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Abstract 

Topology and performance are the two main topics dealt in the development of robotic mechanisms. However, it is 
still a challenge to connect them by integrating the modeling and design process of both parts in a unified frame. 
As the properties associated with topology and performance, finite motion and instantaneous motion of the robot 
play key roles in the procedure. On the purpose of providing a fundamental preparation for integrated modeling and 
design, this paper carries out a review on the existing unified mathematic frameworks for motion description and 
computation, involving matrix Lie group and Lie algebra, dual quaternion and pure dual quaternion, finite screw and 
instantaneous screw. Besides the application in robotics, the review of the work from these mathematicians concen-
trates on the description, composition and intersection operations of the finite and instantaneous motions, especially 
on the exponential-differential maps which connect the two sides. Furthermore, an in-depth discussion is worked out 
by investigating the algebraical relationship among these methods and their further progress in integrated robotic 
development. The presented review offers insightful investigation to the motion description and computation, and 
therefore would help designers to choose appropriate mathematical tool in the integrated design and modeling and 
design of mechanisms and robots.
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1 Introduction
Mechanism, serving as the execution unit, is one of the 
essential subsystems of robot. The development of robot 
meeting the requirements from application scenarios 
depends largely on the analysis and design of robotic 
mechanism, which focus on topology and performance 
[1, 2]. Topology denotes the mechanical structure of the 
robotic mechanism. Topology analysis and design, also 
named as type synthesis, arrange the limbs and joints 
according to the demands on mechanism mobility, 
including number, sequence, type and axis (or direction) 
[3, 4]. Performance describes the output motion or/and 
force of the robotic mechanism. Performance analysis 

studies the kinematic, stiffness or dynamic mappings 
between joint space and operated space [5, 6], and per-
formance design searches for the optimal parameters to 
guide the prototyping based on the task requirements [7, 
8]. Conventionally, type synthesis, performance analy-
sis and design of robotic mechanism are carried out in 
sequence [9]. This development procedure is to firstly 
invent the topological structures, select one type, build 
the performance models, and finally implement the opti-
mal design. In this process, however, the type synthesis 
and performance design were separately implemented. 
The disconnection between topology and performance 
models leads to: (1) the difficulty in choosing particu-
lar topological structure as the performance features 
are usually regarded as the selecting criteria, and (2) the 
failure in concerning mechanism types in the optimal 
design since different topological structures behave dif-
ferently. Therefore, it has long been a desire to unify the 
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topology and performance analysis and design of robotic 
mechanisms.

Motion is the property considered in every stage of the 
development procedure, which is divided into two cate-
gories: finite and instantaneous motions [10, 11]. When a 
robotic mechanism moves along a continuous path, finite 
motion describes the total movement of the mechanism 
with respect to the initial pose [10], and instantaneous 
motion evaluates the velocity (acceleration, jerk, etc.) of 
the mechanism at current pose [11]. Literature review 
shows that type synthesis starts from predefined mobil-
ity described either by motion pattern based on finite 
motion computations [12, 13] or by constraint analysis 
based on instantaneous motion properties. Kinematic, 
stiffness and dynamic performance of the robotic mecha-
nism relates directly to the displacement, velocity and 
acceleration mappings, which are analyzed either at 
finite motion or instantaneous motion level. It indicates 
that the finite and instantaneous motion description and 
computation are the fundamental preparation for the 
development of robotic mechanism. Hence, a unified 
mathematical framework for the finite and instantaneous 
motions is essential for the integrated topology and per-
formance analysis and design.

The unified mathematical framework involves the ana-
lytical description, algebraic computation and mapping 
relations of the finite and instantaneous motions. The 
computations include mainly composition and inter-
section of motions. Composition is the operation for 
the accumulation of motions that can be the successive 
motions of a rigid body or the resulted motion by several 
rigid bodies connected by joints. For instance, the finite/
instantaneous motion of a serial mechanism is calculated 
by the composition of finite/instantaneous motions of 
joints [14]. Intersection is to obtain the common part of 
different motions. Such operation is applied in the occa-
sion like the finite motion of parallel mechanism whose 
calculation is performed by the intersection of finite 
motions of limbs [15]. Specially, the mapping relation of 
the finite and instantaneous motions is of vital impor-
tance because it is the main reason for the disconnection 
between topology synthesis and performance analysis 
of robotic mechanisms. So far, there are three mathe-
matical tools that have been applied to the descriptions, 
computations and mappings of finite and instantaneous 
motions, i.e. matrix Lie group and Lie algebra [16], dual 
quaternion and pure dual quaternion [17], finite screw 
and instantaneous screw [18].

In the matrix Lie group, a special Euclidean group 
consisting of a rotation matrix and a translation vec-
tor is denoted by SE(3), whose element is rewritten 
into a homogenous matrix. The linear transformation 

can be implemented in a homogenous form, resulting 
in describing any finite motion by an element of the 
matrix representation of SE(3) [16]. By exploring the 
computation rules, matrix Lie group was introduced 
to the mobility analysis [19–21] and type synthesis of 
mechanism [22–27]. The matrix form of Lie algebra 
se(3) was employed to describe instantaneous motion 
of mechanisms. There exists an exponential map 
between matrix representations of SE(3) and se(3) [28].

