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Frequency Loss and Recovery in Rolling 
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Abstract 

Rolling element bearings are key components of mechanical equipment. The bearing fault characteristics are affected 
by the interaction in the vibration signals. The low harmonics of the bearing characteristic frequencies cannot be 
usually observed in the Fourier spectrum. The frequency loss in the bearing vibration signal is presented through two 
independent experiments in this paper. The existence of frequency loss phenomenon in the low frequencies, side 
band frequencies and resonant frequencies and revealed. It is demonstrated that the lost frequencies are actually 
suppressed by the internal action in the bearing fault signal rather than the external interference. The amplitude and 
distribution of the spectrum are changed due to the interaction of the bearing fault signal. The interaction mecha-
nism of bearing fault signal is revealed through theoretical and practical analysis. Based on mathematical morphol-
ogy, a new method is provided to recover the lost frequencies. The multi-resonant response signal of the defective 
bearing are decomposed into low frequency and high frequency response, and the lost frequencies are recovered by 
the combination morphological filter (CMF). The effectiveness of the proposed method is validated on simulated and 
experimental data.
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1  Introduction
Bearing defects are a common cause of machine break-
down. It is crucial to accurately diagnose the existence 
of rolling bearing fault. Vibration analysis is extensively 
employed rolling bearing fault detection. Many analysis 
methods have been proposed in the time domain [1, 2] 
and the frequency domain, such as demodulation algo-
rithm [3, 4], cyclostationary analysis [5]. Time-frequency 
analysis techniques wavelet-transform (WT) [6, 7], EMD 
and LMD [8], for instance, are devoted to process bearing 
vibration signals as well.

When a rolling element moves over a damaged surface, 
it generates an impulsive force and excites resonances 
in the bearing and machine. The period of the impulses 
or characteristic frequency can be calculated, accord-
ing to the rotating velocity, position of faults and bear-
ing dimensions [9]. However, the bearing fault signals 
are almost always masked by background noise [10] and 

the defect frequency identification from direct vibration 
signals becomes difficult. Randall [11] illustrated that the 
low harmonics of the bearing characteristic frequencies 
are almost invariably strongly masked by other vibration 
components. It is difficult to identify the bearing fault in 
the spectrum using conventional FFT methods.

In the current literature, although the low harmon-
ics of the bearing characteristic frequencies [11] and 
the shaft-speed frequency [12] can sometimes be found 
in raw spectrum, it is widely recognized that low fre-
quency components of bearing fault signal cannot be 
usually observed in the spectrum. Here, we define the 
phenomenon that the low frequency components cannot 
be observed in the FFT spectrum as frequency loss. The 
low frequency components include bearing characteristic 
defect frequencies, rotating frequency and their harmon-
ics. As for the causes of the frequency loss, the explana-
tion in published literatures is summarized (i) masked 
by the strong background noise [13], (ii) masked by the 
interference vibrations from other machine elements [11, 
14], (iii) may not exist at all in the measured signal some-
times [15].
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However, frequency loss can be observed when the 
bearing is running under the condition of low back-
ground noise and no other vibration components exist-
ing. Moreover, if the lost frequencies are masked by 
background noise, the low frequency band in the spec-
trum must present the feature of noise, but sometimes 
there is no such noise feature when the frequency loss 
occurs. In addition, it is noticed in the gear/bearing 
model study that the gearmesh frequency is modulated at 
both the shaft speed and the bearing characteristic fre-
quency [16]. Obviously, if the lost frequencies are masked 
by other vibration components, features of the external 
vibration components and the action between the char-
acteristic frequency and the external vibration should 
be found. It does not mean that the low frequency com-
ponents cannot be observed. Furthermore, frequency 
loss is also observed in the sideband frequencies and the 
resonant frequencies in the paper. The features of the 
spectrum are used in the calculation of spectral kurtosis 
[14], correlated kurtosis [17] and entropy [18, 19] for the 
central frequency and band width selection in the bear-
ing fault detection. Obviously, the existence of frequency 
loss will affect the calculation results of these indicators. 
Study on the root cause of the frequency loss in bearing 
fault signal is helpful to obtain a better understanding of 
the bearing fault feature and its detection.

