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Abstract 

State of charge (SOC) estimation for lithium ion batteries plays a critical role in battery management systems for elec-
tric vehicles. Battery fractional order models (FOMs) which come from frequency-domain modelling have provided 
a distinct insight into SOC estimation. In this article, we compare five state-of-the-art FOMs in terms of SOC estima-
tion. To this end, firstly, characterisation tests on lithium ion batteries are conducted, and the experimental results 
are used to identify FOM parameters. Parameter identification results show that increasing the complexity of FOMs 
cannot always improve accuracy. The model R(RQ)W shows superior identification accuracy than the other four FOMs. 
Secondly, the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model 
accuracy and computational burden under different profiles, memory lengths, ambient temperatures, cells and 
voltage/current drifts. The evaluation results reveal that the SOC estimation accuracy does not necessarily positively 
correlate to the complexity of FOMs. Although more complex models can have better robustness against tempera-
ture variation, R(RQ), the simplest FOM, can overall provide satisfactory accuracy. Validation results on different cells 
demonstrate the generalisation ability of FOMs, and R(RQ) outperforms other models. Moreover, R(RQ) shows better 
robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage 
sensor drift.
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1  Introduction
1.1 � Literature Review
Lithium ion batteries are the paramount component that 
enables the market penetration of electric vehicles (EVs). 
As a time-variant electrochemical power source, man-
agement of lithium ion batteries has drawn much atten-
tion. In particular, the accurate estimation of state of 
charge (SOC), which directly decides the driving distance 
and power performance, is one of the most indispensable 
tasks of battery management systems (BMSs) [1, 2].

SOC is generally defined as the ratio between the avail-
able capacity and maximum capacity [3]. If a battery is 

fully charged, its SOC is defined as 100%. If a battery is 
depleted completely, its SOC is set to 0%. SOC works 
like a fuel gauge in conventional vehicles but it is more 
intricate as it cannot be measured directly. Numerous 
methods for SOC estimation have been proposed and 
are summarised in recent reviews [1, 4]. Among them, 
model-based methods are most prevalent since battery 
models can be combined with observers to provide a 
closed-loop SOC estimation result [4]. Frequently used 
models for lithium ion batteries can be categorised into 
three main groups, namely electrochemical models 
(EMs), equivalent circuit models (ECMs) and fractional 
order models (FOMs).

EMs include a set of partial differential equations 
(PDEs) to describe electrochemical reactions [5, 6]. 
Thanks to their explicit physical basis, EMs have been 
widely employed for the simulation of time consuming 
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or dangerous experiments, such as short circuits [7, 8] 
and battery ageing [9–11]. However, there are plenty of 
parameters in EMs, some of which cannot be obtained 
without assistance from battery manufacturers [12]. Fur-
thermore, solving PDEs is an expensive task in terms of 
calculations [13]. These drawbacks hinder onboard appli-
cations of EM-based SOC estimation.

ECMs are a popular choice for SOC estimation for lith-
ium ion batteries. They consist of primarily ideal electri-
cal components like capacitance, resistance and voltage 
source. Therefore they are computationally preferable 
[14, 15] and are widely applied in microcontrollers [16–
18]. A few comparative studies have been conducted on 
ECMs to reveal their abilities [19, 20]. The main demerits 
of ECMs include low accuracy and weak physical basis.

In the frequency domain, impedance models are widely 
used to the interpretation of processes of different char-
acteristic frequencies in electrochemical impedance 
spectra [21]. Studies have demonstrated the effectiveness 
of the impedance models in the fields of ageing diagno-
sis [22, 23] and the design of heating strategies [24, 25]. 
Recently, the impedance models designed to fit imped-
ance spectra in the frequency domain have been trans-
planted to the time domain for voltage simulation and 
state estimation. This results in the so-called FOMs fea-
turing constant phase elements (CPEs) which should be 
interpreted by fractional calculus [26–28]. In 2011, Andre 
et al. [29] studied the impedance spectra of a lithium ion 
battery and proposed a FOM containing three CPEs. This 
FOM was parameterised using EIS before being adopted 
for voltage simulation. The results showed that it is supe-
rior to a third order ECM. Hu et  al. [30, 31] integrated 
this FOM with adaptive fractional order EKFs to esti-
mate SOC while updating part of the model parameters. 
The results showed the FOM has smaller SOC estima-
tion error than a second order ECM. A different FOM 
with two CPEs was proposed by Xu et al. [32] and it was 
combined with a fractional order EKF to estimate SOC. 
The comparison with a first order ECM proved that the 
FOM has better voltage and SOC estimation accuracy. 
Several observers have also been designed for this FOM 
to achieve accurate and robust SOC estimation results 
[33, 34]. Another FOM with two CPEs was proposed in 
[35], where the structural relationship between FOMs 
and ECMs was explained in detail. It was concluded that 
the first order ECM outperforms the ECM in terms of 
voltage simulation, even in the presence of short circuit 
[36]. In Ref. [37], Xu et  al. simplified the FOM in Ref. 
[29] into a FOM with two “Zarc” elements, which cor-
responds to a parallel connection of a resistance and a 
CPE. The voltage simulation accuracy of the simplified 
FOM was illustrated by comparing with that of a sec-
ond order ECM. This FOM was also adopted in Ref. [38], 