Dual quaternion is the extension of quaternion from 
real number to dual number. The composition and 
intersection operations are investigated, allowing the 
dual quaternion being used in displacement mod-
eling of mechanism [29]. Pure dual quaternion, the 
dual vector, describes instantaneous motion, which 
was adopted to the kinematics [30] and dynamics [31]. 
There is an exponential map between the dual quater-
nion and pure dual quaternion [32].

Finite screw is proposed to describe the finite motion 
of rigid body in the framework of screw theory [33]. 
A screw triangle product [34] was defined to accom-
plish the composition, and the algebraic method [35] 
to perform the intersection of finite motions was inves-
tigated, which are employed in the type synthesis of 
mechanism [36]. Instantaneous screw was described 
as the twist of rigid body in the beginning [34]. Twist 
and wrench, known as the infinitesimal displacement 
and external force, are widely applied to the kinematic 
[37, 38], stiffness [39, 40], dynamic analysis and design 
[41–43] of mechanisms. It has been rigorously proved 
that a differential map exists in the finite and instanta-
neous screws.

Although these three mathematical tools have been 
applied at different stages of mechanism development, 
their capabilities in unifying the topology and per-
formance analysis and design have not been realized. 
Aiming at helping designers find out effective meth-
ods in implementing integrated analysis and design so 
as to meet different requirements, this paper provides 
a comprehensive review on the mathematical tools for 
this topic. The paper is organized as follows. In Sec-
tion  2, motions in integrated topology and perfor-
mance modeling and design is discussed. Section  3 to 
5 introduce the matrix Lie group and Lie algebra, dual 
quaternion and pure dual quaternion, finite screw and 
instantaneous screw, respectively, including history of 
development, description, computations and mapping 
relations of finite and instantaneous motions. A com-
parison of the three mathematic frameworks is illus-
trated from the view of algebraic structures in Section 6 
following with the applications of unified mathematic 
tools in integrated topology and performance modeling 
and design. The conclusions are drawn in Section 7.



Page 3 of 15Huo et al. Chin. J. Mech. Eng.           (2020) 33:62  

2  Relationship between Development of Robotic 
Mechanism and Motions

It is a long-term challenge to unify the topology and per-
formance modeling and design in the development of 
robotic mechanism. To address this problem, an inte-
grated mathematical framework should be prepared, for 
which the relationship between topology/performance 
and motions is firstly analyzed.

Topology, considered as the skeleton of a robot, 
includes the numbers and types of kinematic limbs as well 
as the adjacency and incidence among kinematic joints 
[44]. One particular topology corresponds to a motion 
pattern of the robot. Hence, type synthesis is to obtain all 
the possible topologies according to the expected motion 
pattern. The description of expected motion patterns 
can be classified into two formats [45, 46]. One takes the 
finite motion form, which expresses the displacement of 
the robot from the initial pose to another. Referred to 
the summary of the generalized procedure of type syn-
thesis by Gao [47], the available limbs are generated by 
the composition and intersection operations of finite 
motions. The other methods begin with the instantane-
ous motion description. Instantaneous motion is the 
infinitesimal motion of the robot at the given moment. 
Composition operation of instantaneous motions is the 
basis to get the available limbs and assembly conditions 
in the type synthesis of robotic mechanisms. Therefore, 
the topology model is related with the description and 
calculation of finite or instantaneous motion.

Performance determines the behavior of robots in 
practical application. Denoted by finite and instantane-
ous motions, the performances of a robot can be cat-
egorized by displacement, velocity and acceleration. 
The displacement model of the robotic mechanism 
is sometimes interpreted as forward or inverse kin-
ematics, which focuses on the mapping between the 
displacements of actuations and the pose of the end-
effector [48]. The displacement model is constructed 
and calculated by the finite motions. For example, the 
displacement model of a serial mechanism is built by 
the composition of finite motions of each kinematic 
joint. In the case of parallel mechanisms, both compo-
sition and intersection operations of the finite motions 
are involved. With the displacement model, the reach-
able workspace of the robot can also be analyzed. The 
next level of performance, i.e., the velocity of robotic 
mechanism, is described and calculated by instantane-
ous motion, because both instantaneous motion and 
velocity denote the infinitesimal motion at given pose. 
The velocity and force mapping between joint space 
and operated space lay the foundation of the kinematic 
performance analysis of serial and parallel mecha-
nisms, which are carried out by the composition and 

intersection of instantaneous motions of joints and 
limbs. Regarding the static deformation as the pertur-
bation of displacement, stiffness can be classified as the 
performance at velocity level. The stiffness modeling 
and analysis also rely on the composition and intersec-
tion of instantaneous motions. Finally, the performance 
at acceleration level refers to the dynamics, in which 
the velocity, acceleration and forces of the robotic 
mechanisms are involved. Since acceleration model is 
obtained by the first-order of velocity model, the per-
formance at acceleration level are analyzed by instanta-
neous motions. In summary, the performance model is 
formulated by the description and calculation of finite 
or instantaneous motion.

