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Abstract 

The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing 
data with the highest priority to achieve precise analyze and control, rather than using simplified physical models and 
human expertise. In the era of data-driven manufacturing, the explosion of data amount revolutionized how data is 
collected and analyzed. This paper overviews the advance of technologies developed for in-process manufacturing 
data collection and analysis. It can be concluded that groundbreaking sensoring technology to facilitate direct meas-
urement is one important leading trend for advanced data collection, due to the complexity and uncertainty during 
indirect measurement. On the other hand, physical model-based data analysis contains inevitable simplifications and 
sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process. Machine 
learning, especially deep learning approach has great potential for making better decisions to automate the process 
when fed with abundant data, while trending data-driven manufacturing approaches succeeded by using limited 
data to achieve similar or even better decisions. And these trends can demonstrated be by analyzing some typical 
applications of manufacturing process.
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1  Introduction
The concept of “smart manufacturing” (also known as 
intelligent manufacturing) is experiencing an explosive 
propagation. According to Tan et  al. [1], smart manu-
facturing is the fusion of intelligent technologies and 
manufacturing technologies. Smart manufacturing is an 
umbrella term of manufacturing technologies and para-
digms aiming to automate production and transaction by 
taking full advantage of advanced information technolo-
gies [2]. Key technologies involved in smart manufac-
turing include but not limited to the Internet of Things 
(IoT), cyber-physical system (CPS), cloud computing and 
big data analytics. These technologies, when integrated 
with manufacturing capabilities, initiated various para-
digms belonging to the smart manufacturing family, such 

as IoT-enabled manufacturing, digital twin, cloud manu-
facturing. Manufacturing data can be captured at all 
stages in a product life, ranging from explicit values such 
as material properties, process temperature, vibration to 
implicit ones like supply chain resource and customers’ 
preferences. The volume of data generated by manufac-
turing systems is growing rapidly with over 1000 EB [3] 
collected in the year 2015, and is expected to increase 
20-fold in the next ten years. Data has been playing a cru-
cial role since the fourth industrial revolution initiated in 
Germany [4]. Data-driven decisions, on the other hand, 
distinguishes modern manufacturing from traditional 
ones in that decisions are made based on data of facts, 
not theoretical physical models, opinions and guesses.

So far, researchers have been investigating in the area 
of data-driven manufacturing for decades and have pub-
lished a great number of review articles about the latest 
achievements from different aspects. It all came about 
when large volumes of data were generated as an out-
come of digital manufacturing, along with data mining 
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techniques developed since the 1990s [5]. Later, upon 
wide acceptance of data-driven methods, process diagno-
sis techniques were adopted to automate fault detection 
in industrial processes [6]. Wuest et  al. [7] gave a com-
prehensive review of machine learning methods utilized 
in manufacturing tasks. Since most manufacturing data 
are labeled data, supervised learning played a dominant 
role in practical applications. Zhong et  al. [2] surveyed 
associated topics in the context of Industry 4.0, including 
Internet of Things, cloud manufacturing, cyber-physical 
systems, etc. based on which they provided detailed anal-
ysis on how these key constitutive technologies together 
can realize Industry 4.0. When data became available 
everywhere, data fusion techniques were also devel-
oped to facilitate industrial prognosis [8]. Kong et al. [9] 
reviewed the latest multisensor measurement and data 
fusion technology in precision monitoring systems. Tao 
et  al. [10] summarized the state-of-art development of 
new technologies through the lifecycle of manufactur-
ing data, including data collection, storage, processing, 
visualization, etc. These technologies altogether initiated 
smart manufacturing applications, such as smart design, 
smart maintenance and quality control.

As an increasing number of researchers started to 
realize the importance of manufacturing data, data 
collection and analysis have been broadly studied and 
incorporated into modern manufacturing. Neverthe-
less, few of the aforementioned review articles focused 
the evolution pattern of data collection and analysis 
towards modern manufacturing processes. As depicted 
in Figure  1, data collector, e.g., sensor is designated 
to capture useful physical values generated by manu-
facturing event. The acquired data is further analyzed 
and interpreted into optimal decisions to enhance the 

performance of the manufacturing system. This closed-
loop form of manufacturing inscribed a fundamental 
paradigm of data-driven manufacturing, as opposed 
to conventional model-based manufacturing. As the 
development of various sensoring technologies and rel-
evant infrastructures, modern manufacturing systems 
are equipped with a large number of sensors captur-
ing data at an unprecedented rate [12]. New challenges 
are thus raised: First, erroneous or patchy data can dis-
tort results and lead to faulty decisions [11]. Maintain-
ing the veracity of data with respect to the concerned 
target is challenging, because most data captured via 
generic sensors cannot directly reflect the actual on-
site situation. Secondly, transforming these data into 
useful knowledge and decision is also challenging, as 
the volume, variety and velocity of the captured data 
are already beyond normal capacity [13]. Inaccurate 
methods to analyze only partial information from col-
lected data can also mislead the final decision and 
performance.

To deal with these challenges, researchers have been 
centralized in this area and yielded rich outcomes. The 
main purpose of this paper is to summarize the devel-
opment and trend of data collection and analysis in 
the era of data-driven manufacturing by conducting 
a thorough review of the state-of-art. The rest of this 
paper is organized as follows: Section  2 will elaborate 
the framework of data-driven manufacturing and dem-
onstrate some representative applications in different 
aspects. The evolution of data collection and analyt-
ics will be separately discussed in Sections  3 and 4. 
Section  5 will summarize and give outlook of future 
trend in advanced monitoring systems in modern 
manufacturing.

Manufacturing 
event Data Decision

Data collector Data analyzer

Figure 1  Closing the loop of data-driven manufacturing
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2 � Concept and Key Components of Data‑Driven 
Manufacturing

2.1 � Data‑Driven Manufacturing
The major distinction between the paradigm of modern 
and conventional manufacturing can be viewed in Fig-
ure  2. Conventional manufacturing automation can be 
regarded as model-based manufacturing [14]. Experts 
gain experience by making physical observations, such 
as visual inspection, noise recognition from manufac-
turing systems. These experiences together with human 
intelligence will derive physical models using theo-
retical, experimental and numerical methods, to bet-
ter understand the mechanism behind. Although great 
achievements have been made and applied in various 
applications, such as simulation [15] and performance 
evaluation [16], these model-based methods are nev-
ertheless inferior with their limited effective range and 
accuracy. This is mainly because a great deal of simpli-
fications and assumptions are made when deriving the 
physical models, while the human experts are not assured 
to be mentally stable and impartial towards all gained 
experiences.

Modern manufacturing, on the other hand, is data-
driven [10], in the sense that data generated through 
manufacturing activities is fully utilized to positively 
enhance manufacturing quality and thus enrich flexibil-
ity and autonomy of the system. The framework of data-
driven manufacturing is outlined in Figure 3 consisting of 
four layers. The bottom layer is known as the manufac-
turing layer comprising different types of manufacturing 
processes, through which a product is designed, manu-
factured, assembled and evaluated from scratch. Data 

layer locates on top of manufacturing layer via sensor 
interface. Various types of sensors are integrated into the 
manufacturing system to monitor and inspect during the 
manufacturing process. In data layer, data is collected, 
stored and visualized for the preparation of data pro-
cessing. In knowledge layer, raw data transformed into 
insightful features and knowledge via data processing 
technologies. In decision layer, through the utilization of 
intelligence, knowledge eventually becomes decisions to 
make accurate simulation, evaluation and prediction, etc. 
to facilitate smart manufacturing.

