa-
tions (system transition equation and transformation 
equation), in dynamic system, SSM provides a consist-
ent modeling framework to fully describes the motion 
characteristics. SSM with good dynamic analysis, Zheng 
et  al. [76] corrected its matrixes and obtained a steady-
state correction model which contributed to solving the 
SSM test and correction problems of aero-engine. Hong 
et  al. [77] proposed a RUL prediction model for main 
bearing state of the aircraft engines. The model com-
bined the condition monitoring data and analysis, and 
the calculation is based on theoretical model, providing 
one new approach for the assessment of the RUL of the 
main bearing in aero-engine application. But there is a 
great lag in the study of state recursive evaluation of SSM 
and the Kalman filtering method is still in the level of lin-
ear model for a considerable period of time, for which 
the optimal estimation is based on the assumption of 
linear time-invariant system with Gaussian noise. Par-
ticle filtering techniques, a Markov Chain Monte Carlo 
(MCMC) method, demonstrates the superiority in non-
linear non-Gaussian systems, determining its wide range 
of applications. But the particle degradation problem 
in the recursive algorithm has prevented its application 
and the development till 1990s. Since Gordon proposed 
the recursive re-sampling process [78], particle filtering 
theory has been greatly developed. Freitas [79] proposed 
Rao-Blackwellised particle filter and verified its validity 
in nonlinear systems fault diagnosis through simulation. 
The paper [80] put forward fault detection and isolation 
algorithm according to Sequence Importance Resam-
pling (SIR) particle filter likelihood function. Multiple 
fault subsets were divided in fault system by the algo-
rithm, each of which was estimated by particle filtering, 
and all of which were running in parallel. This proposed 
algorithm is simple and suitable for general nonlinear 
systems. Recently, Jin et  al. [81] proposed a Bayesian 
framework for RUL prediction of secondary batteries, 
which utilized history data to model population degra-
dation and on-line data to model individual degrada-
tion. For joint estimation of state and model parameter, 
particle filter was employed to update the posterior deg-
radation model and state iteratively. Wang et al. [82] con-
structed an SSM for Lithium-Ion batteries capacity and 
a spherical cubature particle filter was adopted to assess 
the degradation of battery capacities.
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It is the difference from the physics model in the sense 
that data driven model is not obtained by the mechanism 
or experiment, but usually through statistical or sto-
chastic models. In the study of life prediction based on 
data driven methods, the model still cannot leave phys-
ics model in essence, thus consideration of the hybrid 
of model is required. However, currently there are only 
few researches focusing on this aspect. The comparative 
analysis of various life prediction methods based on data-
driven is shown in Table  2. The pros and cons of each 
method and the corresponding application range are also 
listed.

The establishment of life predication model of mechan-
ical products by SSM is a hot research topic in recent 
years. In the SSM, the existing methods have limitations 
in state estimation and model parameter estimation 
(refer to Table  2), which greatly reduce the prediction 
accuracy. There are still many technical issues to be 
resolved when applying SSM to RUL evaluation. For non-
linear and non-Gaussian SSM, both the theoretical and 
applied algorithms are still in their infancy.

3  State Space Method
3.1  State Space Model (SSM)
It is a degradation process of mechanical equipment from 
normal to fault. Since usually the real states of degrada-
tion are unobservable and can only be perceived by the 
observation variables, so the HMM is used to identify 
potential degradation states. HMM is developed based on 
the first order Markov chain property, that is degradation 
state of future only depends on the current degradation 
state, as p(xn+1 = x|x0, x1, x2, . . . , xn) = p(xn+1 = x|xn), 
which is often called memoryless, and the state of the 
system can be displayed directly by the observation con-
dition monitoring (CM) information. On the basis of 
above property, SSM, which is introduced in modern 
control theory, has been widely used in HMM and Bayes-
ian recursive estimation. SSM was first presented by 
Akaike [85] and further developed by Mehra [98]. SSM 
provides a consistent analysis framework for dealing with 
practical problems and adopts a similar model structure.

The ideas of creating SSM are: (l) the concept of state 
variables without observable is introduced; (2) the model 
describing the state change, called system state equation 
(translation equation) is established; (3) the observation 
equation (transformation equation), contains state trans-
formation from state to observation, is determined. One 
SSM consists of two equations: the state (translation) 
equation and the observation (transformation) equa-
tion. The state equation represents the relation between 
the state of next and the current, meanwhile, the obser-
vation equation shows the internal relation between the 

observed values and the state. The definitions of SSM by 
mathematical induction definitions of SSM are shown as 
follows.