This paper discusses the interaction of the bearing 
vibration signal. It is demonstrated that the phenomenon 
of the frequency loss is generated by the internal vibra-
tions rather than the external interference. The interac-
tion mechanism of the bearing signal is revealed through 
theoretical and practical analysis. A new method based 
on morphological filter (MF) is proposed to recover the 
lost frequencies in bearing fault signal.

The paper is organized as follows. The phenomenon of 
frequency loss in the bearing vibration signal is presented 
through experiments in Section 2. The interaction mech-
anism of the bearing signal is explained in Section  3. A 
novel method is presented to recover the lost frequencies 
based on morphological filter. And the proposed tech-
nique is evaluated using the simulation and experimental 
signals in Section  4. Some remarks and conclusions are 
drawn in Section 5.

2 � Frequency Loss in the Bearing Vibration Signal
In this section, the phenomenon of frequency loss in the 
bearing vibration signal is presented through two inde-
pendent experiments. It is demonstrated that the fre-
quency loss can be observed even the bearing is running 
under the condition of low background noise and no 
other vibration components existing.

Two different types of bearing, N205 cylindrical 
roller bearing and SKF 6205 deep groove ball bearing 

are employed in the experiments. The calculated bear-
ing defect characteristic frequencies [9], ball pass 
frequency of the outer race (BPFO) and ball pass fre-
quency of the inner race (BPFI) of the two experimental 
bearings are given in Table 1.

2.1 � Experiment 1: Vibration Signal of Bearing with Severe 
Defect

The first experiment is carried out on a bearing and 
gearbox fault test rig (Figure 1(a)) at the Vibration Lab 
at North China Electric Power University (NCEPU). 
The test rig consists of a motor (left), support bearing 
(center) and a spring loader (right). The test bearing is 
located at the right end of the shaft. A slot defect (0.6 
mm in width and 0.3 mm in depth) on the outer and 
inner race are introduced to the test bearings (N205) 
using electric discharge machining, as shown in Fig-
ure  1(b). Vibration data is collected using accelerom-
eters, which are placed on the vertical and horizontal 
position of the test bearing housing. A radial load is 
added to the shaft and bearing by a spring mechanism.

During the data acquisition, the shaft rotating speed 
is kept around 1440  r/min (24  Hz). The sampling fre-
quency is set to 12.8 kHz. The time waveform, spectrum 
and envelop spectrum of raw outer and inner race fault 
vibration signal of bearing N205 is provided in Figure 2 
and Figure 3. Considering the relative large defect size 
in the outer and inner race, the defect is classified as 
severe. Figure  2 and Figure  3 show that strong tran-
sient impulses are generated in the time waveform. The 
excited resonances in the spectrum are clear and have 
relative high amplitude. The envelope analysis, Figure 4 
indicates that the rotational speed frequency, BPFO, 
BPFI and their harmonics can be easily singled out. The 
side band of BPFI is clear in the envelop spectrum (Fig-
ure  4(b)). However, the low frequencies, such as rota-
tional speed frequency, BPFO or BPFI are not visible in 
the spectrum. Furthermore, the amplitude of most of 
the components in the low frequency region is almost 
zero, which means the background noise is very low 
during the data acquisition. It is evident that the almost 
zero amplitude of BPFO or BPFI in the spectrum is 
incompatible with the high amplitude of the impulses 
in the time waveform.

Table 1  Characteristic frequencies

Bearing type BPFO (Hz) BPFI (Hz)

N205 116.0 (at 1440 r/min) 172.0 (at 1440 r/min)

6205 107.7 (at 1797 r/min) 159.9 (at 1772 r/min)
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2.2 � Experiment 2: Vibration Signal of Bearing with Slight 
Defect

The second experimental data of rolling bearing are col-
lected from the CWRU Bearing Data Centre Website 
[20]. In this experiment, single point faults are seeded 

to the test bearing with different fault diameters. More 
detail about the experiment condition can be found 
in the Website. The measurement is performed with 
sampling frequency of 12  kHz. Vibration data of fault 
size 0.177 mm (0.07 in) in outer race and inner race are 
selected in the paper. The 0.177 mm is the smallest fault 
size in this experiment. The defect is classified as slight.