The major distinctions between data-driven manufac-
turing and conventional manufacturing are the genera-
tion, collection and utilization of data, which have been 
regarded as the key enabler to realize smart manufactur-
ing [17]. As can be implied from Figure  3, data eventu-
ally becomes decisions to automate the manufacturing 
process and enhance its performance. In this manner, 
accuracy of the decision predominates the manufac-
turing outcome, e.g., a false decision could potentially 
jeopardize the delicate product or even the manufactur-
ing system. It is conceivable that through all these layers, 
accuracy and fidelity of the final decision will decrease 
according to several reasons. In data layer, data acquisi-
tion may cause accuracy loss depending on the speci-
fication of sensors adopted. The correlation between 
the acquired data and the actual physical value actually 
involves certain assumptions/simplifications. In knowl-
edge layer, the extraction of knowledge from raw data 
further induces error since extracted features may not 
perfectly define the overall profile of the original data. 
In decision layer, improper data analysis could lead to 
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Figure 2  Model-based manufacturing and data-driven manufacturing
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misunderstanding of the features, thus mislead the final 
decision. In total, the aggregated error can be tremen-
dous, which poses great challenge to develop advanced 
manufacturing systems. While detailed evolutional trend 
of data-driven manufacturing process will be demon-
strated in Sections 3 and 4, we first analyze some typical 
applications in Section 2.2.

2.2 � Typical Applications in Data‑Driven Manufacturing
2.2.1 � Product Design
Product design is an iterative decision-making pro-
cess to seek optimal solutions to the target customer 
needs. The cost of product design can go up to 75% of 
the entire product cost, according to Li et al. [13], which 
was mainly due to the constant trial-and-error itera-
tions during the product design phase until the custom-
ers get satisfied. It was particularly difficult for customers 
to monitor and dominate the designing process which 
truly reflected their needs until the popularization of 
rapid prototyping and Internet. As an additive manu-
facturing technology, rapid prototyping [18] revolution-
ized the way how 3D product can be fabricated quickly 
from virtual design, offering the most intuitive feedback 
to the designers as well as to the customers. Internet 
increases direct communications between the customers 
and the company, through which customers can directly 
post their demands, share first-hand experience and 
even participate in a customized designing process of a 
product. Regarding the state of the art, a new paradigm 
named cloud-based design (CBD) was established to let 
design engineers conduct market research more effec-
tively and efficiently through spreading feedbacks and 

reviews in social media [19]. Cloud-based CAx software 
such as AutoCAD 360 was also invented to enable real-
time monitoring and collaboration among design teams 
that are geographically apart. In addition to the cloud-
based infrastructure, high performance cloud computing 
and big data analytics have enabled expensive computa-
tions such as analysis of market preference and customer 
demands at a reduced cost [20].

2.2.2 � Logistics and Supply Chain Management
Manufacturing supply chain refers to the flow of raw 
materials from distributed original suppliers to manufac-
turing sites, and finally to places of consumption. Trace-
ability of the supply chain is an important feature for 
modern manufacturing enterprise to reduce logistic cost 
and increase its production efficiency in a long run. Aim-
ing at a better supply chain visibility and tracking, radio 
frequency identification (RFID) and GPS work together 
to provide a seamless and detailed trace of the product 
[21]. Supply chain analytics (SCA) has been extensively 
investigated to assist decision makers in identifying and 
assessing supply chain risks, and improving supply chain 
flexibility and capability. According to a latest review in 
this subject [22], analytic techniques in SCA include sta-
tistical analysis, simulation and optimization, which take 
full advantage of big data to analyze the supply chain per-
formance and to make appropriate decisions.

2.2.3 � Shop Floor Monitoring
Shop floor monitoring is essential to keep track of the 
running state of each machine, make adaptive scheduling 
and maintenance. Modern manufacturing shop floors are 
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Figure 3  Framework of data-driven manufacturing
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equipped with smart sensors, among which RFID sen-
sors are widely adopted to enable enormous data acquisi-
tion [23]. Data pre-treatment and analysis using machine 
learning algorithms are then applied for shop floor 
scheduling and fault prediction [24]. Real-time machine 
availability and execution status monitoring is also an 
important issue to render distributed process schedul-
ing in shop floor and cloud-based manufacturing. Wang 
[25] proposed a tiered system architecture with function 
blocks for monitoring the machine availability and execu-
tion status in real time, such that a closed-loop informa-
tion flow can be established. As the variety and volume 
of data keeps increasing, the integrated data becomes too 
intricate to handle and perceive. Cyber physical system 
(CPS) provides an ultimate solution to this issue by estab-
lishing a synchronized virtual shop floor to the actual one 
[26]. In this way, a series of smart operations can be real-
ized, including smart interaction, smart control and man-
agement, etc. making the networked machines perform 
more efficiently, responsively and collaboratively.

2.2.4 � Manufacturing Process
The importance of manufacturing process can never be 
overstated. In the last few decades, new types of manu-
facturing process, such as high speed machining (HSM), 
additive manufacturing (AM) and hybrid manufacturing, 
have been rapidly emerged to satisfy growing demands of 
product. The complexity of modern manufacturing pro-
cess has already gone beyond the level to be manually 
observed and controlled. Monitoring the manufacturing 
process via dedicated monitoring system has become a 
critical and essential target to avoid anomalies and reduce 
the maintenance cost. Towards this target, machining 
monitoring system became a research hotspot in recent 
literature [27]. Machining monitoring system encom-
passes signal acquisition, signal processing and decision 
making steps, in order to identify tool conditions, chip 
conditions, processing conditions [28] and part surface 
conditions [29]. Monitoring system for additive manu-
facturing, especially for metal-based AM, has been fully 
investigated to enhance the part quality and repeatability 
in order to satisfy the stringent requirements from aero-
space and healthcare sectors [30]. Vision and camera-
based monitoring systems are widely adopted for in-situ 
metrology inspection and closed-loop control of additive 
manufacturing [31].

As the development of advanced sensors and artificial 
intelligence, data-driven manufacturing process is also 
in its evolution. There has been two diverse trends in 
modern manufacturing process. The first one is to devise 
smart sensors for direct measurement of those high-value 
data. These direct measurement approach can effectively 
bypass the tedious data processing stage and improve the 

fidelity to a whole new level. The other one is to excavate 
valuable knowledge from low-value data using advanced 
machine intelligence. As mentioned earlier, data collec-
tor and data analyzer are the key components to achieve 
these two targets. Pertaining to the former, the acquired 
manufacturing data from advanced sensors is of unprec-
edented fidelity and accuracy compared to the one from 
legacy data collectors. On the other hand, data analyzers 
utilizes the latest data processing and machine learning 
technologies to make better decisions than ever before. 
In the remainder of this paper, a thorough investigation is 
made to review the state-of-the-art development of data 
collection and data analysis towards data-driven manu-
facturing process, and to discuss the future trend of data-
driven smart manufacturing.

3 � Advanced Data Collection in Data‑Driven 
Manufacturing Process

Modern manufacturing system is equipped with 
advanced sensors collecting sequential data from differ-
ent physical events. These data are of low value density 
if treated individually, but they together form great value 
for the system to keep track of the manufacturing pro-
cess, in order to make simulations, evaluations and pre-
dictions, etc. Therefore, high-quality data collection is a 
desirable target in modern manufacturing by means of 
various types of sensors.

As alluded earlier, the lifecycle of manufacturing data 
consists of data collection and data analysis. In data 
collection stage, manufacturing data is generated and 
collected from equipment, human operators and prod-
ucts. These data can be classified into structured, semi-
structured and unstructured data [32], depending on the 
selection of sensors and their working principles. In data 
analysis, the target is to extract informative knowledge/
decision from the raw data end to end. High dimensional 
raw data sometimes needs a prior feature extractor to 
extract low dimensional representative features in either 
time domain or frequency domain [29], the extracted 
features from different data sources are fused together 
to make valuable decisions to control the manufacturing 
process.

Figure  4 summarizes two typical workflow of data-
driven manufacturing process, which are based on direct 
and indirect data measurement. In direct measurement, 
sensors are specifically designed to measure the physi-
cal value or its direct covariant during the process. These 
sensors are usually expensive and exclusive to certain 
working environment. The captured data from direct 
monitoring is of high fidelity and accuracy. For example, 
the touch-trigger probes offer a direct way to precisely 
measure the coordinates of the part by discrete physi-
cal contact points. Alternatively, indirect measurement 
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offers a more cost-effective way to collect indirect but 
correlated value using generic sensors, such as cur-
rent sensor, accelerometer. The major difference from 
direct monitoring is that the captured physical value is 
no longer the target one but a correlated value through 
a non-deterministic transfer function. For example, large 
spindle current sometimes implies a large cutting force 
during metal cutting process, and sometimes only indi-
cates an accelerating spindle speed, which is hard to tell 
unless more information is provided. Building up the 
exact inverse transfer function to deduce the target value 
is impossible, which always involves simplifications and 
assumptions, inevitably leading to accuracy loss, which 
has become the major issue for indirect monitoring.