Definition l: state vector xt, the state variables at time 
t, usually random and unobservable, is used to repre-
sent the inherent characteristics of the dynamic system. 
xt belongs to an N-dimensional Euclidean space, which 
means xt ∈ RNx , where RNx is the state space. Normally, 
the sequence of states at t = 1, 2, …, s is written by x1:s 
and x1:s = {x1, x2, . . . , xs}

Definition 2: Observation vector yt, which could be 
observed in dynamic systems, is random also because of 
noise, yt ∈ RNy. The observation sequence at t = 1, 2, …, 
n is denoted by y1:n and y1:n = {y1, y2, · · · , yn}.

Assuming the state of the system be regarded as a first-
order Markov process, in which observations are inde-
pendent of each other. The model of the system (may be a 
nonlinear and non-Gaussian system) would be expressed 
as

where Eqs. (1) and (2) are the state and observation 
equations respectively. xt ∈ RNx is the system state 
vector, yt ∈ RNy is observation vector, ut ∈ RNx is the 
input vector, and θ is the static parameter. ηt(ηt ∈ RNy ) 
and εt(εt ∈ RNx ) denote the observation noise and 
states noise respective, they are independent with 
each other. f : RNx × RNε �→ RNx is the state function 
and h : RNx × RNη �→ RNy is the observation function. 
Assuming these two functions have known and depend 
on µt (sometime it is omitted for simplicity). Prior distri-
bution of the initial state x0 is assumed to be P(x0).

3.2  Model Coefficient and State Estimate
3.2.1  Model Coefficient Estimation
Model parameter θ estimation is needed in establishing 
the SSM for an application. Because of the asymptotic 
optimality, maximum likelihood estimation (MLE) and 
maximum posterior likelihood estimation are exten-
sively used methods for parameter estimation. However, 
it’s hard to obtain the gradient of the likelihood function 
in some cases, so it is necessary to seek other solutions 
to meet the requirements. The expectation maximiza-
tion (EM) algorithm is the most popular method when 
the potential variables exist. Dempster et  al. [99] first 
raised the EM algorithm, which could transform a more 
complicated optimization issue of likelihood function 

(1)xt = f (xt−1,ut , εt , θ), t ∈ T ,

(2)yt = h(xt ,ut , ηt , θ), t ∈ T ,
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into a series of relatively simple functions through data 
enhancement technique. It provides a framework for 
MLE of unknown parameters with incomplete data 
(missing data points). EM algorithm is an iterative algo-
rithm and each iteration method includes two steps: the 
E-step (expectation step) and the M-step (maximization 
step) [100]. EM algorithm has aroused great interest of 
statisticians over the last decade and widely used in the 
field of statistics.

EM algorithm can be summarized as follows.
Initialized θ, and set as θ0.
Given the current estimates of the unknown parameter 

θk−1 , calculate the expectations of logarithmic likelihood 
function with full data.

Maximize the expectations to update θ:

Iterate the above steps until 
∥

∥

∥
θk − θk−1

∥

∥

∥
 is sufficiently 

small and the iteration stops.
Because p(y1:t

∣

∣

∣
θk−1 ) is independent with the parame-

ters being estimated, therefore it can be omitted for sim-
plification without affecting the optimization results.

3.2.2  State Estimation
State estimation is divided into three classes on the basis 
of the estimation output xt and the given data as predic-
tion, filtering, and smoothing. In the state sequence x1:s , s 
is the current time point. (1) Prediction (when t > s), uses 
available observations to predict the future states. (2) Fil-
tering (when t = s), make use of the obtained information 
to express the current status. (3) Smoothing (when t < s), 
put to use the available information to smooth the past 
state. The principle of Bayesian filtering is to build the 
posterior probability density of the state variables by the 

Q
(

θ , θk−1
)

= E
θk−1

[

log p
(

x1:t , y1:t |θ
)]

=

∫

log p
(

x1:t , y1:t |θ
)

p
(

x1:t
∣

∣y1:t , θ
k−1

)

dx1:t

=

∫

log p
(

x1:t , y1:t |θ
)p

(

x1:t , y1:t |θ
)

p
(

y1:t

∣

∣

∣
θk−1

) dx1:t .