From the above analysis, it is concluded that the 
topology and performance of robotic mechanisms 
are completely reflected by finite and instantaneous 
motions. Therefore, the kernel of the integrated mod-
eling lies in the algebraic derivation between finite and 
instantaneous motions. Because of intrinsic connec-
tions between displacement and velocity, finite and 
instantaneous motions could be connected by differen-
tial and integral mappings. In this manner, if the finite 
motion of a continuous path is known, the instantane-
ous motion at the given pose could be derived, and vice 
versa. The composition and intersection operations of 
the resultant finite and instantaneous motions can also 
be connected, which is beneficial for implementing the 
integrated topology and performance modeling and 
design of robotic mechanism. However, these mappings 
cannot be performed when topology and performance 
models are established by different mathematical tools. 
Consequently, a unified mathematic framework for 
finite and instantaneous motions is essential for the 
integrated modeling.

As illustrated in Figure  1, the description, computa-
tion and mapping of finite and instantaneous motions 
involving in integrated modeling should be covered in a 
unified mathematic framework. Till now, there are three 
mathematical tools that have been applied, including 
matrix Lie group and Lie algebra, dual quaternion and 
pure dual quaternion, finite screw and instantaneous 
screw. To provide an algebraic foundation of integrated 

Figure 1 Relationship between motions and development of 
robotic mechanism
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modeling and design, these unified mathematic tools 
are reviewed in terms of the topics in the following sec-
tions, respectively.

3  Matrix Lie Group and Lie Algebra Based Method
Among the three methods applied in topology and per-
formance integrated modeling and design of robotic 
mechanisms, i.e., matrix Lie group and Lie algebra based 
method, dual quaternion and pure dual quaternion based 
method, finite screw and instantaneous screw based 
method, the matrix based method is introduced in this 
section. At first, the developments on the applications of 
matrix Lie group and Lie algebra in robotic mechanisms 
are reviewed in detail, which is followed by the introduc-
tions on their expressions and computations. Based upon 
these, the exponential and differential mappings between 
them are illustrated.

3.1  Matrix Lie Group and Lie Algebra
When rotation and translation are respectively described 
by linear transformation and translation vector, each 
6-dimensional finite motion in 3-dimensional space is 
thus represented as a pair of 3-dimensional orthogo-
nal matrix and vector. In this way, the entire set of finite 
motions forms a Lie group under motion composition, 
which is called the special Euclidean group (SE(3)). Cor-
respondingly, when 3-dimensional skew-symmetric 
matrix and vector are used to respectively describe angu-
lar and linear velocities, the entire set of 6-dimensional 
instantaneous motions constituted by the pairs of veloci-
ties form the Lie algebra se(3) of SE(3).

The matrix Lie group and Lie algebra are originated 
from the Erlangen program proposed by Klein [16] in 
the late 19th century, from then, the pairs in SE(3) and 
se(3) are rewritten into homogenous matrices. Both finite 
motion and instantaneous motion can be expressed in 
homogenous forms, resulting in that any finite motion is 
described by an element in the matrix representation of 
SE(3), and that any instantaneous motion is described by 
an element in the matrix representation of se(3).

It was Hervé [19] who introduced the matrix Lie group 
into mobility analysis of mechanisms. In the 1980s and 
1990s, he had been investigating description and calcu-
lation of mechanism displacement by the sub-groups of 
SE(3) [20, 49, 50]. The application of matrix Lie group in 
geometry and kinematics of mechanisms was discussed. 
On this basis, Hervé and Sparacino [51] employed matrix 
Lie group to the type synthesis (structure synthesis) of 
parallel mechanisms. This work was later developed by Li 
and Hervé [7, 8, 10, 26, 52], Lee and Hervé [53–56]. Owing 
to their efforts, a systematic type synthesis method by 
matrix Lie group was proposed. Specially, Li introduced 
the sub-manifolds of SE(3) as the extension of sub-groups 