where a framework for SOC and state of health (SOH) 
co-estimation was proposed. Two fractional order EKFs 
were combined to estimate SOC and battery capacity, 
respectively. The results showed that the FOM was better 
than the second order and third order ECMs in terms of 
SOC and capacity estimation. To facilitate SOC estima-
tion, the FOM was combined with a fractional order UKF 
in Ref. [39], and a corresponding observer was designed 
in Ref. [40]. Both studies illustrated improved accuracy 
compared with conventional ECMs. In Ref. [41], a sim-
plified FOM containing only one CPE was employed for 
online identification of the open circuit voltage (OCV). 
Its accuracy was proved to be higher than that of the 
first order ECM. This conclusion is in agreement with 
Ref. [42] in which offline comparison of the FOM with 
five ECMs was conducted. Besides high accuracy, Sutter 
et al. [43] found the parameters of this FOM are associ-
ated with battery ageing and can reflect electrochemical 
information to a certain extent. Jiang et al. [44] developed 
a continuous time-domain identification method for this 
FOM. This model has also been employed for SOC esti-
mation by using different fractional Kalman filters [45, 
46]. The results showed that this FOM provides higher 
accuracy than the first order ECM.

1.2 � Contributions
Based upon the above discussions, one can note that a 
number of FOMs have been demonstrated to be more 
accurate and robust than conventional ECMs not only for 
voltage simulation but also for SOC estimation. However, 
different components and structures of FOMs inevitably 
affect the performance of their applications in voltage 
simulation and SOC estimation. As pointed out in Ref. 
[35], the most complex FOM does not necessarily pro-
vide the smallest voltage simulation error. Their ability to 
estimate SOC remains unclear.

In this article, for the first time, we systematically 
compare five widely used FOMs for SOC estimation of 
lithium ion batteries. Besides estimation accuracy, the 
influence of memory length, ambient temperature, cell 
difference, voltage and current sensor drift is discussed to 
examine the robustness. This study can provide guidance 
to researchers and engineers in selecting the best FOM 
for SOC estimation.

1.3 � Paper Organisation
The remainder of the present paper is organised as fol-
lows. The experimental setup and battery tests are intro-
duced in Section 2. Five FOMs and their identification are 
outlined in Section  3. The SOC estimation method and 
comparison of FOMs on SOC estimation are described 
in Section 4. Finally, conclusions are given in Section 5.
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2 � Experimental Setup and Battery Tests
In this section, the battery experiments are introduced 
to construct the dataset for the comparison of FOMs. 
In this work, seven lithium-manganese-cobalt-oxide 
(NMC)/graphite batteries randomly selected from the 
same batch are tested, and their specifications are given 
in Table 1. Cell 1 is used as the primary cell for compari-
son and cells 2‒7 are used to evaluate the generalisation 
of FOMs. Figure 1 shows the primary components of the 
test platform. This platform consists of an ARBIN tester, 
which is capable of charging/discharging the batteries 
under the control of the host computer, and a thermal 
chamber to regulate ambient temperature. The capac-
ity test is first performed to measure battery capacity 
according to the standard charging/discharging method 
specified by the battery manufacturer. Then, the hybrid 
pulse power characterisation (HPPC) test is carried out 
for parameter identification. It comprises 49 groups of 
current pulses at the SOCs of 100%, 98%,…, 4% in order 
to consider the SOC dependence of model parameters. 
The current pulses and corresponding voltage responses 
at different SOCs are be used for parameter identifica-
tion of FOMs in Section  3.2. It is followed by two EV 
driving schedules, namely the dynamic stress test (DST) 
and urban dynamometer driving schedule (UDDS). The 
SOC estimation is conducted based on both profiles to 

simulate operating conditions in EVs. To assess the per-
formance of FOMs under different conditions, four char-
acterisation tests are conducted at 15 °C, 25 °C and 35 °C. 
In all tests, the sampling frequency is set to be 1 Hz. The 
current and voltage profiles of all tests are depicted in 
Figure 2.