θk = arg max
θ

Q
(

θ , θk−1
)

= arg max
θ

∫

log p
(

x1:t , y1:t |θ
)

p
(

x1:t
∣

∣y1:t , θ
k−1

)

dx1:t

= arg max
θ

∫

log p
(

x1:t , y1:t |θ
)p

(

x1:t , y1:t |θ
)

p
(

y1:t

∣

∣

∣
θk−1

) dx1:t

= arg max
θ

∫

log p
(

x1:t , y1:t |θ
)

p
(

x1:t , y1:t |θ
)

dx1:t .

known prior statistical information, which belongs to a 
statistical inference method [101].

The purpose of establishing SSM is that it provides 
a convenient method to recursively estimate the state 
xt (recursive Bayesian estimation). The estimation of 
the current state variables xt is performed by observed 
information y1:t through the state transition equation. 
The posterior probability density p(xt |y1:t) will be recal-
culated once new observations come, so the calculation 
will be very expensive. However, the basic estimation 
theory of state, recursive Bayesian filter, was introduced 
to update the estimation recursively in dynamic system. 
The recursive updating will calculate the update by only 
using one prior step information in each step, avoiding 
mass storage of historical data and heavy calculations. 
The state vector of discrete time, time-varying parame-
ters would be updated by recursive Bayesian estimation 
method in SSM of nonlinear dynamic system, i.e. the 
estimated current state vector xt uses the given current 
observation yt, previous state vectors xt−1 have no con-
nection with all previous states x1:t−1 (Markov property 
of memoryless). In general, this estimate is carried out in 
two steps.

Predictions: the prior probability density of current sys-
tem state is estimated by using the state equation. Due to 
the influence of noise, there is a certain deviation between 
the prior probability density and the actual value.

Updated: at time t + 1, the new observation informa-
tion yt+1 was incorporated into the estimation of the 
state vector, and the prior probability density was cor-
rected. The posterior probability density of the state was 
obtained by Bayesian formula. The derivation formula of 
the conditional probability density function is as follows.
Initial value:

Prediction:

Update:

where p(yt |y1:t−1) =
∫

p(yt |xt)p(xt |y1:t−1)dxt  is called 
as normalized factor.

p(x0|y0) = p(x0).

p(xt |y1:t−1) =

∫

p(xt |xt−1)p(xt−1|y1:t−1) dxt−1.

(3)

p(xt |y1:t) =
p(yt , y1:t−1|xt)p(xt)

p(yt , y1:t−1)

=
p(yt |y1:t−1, xt)p(y1:t−1|xt)p(xt)

p(yt |y1:t−1)p(y1:t−1)

=
p(yt |xt)p(xt |y1:t−1)

p(yt |y1:t−1)
,
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The Chapman–Kolmogorov equation

offers a relation between the prior density p(xt |y1:t−1)  and 
the previous posterior density p(xt−1|y1:t−1) . Therefore that 
updating Eq. (3) establish the recursive relation for predica-
tion. The posterior probability density is presented by 
p(x0:t |y1:t) =

p(y1:t |x0:t )p(x0:t )
p(y1:t )

, and with all observations are 

independent with each other, p(y1:t |x0:t) =
t
∏

i=1

p(yi|x0:t) . 

Assume that the observed values are independent with all 

other states at other moments p(y1:t |x0:t) =
t
∏

i=1

p(yi|xi) , 

the posterior probability density is gotten as

where p(x0:t) = p(x0)
t
∏

i=1

p(xi|xi−1) because the system 

follows Markov process.
Thus the recursive formula for joint probability density 

is p(x0:t |y1:t) = p(x0:t |y1:t−1)
p(yt |xt )p(xt |xt−1)

p(yt ,y1:t−1)
.

Figure  1 depicts the recursive estimation of Bayesian 
posterior density procedure.