to describe the displacements of parallel mechanisms 
and their limbs. Many novel parallel mechanisms were 
invented, including five degree-of-freedom (DoF) parallel 
mechanisms that could not be synthesized due to the lack 
of 5-dimensional sub-groups of SE(3). Besides applying 
matrix Lie group to type synthesis, Fanghella and Galletti 
[57, 58] discussed the approximate computation algorithms 
of matrix Lie group. Composition of two sub-groups was 
computed by their minimum envelope group, while the 
intersection of two sub-groups was performed by search-
ing for the maximum common group. All possible cases of 
sub-group composition and intersection were listed. This 
computation method is different from the analytical algo-
rithms in Baker-Campbell-Hausdorff formula [59, 60] and 
is easier to be directly applied. Meng [61] also engaged in 
giving the clear intersection algorithms of sub-groups. They 
obtained the intersection of Lie sub-groups by solving the 
intersection of the corresponding Lie sub-algebras. In their 
work, the matrix form of Lie algebra se(3) was employed to 
describe instantaneous motion of mechanisms. The similar 
method was employed by Wu [62–64] in type synthesis of 
quotient mechanisms, and by Liu [65] in type synthesis of 
mechanisms with adjoint-invariant sub-manifolds of SE 
(3). All these contributions lead to the topology modeling 
by using matrix Lie group and its sub-sets. In 1983, Brock-
ett [28, 66] established the framework of matrix Lie group 
and Lie algebra for mechanism modeling and analysis. By 
investigating the exponential mapping between matrix rep-
resentations of SE(3) and se(3), he set up the connection 
between finite and instantaneous motions of mechanisms. 
His work was further extended by Li [67–69], Park [70–72], 
Chen [73–75], Chen [76–78] and their colleagues, leading 
to an integrated framework for kinematics, dynamics, cali-
bration, and control of mechanisms.

3.2  Matrix Lie Group and Its Computations
As introduced in Section  2.1, the matrix representation 
of SE(3) is the entire set of homogeneous matrices that 
describe all the linear transformations in the Euclidean 
space. This matrix Lie group can be used to describe all the 
finite motions of a rigid body or a mechanism. Hence, the 
finite motion description based upon matrix Lie group can 
be expressed as,

where SO(3) denotes the special orthogonal group con-
sisting of the orthogonal matrices that describe rotations, 
R
3 denotes the 3-dimensional vector space, R is an arbi-

trary element in SO(3) which represents the rotation 
matrix about the Chasles’ axis, t is the translation vector 
along that axis. R and t involve the Chasles’ axis 

(1)SE(3) =

{

g

∣

∣

∣

∣

g =

[

R t
0 1

]

, R ∈ SO(3), t ∈ R
3

}

,
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(

sTf
(

r f × sf
)T

)T
 together with the corresponding rota-

tional angle θ and translational distance t . The expres-
sions of R and t can be referred to Ref. [28], as

where E3 is a three-order unit matrix, s̃f  is the skew-
symmetric matrix that denotes the cross product of sf  . r f  
expresses the position vector of the Chasles’ axis.

When the matrix Lie group theory is applied in topol-
ogy modeling and analysis of robotic mechanisms, the 
finite motion generated by each 1-DoF joint can be 
described by a 1-dimensional sub-group of SE(3). Fol-
lowing this manner, the motion of each limb is the 
composition of all its joints’ motions, and the mecha-
nism motion is the intersection of the limbs’ motions.

The composition of matrix Lie sub-groups is per-
formed by matrix multiplication. This is because any 
Lie sub-group can be regarded as the composition of 
several 1-dimensional sub-groups. Hence, the composi-
tion of finite motions can be expressed by the multipli-
cation of a sequence of 1-DoF finite motions as,

where Mk ( k = 1, 2, . . . , n ) denotes the 1-dimensional 
sub-group that describes the kth finite motion in the 
sequence.

Consider that the elements in each 1-dimensional 
sub-group can be expressed by exponential expres-
sions, Mk can be obtained as

where ξ̃ f ,k is the homogenous matrix that represents the 
Chasles’ axis that corresponds to Mk and a pitch, as

The denotations of the symbols in Eq. (6) can be 
referred to those in Eqs. (2) and (3).

Taking the exponential form, Eq. (4) can be rewritten 
as,

In order to obtain the expansion form of Eq. (7), the 
Baker-Campbell-Hausdorff formula is employed. The 
composition of two 1-DoF finite motions could be per-
formed as,

(2)R = E3 + sin θ s̃f + (1− cos θ)
(

s̃f
)2
,

(3)t = (E3 − R)
(

r f − sTf r f sf

)

+ tsf ,

(4)M = Mn · · ·M2M1,

(5)Mk =
{

eθk ξ̃ f ,k
∣

∣

∣θk ∈ R

}

,

(6)ξ̃ f ,k =

[

s̃f ,k r f ,k × sf ,k +
tk
θk
sf ,k

0 0

]

.

(7)M =
{

eθn ξ̃ t,n · · · eθ2 ξ̃ t,2eθ1 ξ̃ t,1
∣

∣

∣
θ1, θ2, . . . , θn ∈ R

}

.

where

Herein, 
[

θk+1ξ̃ f ,k+1, θk ξ̃ f ,k

]

= θkθk+1

(

ξ̃ f ,k+1ξ̃ f ,k − ξ̃ f ,k ξ̃ f ,k+1

)

 is 
defined as the Lie bracket. It is found that algebraic compu-
tation becomes more complicated and difficult because of 
higher order items, especially for the cases of more than two 
motions.