3 � Fractional Order Models
3.1 � Model Structures
A few FOMs that were developed for fitting the imped-
ance spectra have been introduced to time-domain 
applications in BMSs. Figure  3 provides a summary of 
the widely used five FOMs in the literature for voltage 
simulation and SOC estimation. In these models, Uoc 
stands for OCV. Ri, R1 and R2 represent resistances. Ut 
and I denote terminal voltage and current, respectively. 
I is defined as positive for battery charging. The constant 
phase element (CPE) is a fractional order element whose 
impedance at frequency f is expressed as

where Q (sα/Ω) and α are its coefficient and order, respec-
tively. The CPE is a generalised element which can repre-
sent the ideal capacitance (α = 1) and resistance (α = 0). 
It is of interest to note that the serially connected CPE 
is often referred to as the Warburg element, a specific 
CPE with a fixed order of 0.5. In this article, this name is 
adopted to make it distinguishable but its order is consid-
ered as a variable therefore it is as flexible as the CPE. Its 
coefficient and order are defined as W and β, respectively. 
For clarity, the models are named according to the model 

(1)ZCPE(ω) =
1

Q
(
j 2πf

)α , 0 < α < 1,

Table 1  Specifications of the NMC lithium ion batteries

Specifications Nominal 
capacity 
(A·h)

Nominal 
voltage 
(V)

Cut-off 
voltage 
(V)

Maximum 
charging/
discharging 
current (A)

Quantity 25 3.65 4.15/2.5 75/100

Figure 1  Battery test platform
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Figure 2  Current and voltage profiles of a capacity test, b hybrid 
pulse power characterisation test, c dynamic stress test, and d urban 
dynamometer driving schedule
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structure. For example, R(RQ)W represents a model 
which consists of a resistance R, a R//CPE parallel branch 
and a Warburg element connected in series.

The voltage Uc across a R//CPE branch and Uw across 
a Warburg element are governed by

where τ = RQ stands for a model parameter similar to a 
time constant. Dα f (t) represents the Grünwald–Letnikov 
derivative [47] of a function f(t), which provides an intui-
tive discretised form:

where h denotes the step length and is set to 1 s in this 
work. [t/h] gives the greatest integer less than or equal to 
t/h. It is evident that in the time domain, the fractional 
order α leads to a memory of all values of f (t) in the 
range of [0, t]. In order to reduce the computational cost, 
a short memory principle [47] is applied, and only data in 
the range of [t−L, t] are taken into account:

(2)
{
τDαUc(t) = RI(t)− Uc(t),

WDβUW(t) = I(t),

(3)






Dα f (t)= lim
h→0

1

hα

[ th ]�

i=0

(−1)i
�
α

i

�
f (t − ih),

�
α

i

�
=

�
(α−(i−1))···(α−1)α

i! , i > 0,
1, i = 0,

where L denotes the memory length, and it is set to 20 in 
this work. The five models in Figure 3 have been applied 
for SOC estimation based on sampled current and volt-
age data. To this end, these models should be firstly dis-
cretised. In light of the Kirchhoff’s circuit laws and Eqs. 
(2)‒(4), the discretised equations of the five FOMs are 
presented in Table 2, in which a new symbol is defined as

for brevity. The state space for SOC estimation is elabo-
rated in Section 4.

3.2 � Parameter Identification
In this subsection, the model parameter identification 
is performed for five FOMs based on the HPPC data 
obtained at 25 °C, where the current pulses are imposed 
at each SOC and the sampled current serves as the input 
of the FOM to simulate voltage response. The parameters 
of the FOMs are obtained when the root mean square 
error (RMSE) is minimised between the measured volt-
age Ut and FOM output Ût. The RMSE is expressed as

where N is the total number of Ut. The maximum abso-
lute error (MAE) is taken as another index to evaluate 
the identification accuracy, but it is not considered as an 
objective of identification. It is expressed as

The FOM parameters that need to be identified are 
listed in Table 2. It should be emphasised that although 
Uoc can be measured through OCV tests [48], it is con-
sidered as a model parameter to be identified in this study 
since it has proved that OCV identification can help to 
improve SOC and SOH estimation accuracy [41, 49].

