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Abstract 

Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry 
features over a wide range of engineering materials. But the surface roughness and micro topography always limit the 
performance of the machined micro components. This paper presents a surface generation simulation in micro end 
milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the 
geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface 
generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a 
significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface 
micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate 
specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation 
is obtained. The proposed surface generation model offers a basis for designing and optimizing surface parameters of 
functional machined surfaces.
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1  Introduction
Micro milling is recognized as one of the most versa-
tile machining processes to fabricate micro components 
and micro features [1], due to the advantages including 
wide material choices, true 3D micro geometry machin-
ing capability, high accuracy, low cost and environmen-
tally friendliness [2–5]. Recently, micro milling has been 
employed to fabricate the microfluidic devices [6–10]. 
Microfluidic channels are the important part of micro-
chemical devices, which is widely being used in microe-
lectronic and biomedical applications. The characteristic 
scale of microfluidic channels is generally between a few 
to several hundred microns, and micro-milling has a very 
high superiority in such scale machining. Tool diam-
eters are down-scaled in micro milling, unfortunately 
the surface roughness is not down-scaled in micro mill-
ing, this is mainly due to the fact that cutting edge radius 
and machining dynamics such as tool runout are not 

down-scaled and they are similar to those in conventional 
milling. Therefore, the relative surface roughness, i.e., the 
ratio of surface roughness to the machined feature size, 
is believed to be larger in micro milling. Research has 
shown that the wall roughness and micro topography can 
significantly affect the flow and drag along the microflu-
idic channel path [11], and microreactors often need to 
control the flow pattern to achieve enhanced mixing, to 
achieve enhanced mass transfer, and improve the reac-
tion rate. And on the other hand, design and control of 
wall roughness and micro topography has become an 
effective means of micro-flow control [12–14]. In addi-
tion, the micro features size produced by micro milling 
makes the subsequent finishing processes, e.g., grinding 
or polishing, expensive or even impossible. Therefore, 
modelling surface generation in micro-milling is signifi-
cant and it provides a theoretical basis the design and 
manufacture of micro-fluidic channels.

Research has been carried out in micro milling surface 
generation in recent years. Vogler et al. [15] developed a 
model to predict the surface generation for single-phase 
materials based on the minimum chip thickness con-
cept. investigated the effect of micro tool cutting edge 
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radius on the surface roughness in the micro machining, 
and pointed out that larger cutting edge radius would 
increase the surface roughness due to the existence of the 
minimum chip thickness. Oliaei and Karpat [16] inves-
tigated the influence of machining parameters on the 
surface roughness of stainless steel machining. Bissacco 
et  al. [17] studied the size effects on surface generation 
by ball nose and flat end micro milling of hardened tool 
steel, and the effects of the increased ratio between cut-
ting edge radius and chip thickness have been observed. 
Sun et  al. [18] studied the relationship among the sur-
face roughness, the feed per tooth, as well as the cutter 
geometry. Li et al. [19] proposed a trajectory-based sur-
face roughness model for micro-end-milling and proven 
capable of capturing the minimum chip thickness, micro 
tool geometry and process parameters. Based on this 
model, a surface roughness model with tool wear effect 
is developed by taking the material removal volume and 
cutting velocity into account and is experimentally vali-
dated. Weule et  al. [20] investigated surface generation 
in micro-end-milling of steel and concluded that the sur-
face roughness had the increasing trend when the feed 
rate was smaller than the cutting edge radius. Previous 
research studied the influence of geometry of the cutter, 
machining parameters, tool wear and minimum cutting 
chip thickness on the surface generation in micro milling. 
While the runout of the tool is ignored, which plays an 
important role in the surface generation in micro mill-
ing due to the fact that in micro milling the magnitude of 
tool runout is comparable with the feed per tooth. In this 
paper, a surface generation model is proposed consider-
ing the tool runout both in axial and radial directions, 
after that the influence of the runout on the surface gen-
eration is studied quantitatively.

2 � Surface Generation Model in Micro Milling
A model to simulate the surface generation in micro end 
milling is proposed by considering the tool-workpiece 
intersection caused by the runout of the cutter. The 
complex end milling cutter geometry is considered and 
used to generate the surface profile around the centerline 
region of the machined slot. For each tool path, the sur-
face profile is computed as combination of the previously 
computed surface profile, the finial surface is generated 
by the deepest cutting path considering the tool inter-
section. The following procedure is used in the model 
to develop the surface profile, as shown in Figure  1. 
Firstly, the cutter profile is described in a mathematical 
model, considering the geometry parameters of the cut-
ter, including corner radius, end cutting edge angle; Sec-
ondly, the cutter profile is translated according to the 
machining parameters, such as the feed per tooth and 
tool runout; Thirdly, the final surface profile is generated 

by considering the intersection of the cutting edge. Lastly, 
the final surface profile is swept along the trajectory of 
the cutting path to form a three dimensional surface.