As the uncertainty of the probability density func-
tions’ form, it is difficult to describe the probability den-
sity functions in a closed form of analysis. Therefore, in 
practical application, it is hard to get an accurate solution 
by analytical method. Particle filter, as an approximation 
algorithms of Bayesian filtering, is on the basis of Monte 
Carlo simulation. The recursive Bayesian filtering is car-
ried out by non-parametric Monte Carlo simulation, and 
the posterior probability of non-Gaussian, nonlinear and 
high-dimensional system is computed effectively from the 
observations. The points of the idea is that utilizing random 
independent samples, called particles, to approximate the 
probability density p(xk |yk) with weights. The mean of the 
samples can be used for an integral operation to achieve the 

p(xt |y1:t−1) =

∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1

(4)
p(x0:t |y1:t) = p(x0)

t
∏

i=1

p(yi|xi)p(xi|xi−1)

p(y1:t)
,

minimum variance estimation of the state. Since each sam-
ple (particle) on behalf of the possible state, the probability 
density function of particles is gradually tend to be the real 
state with the increasing number of particles, which may 
get the optimal Bayesian estimation results.

Mathematical description of particle filter is that it is 
assumed the system’s posterior probability density at time 
k − 1 is p(xk−1|yk−1) in the stationary random process. 
According to a certain principle, n random samples are 
selected from the density. When yk at time k is observed, 
the posterior probability density p(xk |yk) of n particles will 
be updated. Two phase, state estimation and correction 
phase, are classified in the process of particle filtering. In 
state estimation phase, numerous samples will be selected 
first according to xt−1 and its probability distribution. These 
samples distributed in the state space are actually the prob-
ability distribution of the state xt−1. According to the state 
translation equation in SSM, the state of every particle would 
be transformed, and the original particles become predicted 
ones. The weights of particles are updated in correction 
phase by noise processing and the weight normalization 
through substituting the predicted particles into the observa-
tion equation. The particle weights can be expressed as

And the recursive formula of the particle weights is 
gotten by

(5)w
(i)
t =

p
(

y1:t

∣

∣

∣
x
(i)
0:t

)

p
(

x
(i)
0:t

)

q
(

x
(i)
0:t

∣

∣y1:t

) .

(6)

w
(i)
t =

p
(

y1:t

∣

∣

∣
x
(i)
0:t

)

p
(

x
(i)
0:t

)

q
(

x
(i)
t

∣

∣

∣
x
(i)
0:t−1, y1:t

)

q
(

x
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0:t−1

∣

∣y1:t

)

=
p
(

y1:t

∣

∣

∣
x
(i)
0:t

)

p
(

x
(i)
0:t

)

p
(

y1:t−1

∣

∣

∣
x
(i)
0:t−1

)

p
(

x
(i)
0:t−1

)

1

q
(

x
(i)
t

∣

∣

∣
x
(i)
0:t−1, y1:t

)w
(i)
t−1

=
p
(

yt

∣

∣

∣
x
(i)
t

)

p
(

x
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t

∣

∣

∣
x
(i)
t−1

)

q
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∣

∣
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) w
(i)
t−1.

Figure 1 Procedure of Bayesian posterior density recursive estimation
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In the 1950s, Zhao et  al. [100] proposed sequential 
importance sampling (SIS) algorithm, which was success-
fully used in the application of system control in the late 
1960s. SIS method stimulates the wide research for par-
ticle filtering as a practical application of nonlinear and 
non-Gaussian filtering.

The SIS algorithm can be explained as follows in 
general:

1. Initial values at t = 0. Sampling particles 
{

x
(i)
0

}N

i=1
 

from prior distribution p(x0),    and the weight of 
each particles is set as w(i)

0 = 1
N  for i = 1,  2, …, n.

2. For t = 1, 2,…, T,
i. for i = 1, 2, …, n, extracting the particles 

x
(i)
t ∼ q

(

xt |x
(i)
0:t−1y1:t

)

 from importance density 
function q

(

xt |x
(i)
0:t−1y1:t

)

, and assuming 
x
(i)
0:t =

(

x
(i)
0:t−1, x̂

(i)
t

)

.
ii. for i = 1, 2, …, n, updating the weight by 

w
(i)
t =

p
(

yt

∣

∣

∣
x
(i)
t

)

p
(

x
(i)
t

∣

∣

∣
x
(i)
t−1

)

q
(

x
(i)
t

∣

∣

∣
x
(i)
0:t−1,y1:t

) w
(i)
t−1.

iii. for i = 1, 2, …, n, normalizing the importance weight 

by w̃(i)
t = w

(i)
t

/

n
∑

i=1

w
(i)
t .