Abellan-Nebot and Subiron [33] gave a comprehen-
sive review of machining monitoring systems developed 
so far, including sensors, signal processing and fea-
ture extraction. In their point of view, they argued that 
indirect measurement was more prevalent for its cost-
effectiveness and versatility. Lauro et al. [27] in their lat-
est review suggested to take great care of the choice of 
measurement due to implementation cost and require-
ments. For tool condition monitoring, such as tool wear 
diagnosis, direct methods, e.g., optical and radioactive 
sensors were deprecated due to the inaccessibility of the 
cutting area during the cutting process [34]. However, 
direct vision/camera-based systems were widely used for 
monitoring in-situ metrology for additive manufactur-
ing process [31], in order to achieve a close-loop identi-
fication of material discontinuities and failure modes. As 
manufacturing processes are becoming more and more 
complicated, generic sensors may not satisfy the increas-
ing demands of high accuracy because of the inevitable 
simplifications and assumptions between the target and 
the captured value. The following section will demon-
strate the evolutional trends for various monitoring tasks 
in manufacturing process.

3.1 � Data Collection in Manufacturing Process
Extensive studies in manufacturing data collection have 
been conducted for various applications. From the per-
spective of machining process, as depicted in Figure  5, 
people care mostly about the real time condition of the 
process, the tool and the part. Applications include cut-
ting force monitoring, chatter detection, tool wear/break-
age diagnosis, online inspection of surface roughness and 
dimensional accuracy.

3.1.1 � Cutting Force Monitoring
Cutting force monitoring is among the earliest achievable 
capabilities in numerical controlled machining, for its 
high correlation with the in-process workpiece and tool 
status. Large cutting force is detrimental to the part accu-
racy as well as to the cutting effectiveness [35]. Initially, 
the measurement of cutting force value was conducted 
indirectly by using current signals of servo motors [36] or 
feed motors [37]. These methods are cheap and easy to 
implement, but with very limited upper bound in terms 
of accuracy. Albrecht et  al. [38] proposed an innovative 
indirect force measurement by integrating capacitance 
displacement sensor into the spindle. The sensor was 
capable of measuring deflection of the tool and finally 
converted to the value of force. At certain frequency 
(650  Hz), the sensor reliably measured cutting force 
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with around 10% error in magnitude. The major draw-
back of this indirect sensor was its limited bandwidth, 
which, even after applying a Kalman filter, can only reach 
1000 Hz. These indirect methods were either of low accu-
racy or with limited frequency bandwidth. Direct force 
sensors were developed which was equipped with sensing 
elements to convert external force load into deformation 
of the elastic element. Piezoelectric transducer and strain 
gage are two major branches in modern cutting force 
dynamometers. Strain gauges force transducers offer 
high frequency response and long-term stability of defor-
mation under an external force. Yaldiz et  al. [39] devel-
oped a table dynamometer using strain gauge to measure 
static and dynamic milling forces. An octagonal ring was 
manufactured to locate the strain gauges, whose orienta-
tions and locations were carefully determined to maxi-
mize the overall sensitivity. After calibration, the final 
accuracy can reach up to 98.5% in real milling process. 
Piezoelectric sensors, as compared to strain gage, are 
superior for dynamic force measurement for their high 
dynamic range and sensitivity [40], which were usually 
mounted on the spindle side for dynamic force measure-
ment. As for the state-of-the-art, advanced measurement 
apparatus were developed to measure micro-cutting 
force in wireless manner, and with higher accuracy up to 
99.8% [41]. Polyvinylidene fluoride (PVDF) sensors were 
embedded in each inserts of the cutter to estimate real-
time working condition for separate insert in a wireless 
manner [42]. Some recent studies tried to develop a so-
called smart tool with built-in piezoelectric sensor array 
[43, 44], which could be a future trend towards smart 
manufacturing process. Table 1 lists the evolution of cut-
ting force measurement.

3.1.2 � Machining Chatter Inspection
Machining chatter has always been an important issue in 
manufacturing process, for its complex physical mecha-
nism and negative effects leading to poor surface finish, 
tool damage, etc. [45]. Real time chatter monitoring has 
also been classified into indirect and direct methods. 
As the outcome of chatter is usually in the form of self-
excited vibration, direct methods using microphone [46] 

and accelerometer [47] have been demonstrated as effi-
cient and effective solutions for chatter recognition. They 
however suffer from a common drawback that the ambi-
ent sound/vibration could introduce noise to the target 
signal. Especially for the microphone, the suppression of 
environmental noise is mandatory to make it truly appli-
cable. Later on, indirect methods came out focusing on 
the correlated effect of chattering and utilized relevant 
signals for chatter detection, such as using cutting force 
signal [48], motor current signal [49], acoustic emission 
[50] and the fusion of multiple signals [51]. The correla-
tion between these signals and the chatter occurrence 
needs to be meticulously analyzed to achieve feasible 
results. The accuracy of these indirect measurements 
has been greatly enhanced after adopting machine learn-
ing algorithms, such as in [49], using a support vector 
machine to recognize the chatter pattern based on servo 
motor current signal can reach over 95% in terms of 
accuracy rate. Nevertheless, the frequency bandwidth of 
these generic indirect sensors may not suffice the detec-
tion of chatter, especially in high-speed machining. Con-
sequently, direct measurements using microphone has 
been revived after the reliability of sensor was improved 
in monitoring milling operations. Specifically, the micro-
phone response inside the machine-tool chamber was 
sensibly corrected using equalization filters to ensure 
adequate accuracy in chatter detection task [52]. Optical 
measurement such as using a laser beam and an optical 
position detector (OPD) to identify the vibration of the 
in-process tool was also regarded as a direct method 
[53]. In this study, the laser beam was reflected on the 
rotating cutter and captured by the OPD, by which the 
displacement of the cutter can be recorded in real time. 
The development of high-resolution vision system also 
facilitated the online measurement of chatter by analyz-
ing the surface texture/marks in real time [54]. Ding et al. 
[55] invented an active control system to detect and sup-
press machining chatter. Chatter was detected by directly 
sensing the workpiece displacement using a displace-
ment sensor and then controlled via a voice coil motor. 
In terms of offline chatter identification, chatter stability 
diagram offers a scientific reference for a proper choice 
of chatter-free machining parameters [56], the genera-
tion of which relies hugely on the frequency response 
functions (FRF) at the tool tip. Accelerometers are widely 
adopted for FRF measurement [57] based on standard 
impact test using a hammer integrated with force sensor. 
The impact test is nominated as a direct measurement 
for FRF determination but requires tedious setting-ups 
for pose-dependent tool tip dynamics in bi-rotary milling 
head [58]. Table 2 lists the evolution of machining chatter 
inspection.

Table 1  Evolution of cutting force measurement

Year Indirect measurement Direct measurement

Before 2000 Current sensor [36, 37]

2001–2010 Displacement sensor [38] Strain gauge [39]
Piezoelectric sensor [40]

2011–2020 Smart tooling [43, 44]
Wireless cutting force sensor 

[41]
Embedded PVDF [42]
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3.1.3 � Tool Condition Monitoring
Tool condition monitoring (TCM) is vital to keep track of 
the remaining useful life (RUL) of the tool. Late replace-
ment of dull or broken tool may decrease the accuracy 
and quality of the final part and cause machine break-
down [34]. Though with much effort spent in the past 
[59], direct inspection of the in-process tool condition 
was developed in the first place which includes the usage 
of proximity sensors, radioactive sensors and vision sen-
sors. Proximity sensors, such as ultrasonic sensor [60] 
estimate the differential of distance between cutting edge 
and workpiece, whose accuracy is highly affected by the 
thermal expansion and cutting force induced deflection. 
Radioactive sensors [61] detect the amount of residue 
radioactive materials implanted on the flank face of the 
cutting tool in order to estimate the wear percentage, 
which was regarded detrimental and thus limited for lab 
usage. Vision-based tool condition monitoring, especially 
using structured light [62] was also patented long ago, 
but required an ideal condition of lighting and cutting 
environment to achieve acceptable accuracy.