2.1 � Mathematical Model of the Cutter and Ideal Machined 
Surface Generation

Figure  2 shows the contour of a micro milling tool, the 
cutter profile 

(

x, y
)

 can be expressed as:

where rε denotes the corner radius of the tool and k ′r 
denotes the rake angle.

The ideal surface roughness of the machined surface 
were mainly determined by the tool geometry (corner 
radius rε , rake angle k ′r ) and the feed per tooth fz , the sur-
face left by the cutter can be divided into the following 
two cases.

1.	 rε > 0 , fz ≤ 2rεsink
′
r , the machined surface is made 

up of the circular arc edge of the tool, as shown in 
Figure  3(a). The maximum height of residual area 
(peak-valley) is

	

2.	 rε > 0 , fz > 2rεsink
′
r , the machined surface is made 

up of the circular arc edge of the tool and the end 
cutting edge, as shown in Figure 3(b). The maximum 
height of residual area (peak-valley) is

	

2.2 � Surface Generation Model Considering Tool Runout
When considering the tool runout, the machined surface 
generation becomes more complex, Figure 4 and Figure 5 
show the influence of radial and axial runout on the sur-
face generation.

From Figure  4 it can be found that the kth tooth 
removes more material than the (k+1)th, due to the 
runout in radial direction, which affect the uncut chip 
thickness of each feed per tooth. Thus, the runout in 
radial direction has a significant influence on cutting 
forces.

Figure  5 shows the influence of the runout in axial 
direction on surface generation. It can be found that 
the tool mark generates by the kth tooth was completely 
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removed by the (k+1)th tooth due to the cutter runout 
in axial direction. The finial profile of the machined sur-
face formed by the (k+1)th tooth. The period of the tool 
mark is around twice time of the feed per tooth. Thus, the 
cutter runout in axial direction affects the cutting depth 
directly and hence has a significant influence on surface 
generation.

However, in a micro milling machining system, both 
radial and axial runout exist simultaneously, which make 

the machined surface becomes more complex. When 
considering both radial and axial runout, the surface 
topography presents three typical cases.

1.	 rε > 0 , fz ≤ 2rεsink
′
r , the machined surface as shown 

in Figure 6 is made up of the circular arc edge of the 
tool, the maximum height of residual area (peak-val-
ley) is

Cutter 
geometry  

Mathematical model of 
the cutter profile 

Machining 
parameters 

Surface profile 
considering the cutter 

edge intersection 

Tool profile path Machining trajectory 

3D Surface profile

Tool runout 

Figure 1  Flow chart of proposed surface generation process

Figure 2  Cutter profile of the micro milling: a Tool geometry model, b the profile of the cutter
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Figure 3  Ideal machined surface in micro milling: a 1st case of the ideal machined surface, b 2nd case of the ideal machined surface

Figure 4  Influence of radial runout on surface generation

Figure 5  Influence of axial runout on surface generation

Figure 6  First case of the surface profile considering radial and axial runout
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	 It can be found that in this case a slight axial runout 
( raxial >

f 2z
2rε

 ) will cause the emergence of single-tooth 
cutting, which increases surface roughness signifi-
cantly, i.e., almost 4 times larger than the ideal rough-
ness as shown in Eq. (2). Considering that the magni-
tude of inevitable axial runout is comparable to feed 
per tooth, in this case the ideal roughness as shown 
in Figure 3(a) is difficult to achieve. This explains the 
reason why in micro milling actual surface roughness 
deviates substantially from theoretical surface rough-
ness in most of the machining system and merely 
reducing feedrate cannot improve surface roughness.

2.	 rε > 0 , fz > 2rεsink
′
r , the machined surface as shown 

in Figure 7 is made up of the circular arc edge of the 
tool and the end cutting edge. The second and third 
cases fall into this criterion and are illustrated as fol-
lows.

	 In the second case, the surface is composed by the 
two teeth, and the maximum roughness of the sur-
face is
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It can be found that the RAmax1 is equal to the ideal 
RImax2 as shown in Eq. (3) plus the axial runout of the 
cutter.

In the third case, the surface is only formed by one 
tooth as shown in Figure  8, and the maximum rough-
ness of the surface (peak-valley) is

In this case, it can be found that the tool path on the 
machined surface is equal to the spindle rotation speed, 
rather than the spindle rotation speed multiplies the 
number of flutes.

The critical axial runout for the separation of the sec-
ond case and the third case surface generation can be 
judged as follows:

when raxial ≤ (RAmax2 − RImax2)/2 , the second case 
occur;

when raxial > (RAmax2 − RImax2)/2 , the third case 
occur.