3. The updated particle 
{

x
(i)
0:t : i = 1, 2, . . . , n

}

 is to 
approximate the posterior probability distributions of 
the state and the expectations of some functions such 
as

 The variance of the particle weights will increase 
gradually over time with several algorithm iterations. 
The large variance of the partial weights will cause 
a few of particles to have larger weights, while most 
particles with small values, which will lose their func-
tions of particle degrading. The degradation of the 
particles with iteration process makes the case that 
there is no enough particles to express the posterior 
density distribution after new observation available. 
Until 1993, Gordon proposed the concept of re-sam-
pling [101], which laid a foundation for the particle 
filter algorithm and its applications. The concept of 
effective resampling scale is defined as: 

where w(i)
t : i = 1, 2, . . . , n are the un-normalized 

particles weights.

Ē[gt(x0:t)] =

n
∑

t−1

gt

(

x
(i)
0:t

)

w̃
(i)
t .

Neff =
n

n
∑

i=1

(w
(i)
t )2

.

The formula is hard to determine the actual calcula-
tion results, but the approximation method is generally 
adopted as 

where w(i)
t : i = 1, 2, . . . , n are normalized weights.

If Neff < Nth , resampling should be used. In general, 
Nth = 2N/3.

Now, the most commonly used re-sampling method is 
introduced as follows: First, generate n random number 
{μl: l = 1, 2,…,n} in the [0, 1] uniform distribution, and 
then apply the search method to find an integer number 
m that satisfies the following formula 
m−1
∑

j=0

w̃j ≤ µl ≤
m
∑

j=0

w̃j . The new samples xk
(m) are joined in 

the new set of sampling particles. The interval [0, 1] is 

divided into n intervals by �j =
i
∑

j=0

w̃j(i = 1, 2, · · · , n) . 

When the random number μl belongs to the mth interval 
Im = [�m−1, �m] , the samples can be copied. Obviously, 
samples with larger weights would be duplicated repeat-
edly, while in the case of n sample numbers, samples with 
smaller weights will be discarded. Now the weights of 
particles are re-distributed to 1/N, and the re-sampling 
process is achieved.

Figure  2 shows a schematic diagram of the standard 
particle filter algorithm with re-sampling function.

The brief procedures for SIS particle filter with 
resampling:

 i. Initialization: At t = 0, particles 
{

x
(i)
0

}n

i=1
 from 

prior distribution p(x0) are be chosen, and the 
weight of each particles is w(i)

0 = 1
N  for i = 1, 2,…, n.

 ii. Importance sampling: extracting the particles from 
q
(

xt |x
(i)
0:t−1y1:t

)

 for i = 1, 2,…, n, that is 
x̂
(i)
t ∼ q

(

xt |x
(i)
0:t−1y1:t

)

 . Assuming 
x̂
(i)
0:t =

(

x
(i)
0:t−1, x̂

(i)
t

)

 for i = 1, 2,…,n. The weights by 

w
(i)
t =

p
(

yt

∣

∣

∣
x̂
(i)
t

)

p
(

x̂
(i)
t

∣

∣

∣
x
(i)
t−1

)

q
(

x̂
(i)
t

∣

∣

∣
x
(i)
0:t−1,y1:t

) w
(i)
t−1 are updated. The 

importance weight is normalized by 

w̃
(i)
t = w

(i)
t

/

n
∑

i=1

w
(i)
t .

 iii. Re-sampling: calculating: If Neff < Nth, , re-sampling 
particles{x(i)t , 1n }

n
i=1 from particle set 

{

x̂
(i)
t , w̃(i)

t

}n

i=1
 , 

else 
{

x
(i)
t ,w(i)

t

}n

i=1
=

{

x̂
(i)
t , w̃(i)

t

}n

i=1
.

 iv. The states posterior distribution
 p(xt

∣

∣y1:t ) ≈
n
∑

i=1

w̃
(i)
t δ(xt − x

(i)
t ).

Neff =
1

n
∑

i=1

(

w̃
(i)
t

)2
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 v. Stop or return for t.

Resampling is not need to be done on every iteration 
and the condition controlled by if Neff < Nth.