Deficiencies of these early direct TCM methods lead 
to the prosperity of indirect TCM methods, which uti-
lized correlated signals, such as cutting force [63], acous-
tic emission [64], vibration [65], current [66–68] and 
surface roughness [69]. These representative indirect 
methods advanced the development of signal processing 
and sensor fusion techniques to enhance the prediction 
accuracy. Though many review articles highly voted for 
the indirect TCM methods [29, 34] as the future trend 
due to the increasing accuracy, the major drawback is 
still prominent in that these methods are case-sensitive 
and requires fine-tuning and calibration to achieve high 
authenticity. Direct TCM methods, especially for the 
vision-based, can bypass this issue by directly inspect-
ing the geometric change of the tool. Two-dimensional 
[70] and three-dimensional vision systems [71, 72] were 
developed for direct TCM and achieved sub-pixel accu-
racy using advanced image processing techniques. These 
vision-based TCM systems all require a pause between 
two sequential operations to capture a steady image of 
the tool. This inconvenience has been fully addressed in 

recent studies, among which, Ramirez-Nunez et  al. [73] 
came up with a smart sensor consisting of an infrared 
camera and a temperature sensor, which facilitates the 
in-process tool breakage inspection even with the exist-
ence of coolant fluid. The tool condition is well estimated 
by processing the infrared thermography. Dai and Zhu 
[74] in their recent study proposed an integrated vision 
system for micro-milling TCM. The system was designed 
with a telecentric lens, light source and a 3-DOF motion 
platform to achieve uniform image quality and high auto-
mation. As the availability of powerful image processing 
algorithms, direct TCM using smart sensors and inte-
grated systems is believed to have a promising future. 
Table 3 lists the evolution of tool condition monitoring.

3.1.4 � Part Condition Monitoring
The condition of in-process part (a.k.a. workpiece) needs 
to be monitored to take timely adjustment of the pro-
cess, in order to yield high-quality part. Surface finish 
and dimensional accuracy are the two dominant factors 
of the workpiece condition to determine the final qual-
ity of product. Especially for the surface finish metrology, 
which has been overwhelmingly concerned as a direct 
indicator to the capability of modern manufacturing sys-
tem. Conventional surface inspection methods [75] are 
usually conducted subsequently to the manufacturing 
process. These post-processing based methods can usu-
ally achieve higher accuracy using dedicated instruments, 
such as the stylus profilometer [76], but are inactive to 
take responsive actions to prevent further accuracy loss 

Table 2  Evolution of machining chatter inspection

Year Indirect chatter inspection Direct chatter inspection

Before 2000 Acoustic emission sensor [50] Microphone [46]
Accelerometer [47]

2001–2010 Dynamometer [48]
Sensor fusion [51]

Optical sensor [53]

2011–2020 Current sensor [49] Integrated microphone transducer [52]
Vision-based system [54]
Displacement sensor [55]

Table 3  Evolution of tool condition monitoring

Year Indirect monitoring Direct monitoring

Before 2000 Accelerometer [65] Radioactive sensor [61]
Proximity sensor [60]
Structured light [62]

2001–2010 Current sensor [66–68] 3D metrology [72]

2011–2020 AE sensor [64]
Surface roughness inspector 

[69]
Dynamometer [63]

2D vision [70]
3D vision [71]
Infrared thermography [73]
Integrated vision system [74]
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during the process. Therefore, quality control based 
on in-situ monitoring offers a more practical solution. 
However, it is intractable to incorporate sophisticated 
roughness scanners into the harsh operating environ-
ment with metal chips, lubricants and vibrations. Con-
sequently, indirect methods for the inspection of in-situ 
surface roughness took over the mainstream in the past 
[77], which contain the usage of accelerometer [78], 
dynamometer [79], acoustic sensor [80], ultrasonic sen-
sor [81], etc. Prevalent shortcoming of these indirect 
methods is lower achievable accuracy due to the nature 
of uncertainty. Currently, vision-based surface rough-
ness evaluation system [82] has been developed for effi-
cient and accurate in-situ surface inspection. The essence 
behind was the usage of graph theory-based image 
analysis to achieve real-time identification of surface 
roughness distribution without interrupting the machin-
ing process. For metal additive manufacturing process 
where quality matters, vision-based systems are also the 
primary choice for in-situ metrology monitoring [31]. 
It is also suggested to apply hybrid instrumentation as a 
future direction to overcome the compromise between 
spatial resolution and the field of view, in which low reso-
lution sensor detects the whole area while high resolu-
tion sensor focuses on the area of interest.

Real-time dimensional accuracy monitoring is vital to 
render in-process quality control. Dimensional accuracy 
is prone to be violated for parts consisting of thin-wall 
features, due to either the deflection by external cutting 
force or the internal release of residual stress. As the in-
process part is usually securely mounted by fixture and 
hard to access by exotic instruments, integration of fix-
tures with sensing technology will be a potential direc-
tion according to the state-of-art review [83]. In terms of 
the deflection caused by external force, Azouzi and Guil-
lot [84] predicted the workpiece dimensional deviation 
in turning process via cutting feed, depth of cut and cut-
ting force signal. Cutting force and vibration signal were 
fused together for the prediction of deviation in turning 
a slender part [85]. For thin-walled part, such as a blisk, 
a common method to identify its in-situ deflection is by 
simulation using cutting force value and modeling tech-
niques [86], which is not only time-consuming but also 
uncertain in terms of accuracy. As for the deflection error 
caused by the release of residual stress, it was particu-
larly tricky to predict such error since each piece of raw 
stock has its own stress pattern. Instead, people strived 
to characterize the residual stress field distribution via 
nondestructive methods, such as using ultrasonic devices 
[87] and X-ray diffraction [88]. The key to these nonde-
structive methods is to formulate the stress gradient with 
respect to the center frequencies, which can achieve 
plausible accuracy in workpiece with simple geometries. 

However, for realistic complex parts, the distribution of 
residual stress can be elusive especially when the work-
piece profile is constantly changing during the process. In 
light of this concern, direct measurement would be a bet-
ter choice.

To directly measure the deflection, the on-machine 
measurement system using a touch-trigger stylus was 
adopted to inspect the workpiece deformation, and adap-
tively change the subsequent tool path for compensation 
[89]. The utilization of inspecting stylus was a prevalent 
choice for online measurement, it yet required the sus-
pension of the manufacturing process, which prolongs 
the overall processing time and is technically incapable of 
real-time monitoring. More advanced instruments were 
developed recently to address these issues. Luo et al. [90] 
devised a thin film PVDF sensor attached to the non-
machining side of the thin-walled part to monitor the 
deflection and vibration caused by machining force. The 
change of output voltage faithfully reflected the high-fre-
quency deflection of workpiece during different machin-
ing stages. Real-time surface normal measurement for 
maintaining high accuracy of thickness is indispensable 
in machining freeform thin-walled part. Yuan et al. [91] 
established an online surface normal measurement using 
four eddy current displacement sensors installed in the 
frontend of the spindle, achieving a remarkable reduction 
in displacement errors (from 12% to 1%) after compen-
sation. A more intractable case of deformation is caused 
by the release of residual stress during the removal of 
raw material, such deformation remains obscure as long 
as the workpiece is securely fixed on the machine table. 
Indirect prediction model of the residual stress distribu-
tion [92] is too complicated to be accurate, due to a large 
set of remaining uncertainties. In light of this issue, Li 
et  al. [93] inaugurated a novel responsive fixture appa-
ratus for direct inspection of in-process deformation of 
large aerospace parts. This smart fixture automatically 
opens up to release the deformation once the built-in 
stress sensor reaches its threshold. In this way, adaptive 
adjustment of the process can be made as long as the 
final shape is still enveloped by the remaining workpiece. 
Inspired by this idea, Hohring and Wiederkehr [94] fol-
lowed up with a similar intelligent fixture for the purpose 
of mitigation of chatter and compensation of work-
piece distortion to achieve high performance machin-
ing. Table  4 lists the evolution of workpiece condition 
monitoring.