Intersection of finite motions is the maximum common 
sub-group or sub-manifold contained in all motions. By 
using the property of the exponential expression in Eq. (5), 
Meng [20] partly solved this problem by mapping the inter-
section of the Lie sub-groups to Lie algebra level. Till now, 
intersection of finite motions by matrix Lie sub-groups and 
the composited manifolds (the product of several Lie sub-
groups) is mainly based upon specific principles, such as 
the cases given by Fanghella and Galletti [16, 17]. However, 
these operations are difficult to implement in an analytical 
manner and be applied for all the motion patterns. There 
is no generic intersection algorithm for matrix Lie sub-
groups and the composited manifolds yet.

3.3  Matrix Lie Algebra and Its Computations
As the counterpart of matrix Lie group SE(3), its matrix 
Lie algebra se(3) is employed to describe the instantaneous 
motions of robotic mechanisms, as

where ω and ν are angular and linear velocities in 
3-dimensional vector forms.

Any element in se(3) can be rewritten into vector form as

where ξ t is the normalized unit velocity, ω is its ampli-
tude, and pt denotes the pitch. rt expresses the position of 
the Mozzi’s axis.

When the matrix Lie algebra theory is applied in per-
formance modeling and analysis of robotic mechanisms, 
1-dimensional sub-space of se(3) is employed to describe 
the instantaneous motion generated by 1-DoF joint. In 
this way, the composition of the motions of all joints in a 

(8)eθk+1 ξ̃ f ,k+1eθk ξ̃ f ,k = e
f
(

θk+1 ξ̃ f ,k+1,θk ξ̃ f ,k

)

,

f
(

θk+1 ξ̃ f ,k+1, θk ξ̃ f ,k

)

= θk ξ̃ f ,k + θk+1 ξ̃ f ,k+1 +
1

2

[

θk+1 ξ̃ f ,k+1, θk ξ̃ f ,k

]

+
1

12

([

θk+1 ξ̃ f ,k+1,

[

θk+1 ξ̃ f ,k+1, θk ξ̃ f ,k

]]

+

[

θk ξ̃ f ,k ,
[

θk ξ̃ f ,k , θk+1 ξ̃ f ,k+1

]])

+ · · ·

(9)se(3) =

{

ωξ̃ t |ωξ̃ t =

(

ω̃ ν
0 0

)

, ω, ν ∈ R
3

}

,

(10)( ω ν )T = ωξ t ,

(11)ξ t = (st rt × st + ptst)
T,
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limb leads to the limb motion, and the intersection of all 
the limbs’ motions results in the mechanism motion.

As is well known, se(3) is a 6-dimensional vector space. 
The composition of matrix Lie sub-spaces is performed 
by linear addition as,

where ‘ ⊕ ’ denotes the combination operation of linear 
vector spaces. The intersection of several sub-spaces can 
be obtained through linear computations, as

where T1, T2, …, Tn denote n sub-spaces of se(3). The 
computations shown in Eqs. (12) and (13) are easy to 
be conducted because they both fall in the area of linear 
algebra.

3.4  Mappings between Matrix Lie Group and Lie Algebra
According to the physical principle, finite motion (dis-
placement) is the integral of instantaneous motion 
(velocity), and velocity is the differential of displacement. 
When the displacement and velocity are described by 
matrix Lie group and Lie algebra, a differential-exponen-
tial mapping can be formulated between them as follows,

The interpretations on the above two equations are 
given as follows:

(1) The differential of g at θ = 0 is ωξ̃ f  . As the Chasles’ 
axis is coincident with the axis of the velocity when 
θ = 0, the differential of g at θ = 0 is an element of 
se(3). This is because se(3) is the tangent space of 
SE(3) at the identity element (the unit matrix).

(2) The exponential of ωξ̃ t with respect to the time 
results in g , which means that the exponential of 
any elements in se(3) with respect to the time leads 
to the elements in SE(3).

The differential-exponential mapping between matrix 
Lie group SE(3) and Lie algebra se(3) leads to the follow-
ing 1-DoF case, as

(12)
T = span{T 1 ∪ T 2 ∪ · · · ∪ Tn}

= T 1 ⊕ T 2 ⊕ · · · ⊕ Tn,

(13)
T = T 1 ∩ T 2 · · · ∩ Tn

=
(

T⊥
1 ⊕ T⊥

2 · · · ⊕ T⊥
n

)⊥
,

(14)

dg = deθ ξ̃ f

= θ̇ ξ̃ f e
θ ξ̃ f

= ωξ̃ f e
θ ξ̃ f ,

(15)eθ ξ̃ t = g ,

and multi-DoF cases, as

4  Dual Quaternion and Pure Dual Quaternion 
Based Method

The review of dual quaternion and pure dual quaternion 
based method is provided in this section. Firstly, the 
application of this method in topology and performance 
modeling and design of robotic mechanisms is traced. 
Secondly, the basic formats together with their compo-
sition and intersection operations are discussed. Finally, 
the exponential/Cayley- differential maps between finite 
and instantaneous motions are constructed in the form 
of quaternionic algebras.