3.2.1 � Parameter Identification Method
Due to the intrinsic nonlinearity caused by fractional 
calculus, the RMSE is usually minimised by evolution-
ary algorithms such as the genetic algorithm (GA). Such 
algorithms solve optimisation problems by searching for 
solutions in a given parameter range. Hence, they are 

(4)Dα f (t) ≈
1

hα

L∑

i=0

(−1)i
(
α

i

)
f (t − ih).

D(α)f (t) =
1

hα

L∑

i=1

(−1)i
(
α

i

)
f (t − ih)

(5)RMSE =

√√√√ 1

N

N∑

i=1

(
Ut(k)− Ût(k)

)2
,

(6)MAE = max
(∣∣∣Ut(k)− Ût(k)

∣∣∣
)
, 1 ≤ k ≤ N .

Figure 3  Five fractional order models reported in the literature
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not efficient for linear optimisation. On the other hand, 
[Uoc, Ri] can be easily identified by the least squares (LS) 
algorithm when the polarisation voltage Uc and Uw are 
determined using the recursive equations in Table  2. 
Accordingly, GA is used to optimise the other nonlinear 
parameters while the LS is embedded in the cost func-
tion to identify linear parameters [Uoc, Ri] and compute 
the RMSE. Its main procedures are listed in Table 3. This 
identification method has been proven to be more effi-
cient than a conventional GA in Ref. [49] as it reduces the 
number of parameters to be identified through GA while 
guaranteeing the globally optimal solutions.

3.2.2 � Parameter Identification Results
As mentioned previously, the HPPC test consists of cur-
rent pulses over the SOC range of [4%, 100%] with an 
interval of 2%. Totally 49 groups of model parameters are 
identified for each FOM. Take the R(RQ)(RQ)W as an 
example, the model parameters identified at SOC = 50% 
are listed in Table  4, and the measured and simulated 
voltage are plotted together with the current pulses in 
Figure 4. It is evident that the simulated voltage is close 
to the experimental data with the RMSE and MAE being 
1.012 mV and 4.306 mV, respectively, indicating high 
identification accuracy.

Figure  5 compares the identification accuracy of 
five FOMs. Overall, the identification error can be 
grouped into three ranges, namely the SOC ranges of 
[60%, 100%], [20%, 60%] and [4%, 20%], correspond-
ing to the high, middle and low SOC ranges, respec-
tively. In high SOC range, both the RMSE and MAE 
of five FOMs show visible fluctuations, with the maxi-
mum RMSE = 2.57 mV and the maximum MAE = 
11.73 mV. When the SOC decreases to [20%, 60%], the 
fluctuations fade down, and the maximum RMSE and 
maximum MAE decrease to 1.50 mV and 6.01 mV, 
respectively. In these ranges, all models show a similar 

accuracy level. When the SOC further decreases to [4%, 
20%], the accuracy of all FOMs decreases significantly. 
It can be observed from Figure  5(b) that the maxi-
mum and minimum RMSE are 8.76 mV and 5.44 mV, 
respectively, which shows a similar trend with the MAE 
shown in Figure 5(d).

It can also be seen from Figure  5 that the simplest 
model R(RQ) has the largest error and this error is 
attenuated by adding a Warburg element, i.e., R(RQ)
W and R(RWQ). The FOMs with two R//CPE branches 
including R(RQ)(RQ) and R(RQ)(RQ)W are more com-
plex than the other FOMs but they do not necessarily 
provide a smaller mean and average RMSE or MAE. On 
the contrary, they are inferior to R(RQ)W and R(RWQ) 
in the low SOC region. This result shows the identifica-
tion accuracy is not positively related to the complexity 
of FOMs. Besides, R(RQ)W enjoys smaller average and 
minimum RMSE and MAE than R(RWQ). In addition, 
the maximum error of R(RQ)W is comparable to that 
of R(RWQ) and is much lower than that of  remaining 
models. Thus, R(RQ)W outperforms the other FOMs in 
terms of identification accuracy.

Table 3  The main procedures of the parameter identification method

Step 1: Present the range of nonlinear parameters and stopping criteria.

Step 2: Randomly generate the population in the range.

Step 3: Generate the Uc and/or Uw vectors using discretised model equations in Table 2.

Step 4: Identify [Uoc, Ri] using least squares and output the RMSE.

Step 5: Evaluate the stopping criteria. If the criteria are met, stop and return the best solution. If not, go to the next step.

Step 6: Generate a new population by crossover, mutation and selection. Go to Step 3.