3.2 � Discussion and Future Trend
Data collection and analysis are two essential stages 
in data-driven manufacturing process. Depending on 
the correlation of captured and target value, manu-
facturing data can be collected via direct and indirect 
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measurement. Although indirect measurement offer 
more possibilities and larger scalability in diversified 
applications and are more cost-effective, they usually 
require the establishment of a physical transfer function 
to indicate the correlation between the measured and 
target value, which inevitably induce error as long as such 
correlation contains physical uncertainty. Consequently, 
the accuracy of indirect measurement is undermined 
so long as the correlation is not rigorously and math-
ematically identified. This gap encouraged more studies 
to improve the accuracy by developing various sensor 
fusion and data analysis methods [95]. On a different 
perspective, direct measurement using dedicated sen-
sors can achieve high fidelity and accuracy. Although it 
seems to be contradictive to the big data scenario where 
obtained data is usually trivial and individually inaccu-
rate, the design of exclusive sensor is still one important 
trend in the manufacturing field to facilitate accurate 
process monitoring, and thus to make precise decision 
and control. This pictures one possible future of intelli-
gent manufacturing.

4 � Advanced Data Analysis in Data‑Driven 
Manufacturing Process

Manufacturing process is decisive to the whole product 
life cycle. As elaborated in the previous section, vari-
ous sensors are being devised and integrated onto the 
machine to enable in-process monitoring by captur-
ing target or correlated values. Nevertheless, the data 
acquired by these sensors, no matter directly or indi-
rectly, only gives partial view of the manufacturing pro-
cess. These data still needs post analysis to be converted 
into perceptible knowledge and decisions. Making deci-
sions from data rather than human knowledge has 
become the dominant trend in data-driven manufactur-
ing. In data analysis, we believe there have been at least 
three paradigms so far, as depicted in Figure  6, which 
also illustrates the evolution of modern manufacturing 
process.

In the first paradigm of data analysis, a physical model 
describing the mechanism is developed by the expert. 
Once the input data and information is imported into 
the physical model as prior knowledge, a mathematical 
solver is established to find the optimal solution, i.e., the 
decision. For example, finite element analysis is a typi-
cal data analysis which employs linear solver to solve a 
partial differential equation, e.g., deformation of the 
part. Obviously, two simplifications are involved in this 
pipeline. First, the physical models developed by human 
experts are usually based on certain assumption and 
simplification which deviates from actual scenario. Sec-
ondly, solving the physical model with limited input data 
is sometimes ill-posed, which can possibly lead to faulty 
results. However, it should not be denied that when data 
is scarce and expensive to acquire, this paradigm effec-
tively offers a plausible way to interpret the process.

The second paradigm of data analysis utilizes machine 
learning techniques to train a shallow encoders which 
consist exponentially greater number of unknown 
parameters than the physical model. Through sufficient 
training stage using paired feature-result set, the trained 
model is capable of producing sensible answers on new 
input features. Due to the high generalization ability of 
machine learning models, it successfully bypasses the 
model simplification encountered in the previous para-
digm. Nevertheless, the ability for a shallow encoder to 
directly process high-dimensional raw data is still limited, 
it thus requires careful feature engineering and consider-
able domain knowledge to reduce the input dimension.

As the density and dimension of manufacturing raw 
data is experiencing a rapid growth, the key factor to the 
final accuracy is how the data is processed in the first 
place. Motivated by this need, the third paradigm using 
deep learning can potentially eradicate the error-prone 
handicraft of feature extraction, which instead is achieved 
automatically using a general learning procedure. In this 
way, feature extraction induced error can be reduced to 
a great extent. It is expected that this paradigm will give 
the best performance on data analysis as long as the deep 
model is fed with sufficient data.

In the following sections, we will first provide a com-
prehensive review on existing methods for feature extrac-
tion from manufacturing raw data, given that feature 
extraction is an essential stage for the first two para-
digms. Some typical manufacturing applications using 
data analysis will then be elaborated according to the 
above three paradigms.

4.1 � Pre‑processing of Manufacturing Data
Manufacturing raw data can be regarded as a sequential 
of digital bits if not further processed. Data processing is 
an essential stage especially for indirect data to convert 

Table 4  Evolution of workpiece condition monitoring

Year Indirect accuracy 
monitoring

Direct accuracy monitoring

Before 2000 Ultrasonic sensor [81]
AE sensor [80]
Dynamometer [84]

2001–2010 Dynamometer [79]
Accelerometer [78, 85]

2011–2020 Simulation [86]
Ultrasonic sensor [87]
X-ray diffraction [88]

Vision based system [82, 31]
Touch-trigger stylus [89]
Thin film sensor [90]
Responsive fixture [93, 94]
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them into perceptible values. In general, data processing 
methods are specifically designed to extract useful fea-
tures and can be categorized into time domain, frequency 
domain, time-frequency domain and statistical process-
ing [34]. Specifically, time domain data processing refers 
to direct feature extraction of the time series data, such as 
the mean, peak and root mean square (RMS) value [33]. 
Song et  al. [96] characterized the vibration time series 
using autoregressive moving average (ARMA) model and 
discovered a linear relationship between the AR param-
eter and the surface roughness. Campatelli and Scippa 
[97] predicted the cutting force coefficients by analyz-
ing the time domain behavior of the cutting force signal. 
Ertekin et al. [98] calculated the RMS value of the AEDC 
signal which was observed as the most sensitive feature 
to the tool wear. The average RMS feature of the current 
signal also contributes the estimation of tool wear [99].

Frequency domain data processing can extract more 
intrinsic features from a cyclic data series, especially 
when such data contains background noise which is 

hard to distinguish in time domain. Altintas et  al. [100] 
analyzed the cutting force and chatter stability during 
dynamic cutting process using Nyquist law in frequency 
domain. The analysis of tool vibrations using fast Fourier 
transform (FFT) was proved an effective mean for the 
prediction of surface roughness [101]. Frequency spectra 
of the AE signal was identified to evaluate the tool condi-
tion in broaching process [102]. By analyzing the motor 
current in frequency domain, the sensorless automated 
condition monitoring was achieved for predictive main-
tenance of machine tool [103]. FFT was also utilized to 
filter out noise from the audible energy sound to achieve 
better monitoring performance [104].

The FFT gives the entire frequency spectrum with the 
average frequency composition. Practically, the sensory 
data is dynamically changing over time. Therefore, a 
time-frequency data processing gives a more reasonable 
outcome by partitioning the time series data into short 
time intervals for frequency analysis [29]. Specifically, 
wavelet analysis and short time Fourier transform (STFT) 
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Figure 6  Three paradigms of data analysis based on (a) physical modeling; (b) machine learning; (c) deep learning
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are the two prevalent techniques to analyze cutting force 
[105], vibration [106], AE [107, 108], current [109] and 
sound signal [51].

Statistical data processing offers a better way to indi-
cate short term impulses and analyze variance between 
different factors. In particular, Aouici et al. [110] utilized 
a statistical analysis of variance (ANOVA) to predict the 
surface roughness during hard turning. Similar approach 
was found in Ref. [111] using vibration signal. Kannatey-
Asibu and Dornfeld found that the skew and kurtosis of 
the AE signal was sensitive to the tool wear [112]. Lu and 
Wan [113] studied the high-frequency sound signal for 
tool wear monitoring using class mean scattering criteria. 
Table 5 lists the processing methods for different manu-
facturing signals.

No matter what data processing strategy is utilized, it 
is a primary stage in the entire data analysis for the fol-
lowing two benefits. First, raw sensory data is usually of 
high dimension and contains stochastic noise, data pro-
cessing can tremendously reduce the dimension and filter 
out disturbance without losing much valuable informa-
tion. On the other hand, the extracted low-dimensional 
features are more comprehensible in terms of develop-
ing analytical algorithms to make decisions accordingly, 
which will be discussed in the following section.