4.1  Dual Quaternion and Pure Dual Quaternion
As the representations of SE(3) and se(3), respectively, 
dual quaternion and pure dual quaternion are applied to 
describe the transformation from one pose to another 
and the velocity at any instant. Dual quaternion utilizes 
eight parameters by presenting a scalar with the cosine 
of half the dual angle [17] and further six numbers by 
integrating the direction and position of the motion axis 
with the sine of half the dual angel. Herein, dual angle 
integrated the rotational angle and linear displacement 
by dual operator. Pure dual quaternion is also called dual 
vector, which includes six elements and is defined by 
means of the unit axis and amplitude of instantaneous 
motion.

The dual quaternion and pure dual quaternion based 
method can be traced back to Euler-Rodrigues’ param-
eters and Euler-Rodrigues’ formula [79] in the 18th 

(16)

dMk |θk = 0 =
{

deθk ξ̃ f ,k |θk = 0
}

=
{

θ̇k ξ̃ f ,ke
θk ξ̃ f ,k |θk = 0

}

=
{

ωk ξ̃ t,k |ωk ∈ R

}

= T k ,

(17)
{

eθn ξ̃ f ,n |θk ∈ R

}

= Mk ,

(18)

d(Mn · · ·M2M1)
∣

∣

θk=0, k=1,2,...,n

=

{

d
(

eθn ξ̃ f ,n · · · eθ2 ξ̃ f ,2 eθ1 ξ̃ f ,1
)∣

∣

∣

θk=0, k=1,2,...,n

}

=
{

ω1 ξ̃ t,1 + ω2 ξ̃ t,2 + · · · + ωn ξ̃ t,n

∣

∣

∣ωk ∈ R, k = 1, 2, . . . , n
}

= T 1 ⊕ T 2 ⊕ · · · ⊕ Tn,

(19)

{

eθn ξ̃ t,n · · · eθ2 ξ̃ t,2eθ1 ξ̃ t,1
∣

∣

∣
θ1, θ2, . . . , θn ∈ R

}

= Mn · · ·M2M1.
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century. Hamilton [80] and Rodrigues [81] did some 
pioneering work in this field. Based on that, Clifford [82] 
transformed rotation about an axis into translation paral-
lel to the axis and proposed the concept of “biquaternion” 
in the investigation of geometry and algebra. Biquater-
nion was then applied to motion description and termed 
as dual quaternion [17].

It was pointed out the dual quaternion is the extension 
of quaternion from real number to dual number. Accord-
ing to the “transference principle” [83, 84], the algorithms 
for quaternions can be applied to the algorithms for dual 
quaternions. In this way, the composition of two dual qua-
ternions could be computed by quaternion multiplication 
[85], i.e., Euler-Rodrigues’ formula with dual angles. As for 
the intersection algorithms, Sun [86] employed analytical 
derivations to deal with the intersection of the sets of dual 
quaternions. Mechanism analysis by dual quaternion was 
implemented by McAulay [87] for the first time who uti-
lized dual quaternion to describe rigid body displacement. 
Later on, dual quaternion was used in the kinematics of 
mechanisms from a geometrical prospective by Refs. [88, 
89] and Blaschke [90]. Kong studied the method for motion 
mode analysis of single-loop and closed-loop spatial mech-
anisms by formulating a set of kinematic loop equations 
based on dual quaternions [91, 92]. It was proved in ref. 
[93] that dual quaternions facilitate to avoid singularities 
in the analysis of finite motion. Besides robotic kinemat-
ics, joint stiffness identification and deformation compen-
sation algorithms for serial robots were constructed [94]. 
Apart from the applications of dual quaternion in finite 
motion description, pure dual quaternion (dual vector) was 
adopted to describe instantaneous motion. For instance, 
Yang and Freudenstein [29, 95] combined both dual qua-
ternion and pure dual quaternion to analyze the displace-
ment and velocity of a spatial four-link mechanism. Similar 
researches on the mechanism kinematic analysis by dual 
quaternions can be found in [30, 96, 97]. For the mecha-
nism design, McCarthy et al. [98, 99] formulated forward 
and inverse kinematic equations of spatial serial chains 
and proposed a semi-analytical design method. These 
kinematic equations are obtained by the exponential map 
between pure dual quaternion and dual quaternion. Selig 
[32] built the dynamic model of mechanisms using qua-
ternions [31]. In his research, the Cayley map in dual 
quaternion theory was constructed concerning that the 
entire set of dual quaternions is a double cover of SE(3). 
The intrinsic connections between quaternion exponen-
tial map and Euler-Rodrigues’ formula were deeply inves-
tigated by Dai [100], relating dual quaternions with other 
representations of SE(3). Taking advantages of these map-
pings, the integrated method was also used in calibration 
algorithms [101, 102], path planning and control strategies 
[103, 104]. Motivated by the arithmetic operations of dual 

quaternions, Cohen developed the concept of hyper dual 
quaternion currently, which was applied for the displace-
ment and velocity modeling of serial mechanisms [105].