Figure 1  (a) Bearing and gearbox fault test rig, (b) Outer race and 
inner race defective bearing

Figure 2  Outer race fault signal of N205: (a) time waveform, (b) FFT 
spectrum, (c) local spectrum

Figure 3  Inner race fault signal of N205: (a) time waveform, (b) FFT 
spectrum, (c) local spectrum

Figure 4  Envelope spectrum of N205: (a) outer race defect, (b) inner 
race defect
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The outer race and inner race fault signal of 6205 is 
shown in Figure 5. Figure 5(c) shows that the outer race 
fault characteristic frequency BPFO can be found in the 
spectrum with very low amplitude, and the rotational fre-
quency is not visible. For the inner race fault, BPFI should 
be modulated at the shaft speed (Fr). The characteristic 
frequency BPFI is presented in Figure  6(c), but the side 
frequencies are not indistinctive, particularly the left side 
frequency BPFI-Fr is almost zero.

The phenomenon of frequency loss is observed in 
the two independent experiments. Comparing the two 
experiments, some common features can be concluded: 
(1) the experiments are carried out in the laboratory, 
where has low background noise. (2) Only the test rigs 
are running, no external vibration interference. It is dem-
onstrated that background noise or external interference 
cannot be the root cause of the frequency loss. Further-
more, various fault degree leads to contrary result in the 
experiments. All of the low frequency components are 
lost in the severe bearing fault test (N205) and the low 
frequency components are partly lost in the slight bear-
ing fault test (6205). The cause of frequency loss must be 
the result of internal action in the bearing fault signal.

3 � Interaction Mechanism of the Bearing Signal
In this section, the interaction of the bearing fault sig-
nal is discussed using the simulated signal. The repeti-
tive impact signal from a localized bearing defect can be 
described by a train of Dirac delta function δ(t) with the 
period between two successive impulses being Td:

where Td is the reciprocal of the characteristic frequency, 
and Ak is the amplitude of the impacts.

The impulsive response from the bearing faults can be 
expressed as:

where B denotes the amplitude of the impulsive response, 
fn is the excited natural frequency, φn is the initial phase 
angle, ξ is the attenuation factor, for a single degree of 
freedom (SDOF), ξ = α2πfn , where α denotes the relative 
damping ratio.

Ignoring the influence of roller slippage, the vibration 
signal arising from a localized fault in a bearing can be 
expressed by

(1)x(t) =
∑N

k=0
Akδ(t − kTd),

(2)s(t) = Be−ξ t
cos(2πfnt + φn),

Figure 5  Outer race fault signal of 6205: (a) time waveform, (b) FFT 
spectrum, (c) local spectrum

Figure 6  Inner race fault signal of 6205: (a) time waveform, (b) FFT 
spectrum, (c) local spectrum
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where the symbol ⊗ denotes convolution.
From the above experimental cases, multiple reso-

nant frequency bands are found in the spectrum, i.e., 
frequency bands about 1500  Hz and 2800  Hz in Fig-
ure 2(b), 2800 Hz and 4000 Hz in Figure 2(c), 1200 Hz, 
2700 Hz and 3600 Hz in Figure 3. Therefore, the actual 
bearing fault signal is the cumulating of multiple impulse 
responses with different resonant frequencies. The 
transmission path of different resonant responses to the 
transducer varies to different components. So the col-
lected vibration signal is multi-resonant responses with 
time difference. Two impulse responses are also reported 
in the vibration signal of a spalled bearing when the roll-
ing element entry into and exit from the spall [21].