4.2 � Data Analysis in Manufacturing Process
4.2.1 � Tool Condition Analysis
Analyzing in-process tool condition from limited data is 
an important issue through which manufacturing process 
can be more precise and efficient. Tool wear is the most 
phenomenal condition people cared. Identifying the tool 
wear mechanism is intractable as it involves physical and 
chemical process, such as abrasion, adhesion, diffusion 
and other types of wear during cutting process. A few 
pioneered studies strived to understand the wear mecha-
nism as the addition of brittle fracture, mechanical abra-
sion, physicochemical mechanism and others [114]. A 
recent study [115] developed a fundamental wear model 

by using a dedicated tribometer, which consists of cut-
ting and thermal simulations. However, the formulation 
of all these factors is subject to certain simplifications 
and assumptions, and calibrating the pending coefficients 
of the model using limited testing data would introduce 
more statistical errors, which together make the physical 
model inaccurate and unstable towards real complicated 
machining process.

Instead of formulating complex and error-prone physi-
cal models for tool wear mechanism, most research-
ers intended to estimate tool wear in a more statistical 
manner, i.e., to estimate remaining useful life by fitting 
historical data into an empirical model. Endeavors to 
estimate the tool life can be traced back to the early 20th 
century when FW Taylor [116] proposed the well-known 
Taylor equation, which is an empirical model with two 
unknowns. Ever since then, various empirical models 
[117–119] and experimental studies [120, 121] were pre-
sented targeting at different tool-workpiece combina-
tions. A comprehensive list of variant tool wear empirical 
models for dry machining can be found in Ref. [122]. 
Their procedures were in similar fashion: first a nonlin-
ear formula describing the tool condition based on the 
observer’s domain expertise was established ahead of 
time, then factorial design of physical experiments were 
conducted to calibrate the unknowns of the formula, 
experimental validations were eventually conducted to 
prove the feasibility. Although the prediction accuracy 
reported in these works can reach as high as 95% in 
their experimental setups, it is perceived that any slight 
change of the actual cutting condition would devastate 
the accuracy. As the demand for accuracy and the com-
plexity of manufacturing process keep growing rapidly, 
physical and empirical models have been widely depre-
cated. Zhao et al. [123] argued that this was mainly due 
to the following reasons: First, the performance of these 
models was highly dependent on the domain expertise of 
the observer, whose robustness was unsecured due to the 
uncertainty and complexity of working conditions. Sec-
ondly, these models were unable to evolve along with the 
accumulation of data, and thus insensitive to the chang-
ing conditions, which lead to limited effectiveness and 
flexibility in real cases. These two deficiencies of model-
based approach would introduce considerable amount of 
error, not to mention the error from the feature extrac-
tor, which together makes the physical model-based data 
analysis hardly compatible with wider applications.

The advance of volume and veracity of data makes it 
possible to adopt various machine learning algorithms to 
predict tool condition more accurately. Prevalent choices 
of machine learning techniques for tool condition analy-
sis include support vector machine (SVM), artificial neu-
ral networks (ANN), Hidden Markov models (HMM) 

Table 5  Processing methods for  different manufacturing 
signals

Signal Time domain Frequency 
domain

Time-
frequency 
domain

Statistical 
analysis

Cutting force [97] [100] [105] [110]

Vibration [96] [101] [106] [111]

Acoustic emis-
sion

[98] [102] [107, 108] [112]

Current [99] [103] [109]

Audible sound [104] [51] [113]
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and decision tree. With sufficient training data, trained 
ANN model using back propagation can be compara-
tively accurate for tool wear estimation [124]. Palanisamy 
[125] compared ANN against classic regression model 
in terms of the capability in tool wear estimation, ANN 
was found to be more robust and accurate for its pow-
erful fitting ability. As a statistical learning approach, 
SVM is superior for non-linear classification of data by 
mapping them into higher dimensional feature space, 
by which discretized state of tool wear can be classified. 
Support vector regression (SVR) is a variant of SVM for 
continuous regression of tool wear value. Tool breakage 
detection [126] and tool wear estimation [127] were suc-
cessfully carried out via SVM/SVR with over 99% success 
rate when the design parameters of the SVM model was 
fine-tuned. It was also noticed in a more recent study 
that a hybrid estimator combining analytic fuzzy classi-
fier (AFC) and SVM can reach higher accuracy in tool 
wear estimation [128]. Other learning techniques, such 
as decision tree classifier [129] and HMM [130], were 
also applied in application of tool wear estimation and 
achieved plausible performance. It was however stated 
in Ref. [129] that the performance of decision tree clas-
sifier combined with a PCA was case-sensitive. It is 
noticed that there has always been a hidden trade-off 
issue between the complexity of learning model and the 
training cost. To achieve high accuracy, a more complex 
learning model would thus require a larger training data 
set and heavier computational load, otherwise overfitting 
issue would lower the performance.

Most of the aforementioned tool condition analysis is 
majorly dependent on time series data such as cutting 
force and vibration. Shallow function approximators 
like ANN and SVM are technically incapable of deal-
ing with such high-dimensional data and thus require a 
dedicated feature extractor beforehand [131], as already 
elaborated in Section  4.1 and illustrated in Figure  6(b). 
Conceivably, the quality of the extracted features directly 
affect the accuracy of subsequent operations. Improper 
choice of feature extractor may fundamentally suppress 
the eventual performance. Therefore, it would be better 
if one can directly handle the raw data series and bypass 
the feature extraction stage. The development of deep 
neural networks such as convolutional neural network 
(CNN) [132] and long short-term memory (LSTM) net-
work [133] can fully satisfy this requirement. Specifically 
in the application of tool condition analysis, Li et al. [134] 
adopted CNN to detect tool breakage by spindle current 
signal, which achieved higher accuracy (93%) than that 
of the traditional BP neural network (around 80%). How-
ever, time-domain feature extraction was still adopted 
in this work, CNN was thus only regarded as a tradi-
tional machine learning methods with higher achievable 

accuracy. Another recent study [135] was to monitor 
the tool wear level based on audio signal using CNN, 
which strived to eradicate the need of feature extraction 
by using the absolute values of Fourier transformation 
as input. As a result, the tool wear prediction accuracy 
reached to as high as 96.3%. A Convolutional Bi-direc-
tional Long Short-Term Memory networks (CBLSTM) 
was designed in Ref. [123] to eliminate feature engineer-
ing in tool health monitoring. In this network, CNN 
was served as local feature extractor, while LSTM was 
to address sequences of varying length data and capture 
long-term dependencies, in that tool wear was a time-
variant sequential progress.

The extrusive challenge for the adoption of deep learn-
ing to make accurate analysis is the demand of large vol-
ume of labeled data, the acquisition of which is extremely 
costly and time-consuming for many manufacturing 
applications. For example, the identification of tool tip 
dynamics for a newly inserted tool needs hundreds of 
impact tests at different tool postures. In this situation, 
the utilization of historical data to facilitate the training 
of a new case becomes a potential and appealing solution. 
Chen et al. [136] proposed a transfer learning-based pre-
diction for pose-dependent tool tip dynamics in five-axis 
machine, by which the number of required impact tests 
is highly reduced. Sun et  al. [137] utilized deep trans-
fer learning to predict tool life, by taking advantage of 
the learnt similar characteristic across different objects. 
A recent study on tool wear prediction based on meta-
learning was proposed by Li et  al. [138]. Meta-learning 
has the ability of learning the hidden rules behind a vari-
ety of different but similar tasks/models. The adoption of 
meta-learning in this study successfully predicts the tool 
wear status in changing cutting conditions with enhanced 
accuracy, while only a few training samples are needed 
upon a new learning task. This meta-learning approach 
provides a new perspective to solve manufacturing prob-
lems where the acquisition of data samples are expensive 
and time-consuming. Table  6 lists the evolution of tool 
condition analysis.