In spite of particle filter has been extensively used on 
many occasions, there are still some shortages. In order 
to further improve the performance and stability of parti-
cle filter algorithm, lots of improvements have been made 
in two aspects, which are selecting more importance 
function and ensuring the effective particles diversity 
[102]. There have been many proposed modifications, 
such as auxiliary particle filter, local linearization meth-
ods, evolutionary particle filter algorithm, genetic algo-
rithm operator. The topic of prognostics uncertainty has 
been highly concerned, and how to reduce the uncer-
tainty is quite a challenging job [103]. In order to make 
the estimation of states close to the true value, optimal 
algorithms of particle filter need further study.

3.3  SSM in RUL Assessment—A Note
Much recent research has focused on SSM in RUL 
assessment, where the products’ degradation process 
is presented using the state in SSM and the degrada-
tion modeling is the assessment of the state variables. 
The prediction of the degradation is the estimation of 
the future state based on observations available up to 
current time. The goal of the state estimation in Bayes-
ian estimation is to obtain the posterior distribution of 

the state, which presents the unobservable degradation 
process. To be more precisely, the joint posterior dis-
tribution p(x0:t

∣

∣y1:t ) is the key for predicting the deg-
radation and remaining lifetime for the states of the 
degradation process. On the mechanism of the state 
estimation above, the particles {x(i)0:t}

n
i=1 are generated in 

the process of state estimation to predict future degra-
dation. The k-step ahead future state (xt+1:t+k |y1:t) pre-
diction is given as follows.

For j = 1, 2, …, k,
For i = 1, 2, …, n, sampling x(i)t+k ∼ p

(

xt+k

∣

∣x
(i)
t+k−1, y1:t

)

 
and x(i)t:t+k ≡

(

x
(i)
t:t+k−1, x

(i)
t+k

)

 . Finally the sample set 
{x

(i)
t:t+k}

n
i=1 is obtained. The estimation of 

p
(

xt+1:t+k

∣

∣y1:t
)

= 1
n

n
∑

i=1

δ
(x

(i)
t+1:t+k )

(xt+1:t+k) , where the 

δ
(x

(i)
t+1:t+k )

(xt+1:t+k) denotes the Dirac delta mass located 
at xt+1.

Once new observed data are obtained, the first is to 
update the estimation of the state and parameters, then 
undertake the future degradation prediction. Because 
of the statistical characteristics of the Bayesian method, 
the uncertainty of degraded state estimation and pre-
diction is quantified by the probability distribution 
p
(

xt+1:t+k

∣

∣y1:t
)

 . The corresponding predicted degrada-
tion is x̂t+k = 1

n

n
∑

i=1

x
(i)
t+k.

To obtain the prediction of the RUL, the specified 
threshold value Y, the degradation state should be pre-
defined. The remaining lifetime T is determined by the 

Figure 2 Diagram of resampling process
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estimated degradation x̂t+k . In order to derive the dis-
tribution of the remaining lifetime, compared Y with 
each sample path x(i)t:t+k , i = 1, 2, . . . , n and obtained n 
times T1,…,Tn, and the Ti represents the least time at 
which the sample path x(i)t:t+k equals or exceeds Y [81, 
104].

Therefore, the methodology of the RUL assessment 
using particle filtering method can be summarized as 
shown in Figure 3.

The state and parameter estimation can be proceed at 
the same time based on particle filter method [80, 105]. 
A recent advanced study in joint state and parameter 
estimation is the method of particle MCMC proposed in 
Ref. [104], which exploited the complementary strengths 
of both the MCMC and Sequential Monte Carlo (SMC) 
algorithms. Particle filtering algorithm of SSM (improved 
MCMC method) is the most promising method and 
widely studied for online RUL modeling and evaluation, as 
expressed the HMM property in SSM and MCMC effec-
tiveness in nonlinear non-Gaussian system. In specific 
application, SSM of system (the state translation equation 
and the observation transformation equation) is based on 
the given degradation dynamics, failure modes and fail-
ure mechanisms. System startup conditions can also be 
resolved by applications. Based on the existing observa-
tions and Monte Carlo simulation, the model coefficients 
are estimated by using EM algorithm. The degradation 
can be evaluated by the state estimation in space model, 
and the process of degradation is regarded as the hidden 
stochastic process. Bayesian recursive estimation of poste-
rior probability density function of system states is carried 
out by particle filter algorithm with updated observations. 
This works in a recursive manner of closely simulation. 
Once the observations are updated, numerical calculation 
is much expensive at each step. The algorithm accuracy 
is highly depends on the number of particles. Due to the 
improved power consumption and calculating speed of 
the digital computer system, particle filtering in SSM can 
implement online recursion in RUL applications.