In the following sections, frequency domain analysis 
(amplitude and phase) of the simulated signal in Eq. (3) 
is performed and then a dual-resonant-frequency bearing 
fault signal is used to discuss the interaction in the bear-
ing fault signal. The single side Fourier transform of Eq. 
(1) can be expressed as

where fd = 1
/

Td , FT[·] denotes the Fourier transform.
The frequency domain expression of the impulsive 

response is

where the amplitude A(f ) = B√
ξ2+(2πf )2

, the phase 

φ(f ) = − arctan (2πf
/

ξ), it is known that φ(f ) → π

/

2 
when f → +∞ and φ(f ) → −π

/

2 when f → −∞.
The final expression of Eq. (3) in frequency domain is

Thus, Y (f ) has a discrete spectrum, and the corre-
sponding phase is the sum of φ(f ) and φn.

Two different resonant responses excited by the same 
period impact are simulated. The sampling frequency is 
set to 8192  Hz, Td is set to 128 sample points, the cor-
responding characteristic frequency is 64 Hz. The ampli-
tude of the impulse forces and the impulse responses 
are both set to 1, the attenuation factor ξ is equal to 600, 
and total 8192 samples are used for further analysis. 
The natural frequency is set to 1000  Hz (response one)
and 2000  Hz (response two), respectively. Figure  7 and 
Figure 8 depict the two simulated responses with 0° ini-
tial phases. From the spectra, the two signals have same 

(3)
y(t) =

∑N

k=0
[Akδ(t − kTd)⊗ s(t)],

(4)FT [x(t)] = 2Ak

/

Td

∑N

k=0
δ(f − kfd),

(5)FT [s(t)] = A(f − fn)e
j[φ(f−fn)+φn],

(6)

Y (f ) = FT [y(t)]

=
2Ak

Td

∑N

k=0
A(f − kfd − fn)e

j[φ(f−kfd−fn)+φn].
characteristic frequency and the amplitude of the low 
frequency components (64 Hz and its low order harmon-
ics) is approximately equal. The spectrum lines are sym-
metrical relative to the central (resonant) frequency.

The parameters of the first response remains constant, 
the second response is superposed under different con-
ditions. Superposition conditions are listed in Table  2. 
Superposition results are provided in Figures  9, 10, 11, 
12. Compared to the original response (Figure  7 and 
Figure  8), the superposition results indicated that the 
spectrum varies greatly due to the different superposi-
tion conditions. As Figure  10(b) shown, superposition 
result under condition  2 illustrates that the characteris-
tic frequency (64  Hz) and its low order harmonics can 
hardly be found in the spectrum. The frequency loss 

Figure 7  Response 1 (natural frequency: 1000 Hz, phase: 0°): (a) time 
waveform, (b) FFT spectrum

Figure 8  Response 2 (natural frequency: 2000 Hz, phase: 0°): (a) time 
waveform, (b) FFT spectrum
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phenomenon is observed in the simulation when the two 
responses have an opposite phase. At the same time, the 
amplitude of the peaks around 1500  Hz is doubles that 
of the original response. From the superposition result 

under condition  1, the amplitude of the low frequency 
components in Figure 9(b) is approximately twice as that 
of the original response, and the amplitude of the peaks 
around 1500 Hz is almost equal to its original value.

Theoretical calculation using Eq. (6) indicates that the 
amplitude of the superposed response in the spectrum is 
the vector sum of that of each response. From Eq. (5), the 
phase of the two exponential decay functions approach 
− 90° at the low frequency band. When the initial phase 
φn is set to zero (condition 1), the final phase of the two 
responses is almost same (approximately − 90°). There-
fore, the phase difference of the two responses at the low 
frequency band is almost 0°, and the amplitude of the 
superposed response is the summation of that of the each 
response. Similarly, when the initial phase of the second 

Table 2  Superposition conditions

No. Response 2

Initial phase Start position

Condition 1 0° 0

Condition 2 −180° 0

Condition 3 0° Point 32

Condition 4 −180° Point 32

Figure 9  Superposition result under condition 1: (a) time waveform, 
(b) FFT spectrum

Figure 10  Superposition result under condition 2: (a) time 
waveform, (b) FFT spectrum

Figure 11  Superposition result under condition 3: (a) time 
waveform, (b) FFT spectrum

Figure 12  Superposition result under condition 4: (a) time 
waveform, (b) FFT spectrum
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response is set to − 180° (condition 2), the phase differ-
ence of the two responses is − 180°, and the amplitude of 
the two responses is cancelled out each other. So the fre-
quency loss is observed under the superposition condi-
tion two.