4.2.2 � Process Condition Analysis
Process condition analysis is a typical classification task. 
In machining process, the condition can be categorized 

Table 6  Evolution of tool condition analysis

Physical model Machine learning

Simulation Empirical 
model

Shallow 
learning

Deep 
learning

Learning 
from fewer 
data

[115] [116–119, 
122]

[124–130] [123, 134, 
135]

[136–138]
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into idling, stable and chatter state. Timely and precise 
identification of process condition is always desired to 
make adaptive adjustment of process control. Previous 
studies made some important progress in identifying the 
mechanism of cutting process. Budak and Altintas [139] 
explored the mechanism of chatter during milling pro-
cess and came up with a physical model to identify the 
chatter stability induced by the dynamic milling forces. 
According to this study, the cutter is simplified as a two 
degree-of-freedom system subject to a dynamic radial 
force, based on which the theoretical chatter stability 
lobe was derived. On the other hand, the calculation of 
dynamic cutting force is also simplified using numerical 
method. This plausible offline solution may not prac-
tically satisfy real machining cases [45], as it requires a 
complete analysis of machine dynamics including the 
spindle, tool holder, tool and the workpiece, which is not 
only intractable to precisely identify but also requires 
tedious calibration works for different process conditions. 
The simplifications and unpredictable systematic bias 
further reduced the accuracy in offline analysis. Although 
researchers carried forward this theory to adapt to more 
complex situations, e.g., five-axis machining [140], they 
were still of limited usage since the fundamental gap was 
not completely filled.

When it comes to online identification of process 
condition, the preferred option is to make diagnosis as 
early as possible, in order to prevent workpiece damage 
ahead of time. Traditional estimation algorithm, such as 
maximum likelihood [141] though achieved great suc-
cessful rate, but lacked the ability for early prediction. 
The main reason is that subtle features are prone to be 
overlooked before they become phenomenal. Machine 
learning methods have been employed in this task for 
the superiority in classification, especially in those hard-
to-recognize scenario. In particular, acceleration signals 
were analyzed based on wavelet transform and SVM, this 
combination was able to detect transition state between 
stable and chatter state, showing excellent performance 
with over 95% accuracy rate [142]. In this way, chatter 
could be firmly suppressed in its infancy stage. Later on, 
neural network approaches were also developed for pro-
cess condition classification using vibratory signal [143]. 
In addition to the feature generation which is mandatory 
for traditional machine learning approaches, this work 
introduced a feature selection strategy based on envelope 
analysis to rank the features according to their entropy, 
and only those high-ranking features were selected for 
classification. This operation essentially reduced the 
error from irrelevant features and hence increased the 
final accuracy.

To further reduce the error induced by feature extrac-
tion, deep learning methods were also utilized for 

machining process condition analysis. Among existing 
deep learning algorithms, CNN is known for its powerful 
image (second order tensor) processing and classification 
capability. However, most captured data from machin-
ing process is in the form of first order tensor (time 
sequence), which is not practical to be processed via 
CNN. Fu et al. [144] innovatively transformed measured 
signals into plotted image and employed convolutional 
neural network to achieve real-time identification of cut-
ting vibration state. This work realized directly use of 
the original signal sequence for cutting state monitoring 
with significant performance of over 99.5% accuracy in 
most testing cases. Deep Belief Network (DBN) has been 
majorly dealing with voice and speech recognition [145]. 
The in-process vibration signal is similar to the voice. Fu 
et al. [146] got inspired by this and came up with a DBN 
approach for cutting state monitoring. It turned out that 
DBN can steadily achieve high performance on the raw 
vibration signal without much data preparation.

Since data is relatively convenient to acquire during the 
manufacturing process, most deep learning approaches 
can already achieve very promising accuracy in their 
case studies. Still, conditions can be quite different in real 
machining situation where various materials, tools and 
parameters are combined in each individual task. Trans-
fer learning has been attracting more attention to deal 
with varying conditions [147] and proved to be effective 
for chatter detection with accuracy up to 95%. This new 
learning technology will not only reduce the data needed 
for training a deep model, but also increase model ver-
satility to adapt to complex manufacturing process sce-
nario. Table  7 lists the evolution of process condition 
analysis.

4.2.3 � Part Condition Analysis
The well-being of in-process part directly affects the 
quality of final product. Surface roughness [77] and part 
dimensional error [148] are the two most concerned 
aspects, since they respectively reflect the manufactur-
ing quality in microscopic and macroscopic view. For the 
formal one, physical models and experimental data based 
regression are the two mainstream solutions people uti-
lized to understand the surface roughness mechanism. 
Lin and Chang [149] established a surface topogra-
phy simulation model incorporating the effects of tool 

Table 7  Evolution of process condition analysis

Physical model Machine learning

Analytical 
model

Shallow 
learning

Deep learning Learning 
from fewer data

[139, 140] [142, 143] [144–146] [147]
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geometry, cutting parameters and tool motions to simu-
late the surface finish profile during turning operation. 
Kim and Chu [150] determined the surface roughness 
by proposing a geometrical model to calculate the maxi-
mum height of the effective scallop. This model was par-
ticularly complicated as it considered the cutter runout 
effect and cutter marks. Others conducted experimental 
studies to unveil the relationship between tool life, sur-
face roughness and vibration [101]. Regression analysis 
was adopted to handle the experimental data.

The dimensional error of in-process part can be catego-
rized into plastic deformation caused by residual stress 
and elastic deformation caused by large cutting load. 
Finite element method (FEM) was a primary choice for 
the evaluation of these two types of deformation, due to 
the large uncertainty of part shape and stress distribution 
during the process. The distortion of thin-walled work-
piece induced by machining residual force was predicted 
using a modified finite element model [151]. The combi-
nation of experimental results with FEM was proposed to 
predict the shape deviation of complex geometry [152]. 
Elastic deflection also induces machining error, especially 
for thin-walled part. Wan et al. [153] estimated the cutter 
deflection using a simple cantilever beam model, and the 
workpiece deflection using FEM simulation. The induced 
error was compensated accordingly [154].

Both analytical model and FEM have to make a great 
deal of simplifications since accurate prediction of sur-
face roughness and part deformation require tedious 
trial-and-error process and excessive computing power. 
Targeting at online analysis, trade-off between model 
complexity and its performance has always been a puz-
zling task. In light of this issue, machine learning algo-
rithms started to take over online quality analysis with 
higher performance. As for the surface roughness predic-
tion, although people spent great effort investigating its 
mechanism, it however varied with different processes 
and conditions. Any sophisticated physical models will 
only take effect in a limited range of applications. In this 
case, ANN has been widely adopted [155, 156] in both 
turning and milling process. Using a small number of 
training samples, ANN is capable of generating accurate 
prediction values but would essentially require a good 
design of network structure. As compared to linear and 
exponential regression model [155], neural networks 
were found to be capable of better predictions for sur-
face roughness. Support vector regression (SVR) method 
was also utilized for the prediction of roughness. A com-
parison of three types of SVRs and ANN was conducted 
in Ref. [157], results showed that SVR can achieve pre-
diction accuracy as high as 95%, while for ANN it was 
slightly lower (91.4%) and required more computational 
time at the same time.

When it comes to dimensional error prediction, online 
prediction and real time compensation has always been 
a preferable choice. Li et al. [158] developed a soft-touch 
sensor which provides proximity information when the 
tool is approaching the workpiece, and a neuro-fuzzy 
network for predicting machining errors. This hybrid 
learning system succeeded in precise prediction of the 
aggregate sum of thermal error, force-induced deflection 
error and other source error in turning process. Another 
dimensional error prediction in milling process was 
achieved using ANN [159]. In this work, data set of pro-
cess parameters that can affect dimensional errors was 
yielded via experiments. The large number of influencing 
parameters led to the choice of ANN, which generated 
more accurate models than the previous empirical mod-
els after training process.