Table 4  Model parameters of R(RQ)(RQ)W for voltage simulation at SOC = 50%

Uoc (V) Ri (mΩ) R1 (mΩ) α1 Q1 ( sα1/�) R2 (mΩ) α2 Q2 ( sα2/�) β1 W1 ( sβ1/�)

3.676 2.557 19.928 0.434 18997.936 97.051 0.863 29179.723 0.601 27330.045

Figure 4  Current and voltage at SOC = 50%: a Current pulses, b 
Measured voltage and simulated voltage based on R(RQ)(RQ)W
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4 � Comparative Analysis of State of Charge 
Estimation

4.1 � State of Charge Estimation Method
SOC estimation based on FOMs has been realised by 
variants of Kalman filters. To link the output of FOMs 
and SOC, when a SOC estimation is obtained, the FOM 
parameters are computed through linear interpolation 
based on the identified model parameters at 49 SOC 
points. Furthermore, the relationship between meas-
ured current and SOC is established by the Ampere hour 
counting method, and it is expressed as

where z denotes SOC, η is the coulombic efficiency which 
is set to 1 for lithium ion batteries. Cmax is the maximum 
battery capacity determined by the capacity test. By 
integrating the FOMs and the Ampere hour counting 
method, state space equations for SOC estimation are 
established and discretised in Table 2.

Since the FOMs feature fractional order derivatives, 
conventional Kalman filters are generalised to fractional 
order ones. In this study, we choose the fractional order 
unscented Kalman filter (FOUKF) in Ref. [50], which 
was proved to be able to provide satisfying accuracy as 
it guarantees a third order approximation of nonlinear 
functions through unscented transformation. Singu-
lar value decomposition is applied to further improve 

(7)D1z(t) =
η

Cmax
I(t),

the stability of FOUKF [50]. Its main steps are listed in 
Table 5.

4.2 � State of Charge Estimation Accuracy
In this section, the SOC estimation accuracy of five 
FOMs is compared under the DST and UDDS profiles 
at 25 °C. To evaluate SOC estimation results, the refer-
ence SOC is obtained using the Ampere hour counting 
method as the initial SOC can be accurately set to 100% 
when the battery is fully charged. All filters are set to 
start 2000 s after the commencement of the profiles to 
make sure that their convergence is not influenced by the 
pre-set SOC limits, i.e., [0,100%]. Before conducting the 
SOC estimation, the settings of all filters are calibrated 
based on the 2000‒5000 s of the DST profile. Specifically, 
the initial value of the state error covariance P is set to 
be 5× 10−3 × diag(n) , where diag(n) stands for an n×n 
identify matrix, n is the length of the state vector x. The 
process noise and measurement noise variances Q and 
R are set to be 10−q × diag(n) and 10−r , respectively, 
with q, r ∈ {0, 1, 2, . . . , 20} . All combinations of q and r 
are tried to generate the SOC estimation results of five 
FOMs, and the combination which provides the mini-
mum RMSE is selected to parameterise Q and R for sub-
sequent SOC estimation. The final settings of each filter 
are indicated in Table 6.

The SOC estimation results against DST and UDDS 
profiles are shown in Figure  6. All estimation results 

Figure 5  Identification error of 5 FOMs: a RMSE over the SOC range of [4%, 100%], b Maximum, mean and minimum RMSE, c The MAE over the 
SOC range of [4%, 100%], d Maximum, mean and minimum MAE
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Table 5  Main procedures of the fractional order unscented Kalman filter

Step 1 A fractional order system:
{
D
γ xk+1 = f (xk , uk)+ wk ,

yk = g(xk)+ vk ,

where x is the state vector, y is the measurement, u is the input. w and v represent the process noise and measurement noise with their variance being 
Q and R, respectively. The state error covariance is defined as P.

Step 2 Initialisation:
Pre-set Q, R and the initial values of x and P.

Step 3 Time update:
(a) Compute sigma points





x̃0,k−1/k−1 = x̂k−1/k−1,

x̃j,k−1/k−1 = x̂k−1/k−1 + ρUj
√
sj , j = 1, · · · , n,

x̃j,k−1/k−1 = x̂k−1/k−1 + ρUj
√
sj , j = 1+ n, · · · , 2n,

Pk−1/k−1 = USV T,

where n is the length of x. sj and Uj denote the jth element and jth column of S and U, respectively. ρ is a constant in the range of 
[
1,
√
2

]
.