Figure  11 and Figure  12 are the superposition results 
when the start position of the second response is right 
shifted 32 points. Some harmonics, the second order 
harmonic (2  N) of the characteristic frequency in Fig-
ure 11(b) and 4 N in Figure 12(b), for instance, are almost 
invisible. Other harmonics, including the resonant fre-
quencies and their sideband frequencies, are changed 
obviously.

The influence of the start position in response two can 
be easily explained by the time-shifting property of the 
Fourier transform:

where X(f ) is the Fourier transform of x(t) , t0 is the time 
delay.

The second response starts at 32 point, which amounts 
to a quarter of the period, the phase delays of the first 
four harmonics are calculated as −π

/

2 , −π , π
/

2 , 0. Due 
to the time-shifting of the second response, a total − 180° 
phase difference is produced between the two responses at 
2 N (Figure 11(b)) under condition three and at 4 N (Fig-
ure 12(b)) under condition 4.

According to the theoretical calculation and simula-
tion, the interaction mechanism of the defective bear-
ing signal is summarized. When rolling elements strike 
a local fault on the inner or outer race a shock is intro-
duced that excites high frequency resonances of the 
whole structure between the bearing and the transducer. 
The collected vibration signal of the defective bearing 
consists of multi-resonant response. The final amplitude 
of the harmonics in the spectrum is the vector sum of 
that of each response. The different responses can can-
cel out each other when the phase difference between the 
responses is equal to − 180°. The interaction of the multi-
resonant response leads to frequency loss and distortion 
in the Fourier transform spectrum. Therefore frequency 
loss can be found in the low frequency harmonic, the 
sideband frequency and the resonant frequency.

4 � Recovery the Lost Frequencies Based 
on Mathematical Filter

The root cause of frequency loss in the defective bearing 
signal is the interaction of the multi-resonant response. 
Therefore the key point to recover the lost frequen-
cies depends on the separation of the different resonant 
response.

(7)
If x(t) ↔ X(f ) then x(t − t0) ↔ X(f ) e−j2πft0 ,

Mathematical morphology (MM) [22, 23] is a kind of 
nonlinear analysis method which was first used in image 
analysis. Unlike the traditional frequency domain filter, 
the morphological filter (MF) decomposes the signal 
into several physical components according to the sig-
nal geometric characteristics. The morphological filters 
have been adopted for fault feature extraction of bearing 
vibration signal [24–26].

4.1 � Morphological Filter in Brief
All the MM processing is based on two basic opera-
tors, dilation and erosion. Let f (n) and g(m) be the one-
dimensional discrete signal and structural element (SE) 
respectively. The erosion of f (n) by g(m) , denoted by 
(fΘg) is defined as:

Dilation is defined as:

Based on dilation and erosion, two other basic mor-
phological operators, the closing and the opening can be 
further defined. The opening is defined as a dilation of 
the eroded (fΘg) signal by g:

The closing is defined as an erosion of the dilated 
(f ⊕ g) signal

The positive and negative impulses can be smoothed by 
closing and opening operations, respectively. To restrain 
both positive and negative impulse, the opening-closing 
(OC) and closing-opening (CO) filters are composed 
through proper calculation combination, defined as

Although the combination of opening and closing can 
filter positive and negative impulse noise at the same 
time, statistic bias is existed. The output magnitude of the 
OC becomes small due to the opening operator’s expan-
sibility and closing operator’s contractibility. On the con-
trary, the output magnitude of the CO is large. Therefore 
the average value of the two operators, namely combina-
tion morphological filter (CMF), is defined as

(8)
(fΘg)(n) = min[f (n+m)− g(m)],

m ∈ 0, 1, . . . ,M − 1.