4.2  Dual quaternion and its computations
The dual quaternion is the extension of quaternion from 
real number to dual number. Rotation axis and rotational 
angle in quaternion can be replaced with dual axis and dual 
angle. Thus, the 1-DoF finite motion is described by dual 
quaternion as

where θ̂ = θ + εt denotes the dual angle. It has the cosine 
and sine functions as

where ε is the dual unit and ε2 = 0 . ()∧ in this paper 
denotes a vector in pure dual quaternion form. L∧f  is the 
pure dual quaternion form of the Plücker coordinates of 
the Chasles’ axis, which can be denoted as 
L∧f = s∧f + εr∧f × s∧f  . Herein, s∧f  and r∧f  are the unit direc-
tion dual vector and position dual vector of the Chasles’ 
axis.

where sf ,u and rf ,u (u = 1, 2, 3) are scalar coefficients 
of Plücker coordinates. i , j , k are plural units with the 
properties,

For a serial mechanism or limbs in parallel mechanism, 
the finite motion generated by all 1-DoF joints can be 
solved by the composition operation, which can be rewrit-
ten utilizing quaternion multiplication [80, 81],

It is noted that the motion of moving platform in a par-
allel mechanism and that generated by each limb is in 

(20)D = cos
θ̂

2
+ sin

θ̂

2
L∧f ,

cos
θ̂

2
= cos

θ

2
−

t

2
sin

θ

2
ε, sin

θ̂

2
= sin

θ

2
+

t

2
cos

θ

2
ε,

s∧f = sf ,1i+ sf ,2j + sf ,3k ,

r∧f = rf ,1i+ rf ,2j + rf ,3k ,

(21)i2 = j2 = k2 = −1, ij = k , ijk = −1.

(22)D12...n = Dn . . .D2D1,

(23)

D12...n = Dn . . .



















cos
θ̂1

2
cos

θ̂2

2
+ cos

θ̂1

2
sin

θ̂2

2
L∧f ,2

+ sin
θ̂1

2
cos

θ̂2

2
L∧f ,1

+ sin
θ̂1

2
sin

θ̂2

2
L∧f ,2L

∧
f ,1



















,
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equilibrium. Therefore, having the analytical resultant 
motion of limbs at hand, the finite motion of the moving 
platform can be obtained by the intersection operation 
as,

Thanks to the expression and quaternion multiplica-
tion defined in Eqs. (20), (21), the finite motion of each 
limb could be determined by formulating equations as 
Eq. (24).

4.3  Pure Dual Quaternion and Its Computations
The velocity of the rigid body at any instant is specified 
by a dual vector, which connects two 3-D vectors by dual 
operator. In this way, the format of pure dual quaternion 
is introduced here

where L∧t = s∧t + εr∧t × s∧t  is the pure dual quaternion 
form of the Plücker coordinates of the Mozzi’s axis. 
Herein, s∧t  , r∧t  are the unit direction dual vector and posi-
tion dual vector of the Mozzi’s axis.

where st,u and rt,u (u = 1, 2, 3) are scalar coefficients of 
Plücker coordinates.

The pure dual quaternions are Lie algebra elements 
with both well-defined addition and multiplication. Thus, 
when pure dual quaternion is applied in the performance 
modeling and design of robotic mechanisms, the com-
position and intersection operations can be performed 
as linear algebra, referring to Eq. (12) and Eq. (13), 
respectively.

4.4  Mappings between Dual Quaternion and Pure Dual 
Quaternion

Similar to matrix Lie group and Lie algebra, the exponen-
tial map and Cayley map exist from pure dual quaternion 
to dual quaternion, which are given by,

(24)
D = D1 = D2 = · · · = Di = · · · = Dm, i = 1, 2, . . . ,m.

(25)d = ωL∧t + εωps∧t ,

s∧t = st,1i+ st,2j + st,3k ,

r∧t = rt,1i+ rt,2j + rt,3k ,

(26)

e
θ̂L∧f =

(

1−
θ̂2

2
+

θ̂4

2
+ · · ·

)

+

(

1−
θ̂3

3
+

θ̂5

5
+ · · ·

)

L∧f

= cosθ̂ + sin θ̂L∧f = D,

In the modeling process of robots, exponential map 
facilitates to connect the velocity and the possible dis-
placements allowed by the joint. It would be convenient 
to formulate the topology or kinematic models of serial 
mechanisms or open-loop limbs by taking the axes and 
motion variables of joints in an analytical manner. Cayley 
map is always used in numerical methods since it does 
not need so many trigonometric function calls and will 
avoid cost consuming. For multi-DoF, the maps could be 
expanded as

When the topology/displacement models are obtained 
at first, differential mapping between dual quaternion 
and pure dual quaternion would help to get the velocities. 
It could be executed by taking differentiations of dual 
quaternion D with respect to time.