4  RUL Online Assessment through Performance 
Sensing Data—A Discussion

Online assessment of RUL based on performance obser-
vations is an evaluation process to assess the probability 
distribution of hidden degradation processes approach-
ing predefined threshold (failure). This online estimation, 
as its first order Markov property, becomes recursive and 
not only reduces storage space for the data and comput-
ing time, but also the model takes into account the sys-
tem nonlinearity and operating environmental variation. 
However, there are also many issues about RUL predic-
tion and assessment on the basis of performance obser-
vations monitored in real-time.

(1) Underlying physics degradation of a system or 
device decides the lifetime is limited. In other 
words, no concept of RUL exists if there is no non-
reversible degradation in aging and usage. In most 
applications of online RUL assessment, the per-
formance failures are defined by the physics deg-
radation, which reaches or exceeds a predefined 
threshold. The underlying degradation is a random 
process which is monotonically increasing (not 
decreasing) with time. Hence, online RUL assess-
ment must be built on performance degradation. 
Defining a performance threshold for failure in 
industrial practice is basically determined through 
engineers’ experience and/or historical mainte-
nance data analysis. Most of the time, the model 
and assessment are not accurate enough because it 
assumes that life information of the same products 
apply to the same working environment. Therefore, 
defining the degradation threshold for RUL assess-
ment is still an open topic in prognosis and health 
management (PHM).

(2) Underlying system degradation and system physics 
performance are different concepts in RUL assess-
ment engineering. The underlying system deg-
radation is a random process, time-varying, and 

Figure 3 Flow chart of the methodology of the remaining life assessment
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undiminished. It is usually material and substantial 
changing, monotonic, and not reversible. This is 
the basis for RUL assessment. But the system per-
formance measured using some physics variable(s), 
which, unlike the degradation could fluctuate show-
ing sometimes high and sometimes low, depending 
on the devices’ working conditions. For example, a 
secondary battery’s performance (charging and dis-
charging and/or output voltage and current) could 
fluctuate, sensitive to environmental temperature, 
but the materials consumption and the electro-
chemical reaction on electrodes and electrolyte 
are monotonically degrading. In practice, the true 
physics degradation is difficult to measure on-line. 
Instead physics variable measures should be used. 
Almost all observations of sensing data in perfor-
mance condition monitoring show fluctuations. 
The rise and fall of the signal are because (1) it is a 
performance variable; or (2) it is a degradation pro-
cess with high noise of measurement errors. Usu-
ally a signal process will be applied to the signal for 
noise filtering and/or finding underlying degrada-
tion components.

(3) In industrial practice, to assess observable degrada-
tion for RUL, some other measurable physics varia-
bles are selected and sensed instead. These variables 
are highly related to the underlying degradation or 
sometimes they are the factors causing degrada-
tion which directly affect the degrading process. 
For those factors of the degradation, referred to 
as covariates of the process, some covariate-based 
models are proposed. One of the widely reported 
covariate based models is the PHM, which models 
hazard rate of a system degradation process in two 
components: baseline hazard function and a func-
tion of covariates. In this model, historical failure 
and censored data, and CM data are able to be used 
for RUL assessment without a predefined failure 
threshold of degradation. For those related online 
variable measurements, the statistical properties 
between the degradation and performance obser-
vations should be known and able to model. There 
are at least two stochastic processes recognized and 
the measurable one will be sensed for observations 
and modeled to assess the underlying unmeasur-
able degradation, which leads to a hidden Markov 
process model.

(4) A HMM is proposed for degradation modeling. 
There are two random processes, one is the hid-
den Markov process, which represents the actual 
degradation state, and the other is the observable 
process, which is the performance observation data 
from monitoring or tests. The state of the system 

can only be assessed using updated observations 
expressed by probability density distributions of 
observations. Each observation vector is gener-
ated by the a sequence of states with a correspond-
ing probability density distribution. The HMM has 
been extensively studied and applied. However, 
there is no unified method to determine the direct 
relationship between observation and state, and 
there is no uniform way to identify model param-
eters either. Those are unsolved focuses in RUL 
research. However, the first order of HMM is natu-
rally connected to a state space model and particle 
sequence Monte Carlo method.