(b) Prior state estimation





Dγ x̂k/k−1 ≈

2n�

j=0

Wm
i f

�
χj,k−1/k−1, uk−1

�
,

x̂k/k−1 = D
γ x̂k/k−1 −

k�

j=1

(−1)jγj x̂k−1/k−1,

PDDk/k−1 ≈

2n�

j=0

Wc
i

�
f
�
x̃j,k−1/k−1, uk−1

�
− Dγ x̂k/k−1

�

×
�
f
�
x̃j,k−1/k−1, uk−1

�
− Dγ x̂k/k−1

�T
+ Q,

PxDk/k−1 ≈

2n�

j=0

Wc
i

�
f
�
x̃j,k−1/k−1, uk−1

�
− Dγ x̂k/k−1

�

×
�
f
�
x̃j,k−1/k−1, uk−1

�
− Dγ x̂k/k−1

�T
,

Pk/k−1 = PDDk/k−1 + γ1P
xD
k/k−1 + PDxk/k−1γ1 +

k�

j=1

γj Pk−1/k−1γj .

where the associated weights are computed as





Wm
0 =

�

�+ n
,

Wc
0 =

�

�+ n
+

�
1− α2

w + βw

�
,

Wm
i = W

(c)
i =

1

2(�+ n)
, i = 1, . . . , 2n,

with αw and βw being two algorithm parameters.

Step 4 Measurement update:
(a) Create new sigma points using Pk/k−1

(b) Generate the estimated yk and the corresponding covariance





ŷk/k−1 =

2n�

j=0

Wm
i h

�
x̃j,k/k−1

�
,

P
yy
k/k−1

=

2n�

j=0

Wc
i

�
h
�
x̃j,k/k−1

�
− ŷk/k−1

��
h
�
x̃j,k/k−1

�
− ŷk/k−1

�T
+ R,

P
xy
k/k−1

=

2n�

j=0

Wc
i

�
h
�
x̃j,k/k−1

�
− ŷk/k−1

��
h
�
x̃j,k/k−1

�
− ŷk/k−1

�T
.

(c) Update the posterior estimation

Step 5: k = k + 1. Go to Step 3.
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quickly converge to a ± 5% error boundary within 30 s. 
For the DST profile, R(RWQ) shows the highest accuracy 
with the RMSE of only 0.2%, but it fails to achieve high 
accuracy for the UDDS profile, and its RMSE increases 
to 1.75%, as shown in Figure 7. Such dispersion also hap-
pens to R(RQ)W, whose RMSE is 1.64% and 2.21% for 
the DST and UDDS profiles, respectively. In contrast, the 
RMSE of the other models is less dependent on profiles. 

It implies the high reliability of these models. Moreover, 
R(RQ) shows an overall RMSE of 0.57%, which is superior 
to the other models in terms of SOC estimation accuracy.

4.3 � Robustness of Fractional Order Models
4.3.1 � Influence of Memory Length
One of the most salient features of FOMs is the memory 
effect, which is described by the Grünwald–Letnikov 
definition shown in Eq. (3). In real applications, the short 
memory principle indicated in Eq. (4) is usually applied to 
prevent the calculation from increasing along with time. 
To evaluate the influence of memory length on SOC esti-
mation, we adjust the memory length from 5 to 50 at an 
interval of 5, and their RMSEs are shown in Figure 8. It 
is noticeable that for both profiles R(RQ), R(RQ)(RQ) 
and R(RQ)(RQ)W show consistent behaviours in RMSEs 
while the other two models show different behaviours. 
This phenomenon coincides with the profile-depend-
ence observed in Figure  7. Generally speaking, all the 

Table 6  Settings of five fractional order unscented Kalman 
filters

Model q r n

R(RQ) 9 15 2

R(RQ)W 3 15 3

R(RWQ) 8 15 3

R(RQ)(RQ) 8 15 3

R(RQ)(RQ)W 8 15 4

Figure 6  Estimation results of 5 FOMs: a SOC estimation results for DST profile, b SOC estimation error for DST profile, c SOC estimation results for 
UDDS profile, d SOC estimation error for UDDS profile
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models fail to achieve the minimum RMSE when L = 20, 
the memory length defined before parameter identifica-
tion. For instance, R(RQ) reaches the minimum RMSE of 
0.55% at L=15 while R(RQ)(RQ)W reaches the minimum 
RMSE of 0.64 at L = 10. To give a more intuitive view, 
Figure  9 shows the variation of SOC estimation errors 
of the three models when L increases. A general trend 
is that the SOC estimation error moves downward as L 
increases. Therefore, the minimum RMSE is achieved 
when the SOC error is close to x-axis. This behaviour can 
be attributed to the truncation error caused by the short 
memory principle. It can be written as

(8)e(L) =
1

hα

[ th ]∑

L+1

(−1)i
(
α

i

)
f (t − ih).