A critical axial runout diagram for the separation of 
the second case and the third case surface generation 
is given in Figure  9, for a specified feed per tooth, if 
the actual axial runout is smaller than the critical axial 
runout, then the second case of the surface profile will 
occur. Otherwise if the real axial runout is larger than 
the critical axial runout, then the third case of the sur-
face profile will occur.
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Figure 7  Second case of the surface profile considering radial and axial runout

Figure 8  Third case of the surface profile considering radial and axial runout
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3 � Experimental Validation
3.1 � Determination of Tool Runout
The experiments were carried out on a 3-axis micro mill-
ing machine tool (Nanowave MTS5R), the runout of the 
high speed spindle is tested by using a modular capacitive 
sensor system (Demodulator DL6220, Micro-epsilon), 
two capacitive sensors (CS005) with 1  nm resolution 
and 50 μm measuring range. As shown in Figure 10, an 

ultra-precision test bar was clamped in the spindle, and 
two capacitive sensors were used to test the spindle 
runout with 20000  r/min in axial direction and radial 
direction. The test results show that the axial and radial 
runout is 1 μm and 1.6 μm, respectively.

From the judgment map as Figure  9, it can be found 
that for axial runout of 1  μm, when the feed per tooth 
less than 24 μm per tooth, the machined surface genera-
tion falls into the third case; and when the feed per tooth 
larger than 24 μm per tooth, the machined surface gen-
eration falls into the second case.

3.2 � Simulation and Experimental Verification
Two set simulation and machining experiments are car-
ried out with a 2 flutes micro milling cutter, the cutter 
diameter is 0.5 mm, the corner radius and the end cutting 
edge angle are measured as 5 μm and 5°, respectively. The 
machining parameters used in the experiments are 5 μm 
per tooth and 35 μm per tooth, respectively, at a spindle 
speed of 20000 r/min and an axial depth of cut of 20 μm.

Figure 11(a) shows the surface topography simulation 
results of 5  μm feed per tooth. The simulation results 
are analyzed by PSD as shown in Figure  11(b). The 
period of the tool marks is determined as 0.101  μm−1 
(10  μm), which indicates that the tool marks of the 
2nd tooth are removed by the 1st tooth because of the 
influence of the axial runout. Therefore, the tool make 
period is twice of the feed per tooth.

Figure 9  Critical axial runout for the separation of the second case 
and the third case surface generation

Figure 10  Schematic of the spindle runout test setup
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Figure  12(a) shows the surface topography simula-
tion results of 35 μm feed per tooth. The PSD analysis 
of the simulation results as shown in Figure 12(b) indi-
cates that the period of the tool marks is determined 
as 0.0287 μm−1 (35 μm), which indicates that with the 
increase of the feed per tooth, the effect of axial runout 
on the topography can be reduced. Each cutting tooth 
can be reflected in the final surface topography, there-
fore, the tool marks period agree with the feed per 
tooth.

The machining experiments were carried out using the 
same machining parameters as those in the simulation. 
Figures 13 and 14 give the surface measurement results, 
which were obtained by a white light interferometer 
(Vecco NTll00). It can be seen that when the feed per 
tooth is 5 μm, the period of the tool mark is twice time 
of the feed per tooth 0.103 μm−1 (9.7 μm). When the feed 
per tooth increases to 35 μm, the period of the tool mark 
is the same as the feed per tooth 0.0278 μm−1 (35.9 μm). 
The experiment results agree well with the simulation 

Figure 11  Surface topography simulation results of 5 μm feed per tooth: a surface topography, b PSD analysis

Figure 12  Surface topography simulation results of 35 μm feed per tooth: a surface topography, b PSD analysis



Page 8 of 9Chen et al. Chin. J. Mech. Eng.            (2019) 32:2 

results and hence verify the reliability of the proposed 
method.

4 � Conclusions
In this paper, a surface generation model of micro end 
milling has been developed by taking into account tool 
runout in the machining process. A numerical model 
based on the geometry of the cutter profile is estab-
lished to investigate the tool intersection caused by 
the tool runout. The influence of the tool runout on 
machined surface roughness and machined topography 

are discussed. Simulation using the proposed model 
with different feed per tooth (5 μm/tooth, 35 μm/tooth) 
and the results were verified by corresponding micro 
milling experiments. The following conclusions can be 
drawn:

•	 Tool runout has a significant influence of the sur-
face roughness, and axial tool runout limits the 
achievable surface roughness. Three typical surface 
topography generation cases of the machined sur-
face in micro milling are presented by considering 
tool runout, and the emergence conditions for each 

Figure 13  Machined surface topography results of 5 μm feed per tooth: a surface topography, b PSD analysis

Figure 14  Machined surface topography results of 35 μm feed per tooth: a surface topography, b PSD analysis
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surface generation cases are investigated quantita-
tively.

•	 The tool runout in axial direction has significant 
influence on the machined topography generation.

•	 Proposed surface generation model has been verified 
by the micro milling experiments over a wide range 
of feedrate, and the results show that it provides 
accurate surface topography prediction.
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