Conventional machine learning approaches suffice the 
demand for real-time prediction of surface roughness 
and part deformation. A foreseeable trend in this sec-
tion would be more precise identification of part condi-
tions, such as the types of defect and crack, by further 
exploiting the advanced vision-based sensors. Towards 
this goal, traditional shallow learning approaches require 
artificially defined feature descriptors from the captured 
raw pixels, while deep networks are able to directly pro-
cess raw data. In particular, CNN serves as a primary 
choice for surface inspection task. A max-pooling CNN 
was developed in Ref. [160] to identify steel defect with 
an error rate of 7%, which outperformed the best trained 
classifier using artificial feature descriptors (15%). Part 
et al. [161] showed that using CNN can achieve 250 times 
faster inspecting speed compared to manpower inspec-
tion, without sacrificing the accuracy. Ren et  al. [162] 
proposed a CNN based feature extractor for pixel-wise 
surface inspection, which did not require large-scale 
training data using pretrained model. The heat map 
showing distribution of defects was then generated for 
the identification of seven types of defects using image 
processing algorithms. This work showed improved accu-
racies in both classification and segmentation tasks for all 
seven defect types. Crack identification was also realized 
using a deep RBM from consumer-grade camera images 
[163], which provided an alternative option in addition to 
CNN. In terms of part deformation prediction and con-
trol, the utilization of responsive fixture made it possible 
to measure and accumulate online deformation data for 
different parts in different machining stages. Such data 
potentiates the training of a mixed deep learning model, 
as proposed by Zhao et  al. [164], to predict the part 
deformation and make process adjustments in an early 
stage. As can be concluded from previous studies, most 
deep learning based part condition analysis takes image 
as raw input. It is conceivable that when the amount of 
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training data is limited, deep neural network, such as 
CNN, can be easily over-fitted to jeopardize the accuracy. 
In order to reduce data dependency, Ferguson et al. [165] 
trained a CNN using openly-available image datasets and 
leveraged transfer learning to adapt the pre-trained CNN 
model to the detection of defects, by using small X-ray 
dataset. Cheng et  al. [166] applied a parameter-based 
transfer learning in modeling shape deviations during 
additive manufacturing, as one particular example to 
represent the future trend. Table 8 lists the evolution of 
part condition analysis.

4.3 � Discussion and Future Trend
Data analysis has been comprehensively reviewed from 
three aspects in manufacturing process: tool condition, 
process condition and part condition. The evolutions of 
data analysis in all three aspects follow the same routine 
from physical modeling to machine learning and reach-
ing deep learning in the state-of-the-art.

Due to the great complexity of manufacturing pro-
cess, the establishment of physical models would induce 
noticeable errors. First of all, the construction of physi-
cal model requires domain expertise which may contain 
cognitive bias to the actual mechanism. These manufac-
turing process usually comprise intricate and unstable 
physical/chemical processes that are hard to precisely 
constructed, which inevitably require certain level of 
assumption and simplification. Mathematical solution 
based on limited observable data is sometimes ill-posed, 
making the final physical model barely accurate to deliver 
satisfactory results. The development of machine learn-
ing techniques inaugurated a new paradigm to analyze 
manufacturing processes, without needing to manually 
develop complicated but inaccurate physical models. 
After some crafted feature extraction and training pro-
cess, complex manufacturing process can be established 
in a more unified, efficient and effective way. Through 
the training process, hidden and obscure correlations 
between the input and output can be unveiled. Neverthe-
less, even the most powerful feature extractor still cannot 
guarantee zero discrepancy and error from the raw data, 
which directly affects the final accuracy. This dilemma 
is well resolved by deep neural networks, in which these 
features are automatically extracted rather than by a 

third-party agent. Consequently, when data is abundant, 
deep learning achieves better performance than conven-
tional machine learning approaches.

On a different perspective, utilizing deep learning 
may be troublesome in manufacturing field, since the 
acquisition of meaningful manufacturing data is not as 
convenient as data from internet. Advanced machine 
learning technologies, such as transfer learning [136] and 
meta learning [138], already left some successful marks 
in manufacturing applications where data acquisition 
is expensive and slow. It is foreseeable in the future that 
more advanced machine learning methods dealing with 
insufficient data will emerge and apply in manufacturing 
process.

In the state-of-the-art development of machine learn-
ing techniques, new types of machine learning algo-
rithms for various tasks are being developed. Specifically, 
deep reinforcement learning using deep Q-network was 
proposed by Google DeepMind [167], which opened 
up a new era to learn successful policies directly from 
high-dimensional inputs and achieve human-level per-
formance in game play. The same group later proposed 
a meta-reinforcement learning system inspired from the 
activity of dopamine system in human brain [168], which 
expedited the learning process from past experience. 
These new findings in reinforcement learning would 
potentially render new possibilities for manufacturing 
systems to understand rules from source data and real-
ize true automation [169]. The lately reported domain-
transform manifold learning made a huge success in 
noise-reduced image reconstruction from raw sensory 
data [170], which could also be a promising tool in manu-
facturing data pre-processing stage for higher fidelity.

5 � Conclusions and Outlook
5.1 � Conclusions
Manufacturing data collection and analysis are the key 
enablers to realize data-driven manufacturing. As the 
two crucial components in manufacturing monitoring 
system, they have been evolving to cater to increas-
ing demands in modern manufacturing. The develop-
ment of these two components have been thoroughly 
investigated from literature, with conclusion depicted 
in Figure 7. In terms of data collection, in most manu-
facturing circumstances valuable data is measured via 
sensors. Direct and indirect measurement are the two 
categories in this stage. While indirect measurement 
has been more widely adopted in recent manufacturing 
applications for its cost-effectiveness and high compat-
ibility, it is still facing a considerable amount of dis-
crepancies in terms of accuracy. Although people have 
made great efforts to reduce the error, it is theoretically 
incapable to achieve high precision measurement due 

Table 8  Evolution of part condition analysis

Physical model Machine learning

Topography 
simulation

FEM 
simulation

Shallow 
learning

Deep 
learning

Learning 
from fewer 
data

[149, 150] [151–153] [155, 156, 
158, 159]

[160–164] [165, 166]
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to the uncertainty and simplification of the correlation 
between the target value and the measured value. On 
the other hand, direct measurement though encounter-
ing incompatibility issue in some manufacturing cases, 
it will be ultimately adopted for its high fidelity and 
achievable accuracy. There have already been sporadic 
developments of advanced sensors that can directly 
measure the in-process data without violating the pro-
cess condition.

Data analysis is another crucial phase in data-driven 
manufacturing to make diagnosis, predictions and other 
decisions based on the obtained data. Three paradigms 
of data analysis, i.e., physical modeling, conventional 
machine learning and deep learning based data analysis 
have been investigated in this paper. The development 
of physical modeling to describe high dimensional non-
linear manufacturing process is challenging and experi-
encing low accuracy. These physical models are usually 
oversimplified, containing observation bias, and thus 
theoretically incapable of accommodating the increas-
ing demand for accurate data analysis. Machine learning 
based data analysis was developed to resolve this issue by 
using generic model such as neural networks, and train-
ing process, which can successfully overcome the model 
simplification issue. As long as for a sufficient training 
procedure, the learning model can achieve high nonlin-
earity to describe an arbitrarily complex process. While 
shallow learning models can only deal with low-dimen-
sional data due to the limited capacity, deep learning 
based data analysis can achieve an end-to-end modeling 
from the raw sensory data to the final decision. The deep 
stacks of layers combined with dedicated training pro-
cess can automatically learn to extract useful features 
without human intervention. Practically however, since 
the amount of manufacturing data is usually limited, 
advanced machine learning techniques such as trans-
fer learning and meta learning that require fewer train-
ing samples are investigated in some recent studies to 
achieve better results and handle varying conditions.

5.2 � Outlook
Thanks to the development of advanced sensoring and 
data analyzing technologies, modern manufacturing 
outperforms with higher efficiency, accuracy and self-
diagnosis by the extensive use of data. Direct process 
monitoring combined with advanced machine learn-
ing technologies have achieved remarkable effectiveness 
and will perhaps trend the development of data-driven 
manufacturing. Though deep learning obtained huge 
success in a variety of fields, training a deep model in 
manufacturing scenario remains challenging due to the 
prolonged time and cost needed for collecting sufficient 
labeled data. To overcome this crucial deficiency, there 
are two suggested directions. First, it is though theoreti-
cally impractical to train a deep model with high per-
formance using insufficient sample data, one can adopt 
few-shot learning to extract common rules from exist-
ing well-trained knowledge, instead of training from 
scratch. Another potential direction is to combine physi-
cal mechanism, such as Newton’s law and energy con-
servation, with machine learning models in order to take 
advantage of both, which would significantly reduce the 
amount of training data and enhance the generalization 
of the trained model. These are perhaps among the future 
shapes of data-driven smart manufacturing.
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