In the FOMs, polarisation voltages Uc and Uw are 
depicted by fractional derivatives, therefore the trunca-
tion error is dependent on the models and profiles, which 
violates the assumption of Kalman filters that the errors 
are white noise [51]. The variances set for a fixed L can 
be inaccurate when L varies, this will affect the ability of 
the FOMs to adjust SOC estimation results. Moreover, 
the FOM with the complex structure is more vulner-
able. The RMSE of R(RQ) changes within 1.34% while the 
maximum RMSE of R(RQ)(RQ) changes within 5.08%. 
In addition, one can see from Figure 10 that the overall 
computational time almost linearly increases along with 
the increase of the memory length. Therefore, adjusting 
the memory length during actual applications can bal-
ance computational burdens and estimation accuracy 
when necessary. For instance, when other computation-
ally intensive tasks like SOH estimation is in process, the 
memory length can be reduced.

4.3.2 � Influence of Ambient Temperature
Battery impedance and OCV are significantly affected by 
ambient temperature [52]. Thus, it important to evaluate 
the influence of ambient temperature on SOC estimation 
accuracy. The filters designed under 25 °C are applied to 
estimate the SOC under DST and UDDS profiles at the 
temperatures of 15 °C and 35 °C, respectively, and the 
overall RMSEs are reported in Figure  11. The RMSE of 

Figure 7  RMSE of five FOMs

Figure 8  Influence of memory length on SOC estimation errors: a 
RMSEs for DST and UDDS profiles, b Overall RMSEs for two profiles

Figure 9  SOC estimation errors under different memory lengths: a 
R(RQ) for DST profile, b R(RWQ) for DST profile, c R(RQ) (RQ)W for DST 
profile, d R(RQ) for UDDS profile, e R(RWQ) for UDDS profile, f R(RQ) 
(RQ)W for UDDS profile
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all models increases when temperature varies. All mod-
els can guarantee a SOC estimation error less than 4% 
in case of the temperature variation of ±10 °C. Further-
more, R(RQ)W, R(RWQ) and R(RQ)(RQ)W can provide 
a SOC estimation result with the error less than 3%. It is 
evident that R(RQ) is most susceptible to temperature 
variation, and its RMSE increases by 4.94 times when the 
temperature decreases to 15 °C. In contrast, the RMSEs 
of the other four FOMs only increase by no more than 
106% as a result of the temperature variation of ±10 °C. 
Hence, complex FOMs are more robust than the simplest 
R(RQ) against temperature variation.

4.3.3 � Influence of Cell Difference
A battery system for EVs comprises thousands of cells. 
Modelling cells individually can be computationally 
demanding [53]. Considering the improved battery man-
ufacturing and screening processes, we can expect to 

apply a model developed based on one cell to monitor the 
state of other cells. In this regard, a battery model with 
high generalisation is desirable to alleviate calculational 
burdens with ensured performance. To test the generali-
sation of five FOMs for different cells, the parameterised 
FOMs are applied to estimate SOC for cells 2 to 7. The 
RMSEs and the standard deviations (SDs) of the RMSEs 
are shown in Figure 12. It can be noted all models show 
satisfying generalisation ability when being applied for 
different cells with the RMSE less than 2.38%. The R(RQ) 
has the highest estimation accuracy and smallest SD 
while the most complex models R(RQ)(RQ) and R(RQ)
(RQ)W show the highest deviation, as can be observed 
from the RMSEs of cells 6 and 7.

4.3.4 � Influence of Voltage Sensor Drift
In real applications where battery voltage is sampled by a 
BMS, the measurement accuracy of the BMS cannot be 
as high as that of the test platform. Furthermore, as dis-
cussed by Zheng et al. [4, 20], voltage drift is more detri-
mental to SOC estimation than random noise, although 
its magnitude is generally within 5 mV [54]. In this sub-
section, the voltage drift is set to [ −10, 10] mV with an 
interval of 2 mV in order to evaluate the robustness of five 
FOMs, and their RMSEs for the two profiles are shown in 
Figure 13. It can be observed that the influence of voltage 
drift on RMSE qualitatively agrees with that of memory 
length reported in Figure  8. The RMSEs of R(RQ)(RQ), 
R(RQ)W and R(RQ)(RQ)W show an approximately linear 
relationship with voltage drift while R(RQ) and R(RWQ) 
have a minimum RMSE in the wide range of voltage drift. 
Over the voltage drift range of [ −10, 10] mV, the maxi-
mum RMSE of all five FOMs is within 3.40%, indicating a 
small influence of voltage drift on SOC estimation accu-
racy. Furthermore, all the FOMs have a similar gradient 
for positive voltage drift. Since R(RQ) has the minimum 
original RMSE but has the largest increase in relative 

Figure 10  Overall computational times of SOC estimation under 
different memory lengths

Figure 11  RMSE under different temperatures

Figure 12  RMSE and standard deviation for the estimation results of 
different cells
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RMSE for voltage drift, as shown in Figure 13(b). How-
ever, R(RQ) is still the most accurate FOM in most cases.