(5) A SSM with a state equation (translation function) 
and an observation equation (transformation func-
tion) naturally presents a first order hidden Markov 
process. It has been studied in depth for a general 
system, which has high nonlinearity, time-variant 
parameters, and non-Gaussian noise. A nonlinear 
SSM with particle filtering (sequence Monte Carlo) 
method using a recursive estimate of both model 
parameters and system state will serve as the funda-
mental methodology for online RUL assessment at 
a given time. Limitations to linear and constant sys-
tem dynamics, the optimization, in minimum vari-
ance, of Kalman filtering and state estimation are no 
longer effective in the industrial applications of RUL 
modeling and assessment. With the rapid growth of 
computer computation capability, the general SSM 
plus particle filtering technology might be the key 
methodology to RUL modeling and online assess-
ment.

(6) Building a SSM for a specific application in practice 
is not a trivial thing. There are still no valid and sys-
tematic procedures yet. The degradation process is 
expressed in the state equation and the transforma-
tion dynamics from observation to the hidden state 
is expressed in the observation equation. Currently, 
the most suggested method is the hybrid one that 
combines both model based and data driven meth-
ods with model parameter online identification.

(7) Measures in practice always contain measurement 
errors. This concern exists also in the sensing data 
observations in RUL assessment. Researchers have 
understood the concern for a long time, yet it might 
be the time for them to look for the solution to the 
problem in the form of SSM since nonlinear sto-
chastic filtering theory and digital computation 
capabilities have been greatly improved.

In the field of RUL prediction, theories are stud-
ied from different aspects, which does not form a sys-
tem of integration application. As an industry-leading 
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international business innovation and research and 
development (R&D) project, IMS (Intelligent Manufac-
turing Systems) is proposed to develop next-generation 
manufacturing and processing technologies. Online 
RUL prediction based on the degradation is especially 
motivated in emerging applications of automatic pre-
diction system, whose main goal is to evaluate the cur-
rent and future health states of an individual system in 
order to make cost-effective decisions about maintenance 
activities.

5  Conclusions
RUL modeling and assessment is becoming increas-
ingly important in reliability and PHM systems. Man-
agement system needs to determine the performance 
status and the RUL of key systems for maintenance plan-
ning, decision making, and system global optimization. 
This paper reviewed basic methods in RUL modeling 
and categorized them into three types. They are physics 
model-based method, data-driven method and a hybrid 
method of both. Its advantages and disadvantages are 
also discussed. RUL of all devices is decreasing because 
of the physics performance degradation. The physics 
performance degradation is assumed monotonic and 
nonreversible. And the RUL, a random variable affected 
by the system aging and its working environment condi-
tions, is modeled and assessed based on the degradation 
measures. Usually, because of the complexity of the sys-
tem and failure mechanism, physics degradation is not 
directly observable. Therefore, RUL evaluation becomes 
a course for assessing the degradation process based on 
other available physics performance data. Some variables 
are causes of the degradation and some variables are 
indirect measures of the degradation, which are highly 
related to the underlying degradation. Normally, there 
are two random processes in RUL evaluation, the hidden 
degradation process and the observation of measurable 
processes. The aim is to use the observation process and 
the data to estimate the degradation process and convert 
the degradation state into a probability density distribu-
tion that forms the mechanism of HMM and Bayesian 
recursive estimation, which can be best expressed in a 
state space model.

A SSM with a system equation and an observa-
tion equation is actually a format of a (first order) hid-
den Markov process. Originally, the success of SSM and 
the Kalman filter in aerospace applications stimulated 
more industrial application. However, soon enough, the 
attempts showed the mismatch between the assump-
tion of the Kalman filter and the industrial state estimate 
problems, which are dynamics with high noise and non-
linearity. The SSM, as a first order hidden Markov, is pro-
viding the exact format for particle filtering algorithm on 

Bayesian posterior distribution estimation. The nonlinear 
SSM using an online recursive particle sequence Monte 
Carlo method is a hot topic in online RUL prediction, 
which covers both online model parameter estimates and 
state estimates across time. It is a promising methodol-
ogy, providing online information of RUL for PHM and 
CBM. However, building an SSM for a particular appli-
cation is not a trivial thing. There are still no systematic 
procedures to follow. To model the system equation and 
the observation equation of the SSM, the suggested way 
is the combination of the physics model-based method 
and historical data fitting for parameter initiation-a data 
driven hybrid method.
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