(9)
(f ⊕ g)(n) = max[f (n−m)+ g(m)],
m ∈ 0, 1, . . . ,M − 1.

(10)(f ◦ g)(n) = ((fΘg)⊕ g)(n).

(11)(f · g)(n) = ((f ⊕ g)Θg)(n).

(12)FOC(f (n)) = ((f ◦ g) · g)(n),

(13)FCO(f (n)) = ((f · g) ◦ g)(n).

(14)y(n) =
1

2
[FCO(f (n))+ FOC(f (n))].



Page 8 of 12Hu et al. Chin. J. Mech. Eng.           (2019) 32:35 

4.2 � Property Morphological Filter
Based on our previous analysis of working mechanism 
of mathematical morphological operators, the CMF is 
employed to recover the lost frequencies in the defective 
bearing signal. More details of the properties of different 
morphological operators, frequency response, selection 
principle of SE length can be found in Ref. [27]. The CMF 
presents low pass filter property. The high frequency 
component can be extracted by subtracting the CMF 
output from the original signal. Therefore, the multires-
onant response can be decomposed into two parts after 
the CMF processing, low frequency and high frequency 
response. Once the multiresonant response is separated, 
the effect of the interaction is eliminated and the lost fre-
quencies are visible in the spectrum.

The property of CMF in impulsive type signal pro-
cessing is analyzed firstly. The traditional digital filters, 
finite impulse response filter (FIR), for instance, has been 
adopted to compose the filter bank in fast kurtogram 
(FK) algorithm [28] and high-resolution spectral analy-
sis [29]. The FIR filter with a standard Kaiser window 
[29] and the CMF are taken to process the same signal 
for the comparison study. A 50  Hz sinusoid signal with 
0.1 amplitude is superposed to the impulsive response 2. 
The time waveform and spectrum of the simulated sig-
nal are shown in Figure 13. The CMF is used to filter the 
simulated signal. The SE length is set to 3, and the cor-
responding cutoff frequency is 987  Hz [27]. From the 
filter result (Figure  14), the low frequency component 
(sinusoid signal) is well preserved after CMF process-
ing and the phase delay is 0. The high frequency compo-
nent (impulsive response) is extracted by subtracting the 
CMF output from the original signal, which is shown in 
Figure 15. It shows that the time waveform and the spec-
trum of the extracted signal are almost the same as the 
original simulated signal, thus the impulsive responses 
are well extracted by CMF.

The low pass FIR and high pass FIR are used to pro-
cess the simulated signal. The cutoff frequency of the FIR 
is set to 1000  Hz, which is similar to that of the CMF. 
The results of low pass FIR process, Figure  16 and Fig-
ure 17, show that the residual components (indicated as 
point A in Figure 16) of the impulsive response signal are 
preserved after low pass FIR processing. These residual 
components are presented as discrete harmonics in the 
spectrum. The high pass FIR is adopted to extract the 
impulsive response signal. It is shown that distortion 
(point B) at the beginning of the impulsive response is 
found in Figure  17. Therefore only part of the distribu-
tional spectrum can be filtered or extracted by FIR. The 
impulsive responses cannot be completely recovered 
by the frequency-domain based (low-pass, band-pass 
or high-pass) filter, unless the whole frequency band is Figure 13  Simulated signal: (a) time waveform, (b) FFT spectrum

Figure 14  Filter result of the CMF: (a) time waveform, (b) FFT 
spectrum

Figure 15  Extraction result of the CMF: (a) time waveform, (b) FFT 
spectrum
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frequency and the high frequency component after CMF 
processing, which are shown in Figure 18 and Figure 19. 
The lost frequencies, characteristic frequency (BPFO), 

taken as the filter band. On the contrary, the CMF pro-
cesses the signal according to the signal geometric char-
acteristics rather than the frequency distribution. The 
part of the waveform whose width is narrow than the 
SE length can be filtered or extracted by CMF process-
ing. The different impulsive type signals can be separated 
according to different geometric scale.