The SOC estimation errors of the three FOMs are 
plotted to visualise the effect of voltage drift on SOC 
estimation, as shown in Figure  14. One can notice that 
the results qualitatively coincide with those shown in 

Figure 9, i.e., increasing voltage drift can make SOC esti-
mation error move downward. Thus, both truncation 
error and voltage drift influence SOC estimation indi-
rectly by affecting voltage simulation accuracy of FOMs. 
Consequently, we might devise a new SOC estimation 
framework to adjust memory length to compensate for 
the effect of voltage drift, which may be an interesting 
topic for FOMs.

4.3.5 � Influence of Current Sensor Drift
Different from voltage drift, current drift influences both 
modelling accuracy and Ampere hour counting algo-
rithm. Zheng et  al. [4] suggested that current drift can 
reach 200 mA in normal circumstances. To examine the 
influence of current drift on SOC estimation, we set the 
current drift to [ −200,  −150, …, 200] mA and track the 
changes of SOC estimation error.

As shown in Figure 15, the current drift has a smaller 
influence on the RMSEs of all the FOMs than voltage 
drift but their trends are similar. Moreover, the RMSEs 
of both R(RQ) and R(RQ)(RQ)W show a linear relation-
ship with current drift, while R(RWQ), instead of R(RQ) 
in voltage drift, becomes the most sensitive model to 
current drift. Overall, R(RQ) and R(RQ)(RQ) show the 
highest and lowest accuracy under various current drifts, 
respectively.

The SOC estimation errors for all the FOMs are shown 
in Figure  16. It can be seen that SOC errors accumu-
late due to the Ampere hour counting method. At the 
end of the two profiles, the SOC errors based on all the 

Figure 13  Influence of voltage drift on SOC estimation error: a 
RMSEs versus voltage drift, b Normalised RMSEs based on RMSEs 
under no voltage drift

Figure 14  SOC estimation errors under different voltage drift: a 
R(RQ) for DST profile, b R(RWQ) for DST profile, c R(RQ)(RQ)W for DST 
profile, d R(RQ) for UDDS profile, e R(RWQ) for UDDS profile, f R(RQ)
(RQ)W for UDDS profile

Figure 15  Influence of current drift on SOC estimation error: a RMSE 
versus current drift, b Normalised RMSE based on RMSE under no 
current drift
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FOMs under different current drifts converge, except 
for R(RWQ). Therefore, R(RWQ) is the most vulnerable 
FOM to current drift although it can keep satisfactory 
results at the occurrence of voltage drift.

5 � Conclusions
In this article, five fractional order models (FOMs) for 
lithium ion batteries are compared in terms of state of 
charge (SOC) estimation. Offline parameter identifica-
tion of the five FOMs is conducted first, and the com-
parisons of the simulated and experimental results show 
that increasing the complexity of FOMs cannot always 
improve modelling accuracy. R(RQ)W shows supe-
rior identification accuracy than the other four FOMs. 
Based on the FOMs with the identified parameters, SOC 
estimation accuracy, complexity and robustness are 
evaluated under different profiles, memory lengths, tem-
peratures, cells and sensor drifts. The assessment results 
illustrate that the simplest FOM, R(RQ), has the highest 
accuracy under normal conditions. The evaluation of the 
influence of memory length shows that R(RQ) is not sen-
sitive to truncation error, compared with the FOMs with 
the complex structure. Nevertheless, it has the poorest 
robustness against the variation of ambient tempera-
ture. Validation results on seven cells show the FOMs 
have good generalisation ability and the R(RQ) shows 
the smallest error and standard deviation. In the case 
of current and voltage drifts, all the FOMs can provide 

satisfactory results over a large range of drift. In particu-
lar, R(RQ) has a large relative error when voltage drift 
happens, but it can still provide the highest accuracy. On 
the other hand, R(RWQ) is more susceptible to current 
drift rather than voltage drift, as it cannot weaken the 
accumulated SOC error.

The work in this article provides a reference for FOM 
based SOC estimation as FOMs have been illustrated to 
be feasible for various types of batteries. In the future, we 
will focus on the application of fractional calculus on bat-
tery pack modelling.
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