4.3 � Recovery the Lost Frequencies in Bearing Fault Signal 
Based on CMF

The above mentioned experimental data of bearing N205 
and 6205 is processed by the CMF to verify the lost fre-
quencies recovery property of morphological filter in real 
defective bearing signal. The signal of N205 with severe 
defect on the outer race is decomposed into the low 

Figure 16  Filter result of the low pass FIR: (a) time waveform, (b) FFT 
spectrum

Figure 17  Filter result of the high pass FIR: (a) time waveform, (b) 
FFT spectrum

Figure 18  Low frequency component of N205 with severe defect 
on the outer race: (a) time waveform, (b) FFT spectrum, (c) local 
spectrum

Figure 19  High frequency component of N205 with severe defect 
on the outer race: (a) time waveform, (b) FFT spectrum, (c) local 
spectrum
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rotational speed frequency are recovered both in the low 
and high frequency component. The harmonic at 0 Hz in 
Figure  18(c) and Figure  19(c), which is not observed in 
the original spectrum, is produced by the period impulse 
response. It supplies another evidence of the validity of 
the proposed method.

Figure  20 and Figure  21 depict the CMF processing 
result of the severe inner race defect signal of N205. The 
lost frequencies, characteristic frequency (BPFI) and its 
sidebands, rotational speed frequency and its harmonics 
are recovered. The modulation with the shaft speed prop-
erty of the bearing inner race fault is clearly presented in 
the spectrum.

The CMF is applied to the experimental data collecting 
from the CWRU and the results are shown in Figure 22 

and Figure  23. From Figure  22 it is observed that the 
characteristic frequency (BPFO) and the rotational speed 
frequency are clearly visible in the spectrum. The ampli-
tude of the BPFO is increased about five times of that of 
the original signal. The feature of bearing outer race fault 
is enhanced. Figure 23, the CMF processing result of the 
inner race fault signal, indicates that both the BPFI and 
its sidebands are all clearly detected. The lost side fre-
quency BPFI-Fr is recovered. The modulation feature of 
the bearing inner race fault is enhanced. Combining the 
above simulation results it is established that the ampli-
tude of the sideband frequency, even the resonant fre-
quency in the spectrum can be affected (increased or 
decreased) by the interaction of the bearing fault signal. 

Figure 20  Low frequency component of N205 with the severe 
defect on the inner race: (a) time waveform, (b) local spectrum

Figure 21  High frequency component of N205 with the severe 
defect on the inner race: (a) time waveform, (b) local spectrum

Figure 22  Filter result of 6205 with the slight defect on the outer 
race: (a) time waveform, (b) local spectrum

Figure 23  Filter result of 6205 with the slight defect on the inner 
race: (a) time waveform, (b) local spectrum
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Since frequency loss can occur in high frequency band, 
the interaction of the bearing fault signal should also 
be considered in the frequency band selection based 
demodulation method.

5 � Conclusions
This paper focuses on the interaction of the bearing 
vibration signal. It is presented that the phenomenon 
of frequency loss is generated by the internal vibrations 
rather than the external interfering. Multi-resonant 
response is excited when rolling elements strike a local 
fault. The harmonics in the Fourier transform spectrum 
of the collected vibration signal is the vector sum of 
that of each response. The interaction of the multi-res-
onant response leads to frequency loss and distortion 
in the spectrum. Frequency loss can be found in the low 
frequency harmonic, the sideband frequency and the 
resonant frequency. Theoretical and practical analy-
sis demonstrates the existence of the frequency loss in 
bearing signal. Since frequency loss can occur in side 
band frequency and the resonant frequency, the inter-
action of the bearing fault signal should be considered 
in the frequency band selection based demodulation 
method. Based on morphological filter, a new method 
is provided to recover the lost frequencies. Compared 
with the traditional digital filter, the property of CMF 
in impulsive type signal processing is analyzed. The 
simulation and experiment results show that the mor-
phological filter can effectively separate the interaction 
of bearing signal and enhance the bearing fault feature.
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