It indicates that the time derivative of D at the initial 
pose is exactly the corresponding pure dual quaternion 
L∧t  at the instant θ̂ = 0 . This rule is also proved in the 
multi-DoF cases,

5  Finite Screw and Instantaneous Screw Based 
Method

In this section, integrated screw theory based method 
is presented beginning with the progress achieved in 
topology and performance modeling and design of 
robotic mechanisms. Then the description and compu-
tation of motions by finite and instantaneous screws are 

(27)

CayD

(

L∧f

)

=
1+ 2

∣

∣s∧t
∣

∣

2
−

∣

∣s∧t
∣

∣

4

(

1+
∣

∣s∧t
∣

∣

2
)2

+
2+ 4

∣

∣s∧t
∣

∣

4

(

1+
∣

∣s∧t
∣

∣

2
)2

L∧f

+
2

(

1+
∣

∣s∧t
∣

∣

2
)2

L∧f
2
+

2
(

1+
∣

∣s∧t
∣

∣

2
)2

L∧f
3
= D.

(28)

e
θ̂nL

∧
f ,n · · · e

θ̂2L
∧
f ,2e

θ̂1L
∧
f ,1

∣

∣

∣

∣

θ1,θ2,··· ,θn∈R

= Dn · · ·D2D1,

(29)CayD

(

L∧f ,n

)

· · ·CayD

(

L∧f ,1

)

= Dn · · ·D1.

(30)Ḋ
∣

∣

θ̂=0 =
˙̂
θL∧f e

θ̂L∧f

∣

∣

∣

∣

θ̂=0

= L∧f = L∧t .

(31)

d(Dn · · ·D2D1)
∣

∣

θ̂k=0, k=1,2,...,n

= d

(

e
θ̂nL

∧
f ,n · · · e

θ̂2L
∧
f ,2e

θ̂1L
∧
f ,1

)∣

∣

∣

∣

θ̂k=0,
k=1,2,··· ,n

=
˙̂
θ1L

∧
f ,1 +

˙̂
θ2L

∧
f ,2 + · · · +

˙̂
θnL

∧
f ,n

∣

∣

∣

˙̂
θn ∈ R, k = 1, 2, . . . , n.
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introduced. After that, the differential mapping between 
them is formulated.

5.1  Finite Srew and Instantaneous Screw
According to Chasles’s theorem [10], a general rigid-
body displacement could be described as a rotation about 
a line followed by a translation in the same direction as 
the rotation axis. Such a line is specified by the finite 
motion axis, a rotation angle, and a pitch. Motivated by 
this point, finite screw is invented to describe the finite 
motion in a 6-D quasi-vector format. Meanwhile, instan-
taneous motion could be expressed by the line in linear 
subspace, representing instantaneous motion axis with 
angular and linear velocities. Instantaneous screw was 
proposed based on spatial vectors with the definition of 
pitch. By this means, finite and instantaneous motions 
are depicted in the view of geometry by finite and instan-
taneous screws.

The finite screw and instantaneous screw based method 
origins from screw theory proposed in the 19th century. 
In the beginning, Chasles [10] proposed the concept of 
twist motion of a rigid body. It was further developed 
by Poinsot and Plücker [11], in which screw coordinates 
of infinitesimal displacement and external force were 
involved. They were named as twist and wrench, respec-
tively. The reciprocal property of twist and wrench was 
later explored by Ball [106] and Klein [107, 108].

In the book “A treatise on the theory of screws” [109], 
Ball discussed kinematics and dynamics of an arbitrary 
rigid body by screw theory. It laid a solid foundation for 
the mechanism analysis by Hunt [110] who proposed the 
screw based kinematic and dynamic modeling method 
for serial, parallel and closed-loop mechanisms. Following 
Hunt’s work, substantial researches were carried out for 
the mechanism analysis and design based on instantaneous 
screw, such as type synthesis [3, 45, 111], statics and kinet-
ics [112, 113], performance evaluation and optimization 
[114, 115]. Besides the applications of instantaneous screw, 
finite screw, termed by Dimentberg [116], was proposed to 
describe the finite motion of rigid body. On this track, the 
format of finite screw, including the pitch and amplitude, 
was intensively studied by Parkin [117, 118], Hunt [119], 
Dai [33] and Huang [120–122]. Other than description of 
finite screw, the computation was another difficult prob-
lem. To this end, Roth [123] defined screw triangle prod-
uct to accomplish finite screw composition with the aid of 
Euler-Rodrigues’ formula. This definition had been widely 
accepted. From then on, many scholars focused on find-
ing out concise algorithm for the screw triangle product 
[124–129]. Through the linear combination of two original 
screws, their translational parts and the screw along their 
common perpendicular, Huang [130] simplified the screw 
triangle product. However, the nonlinear intersection 

of finite screws was analyzed in linear subspaces [131], 
which leads to inappropriate results. In terms of the finite 
screw intersection, Sun [18, 35, 36] presented an algebraic 
method. For the first time, Dai [34] formulated the map-
ping between finite and instantaneous screws, and defined 
correlations among screw theory, matrix Lie group and 
quaternions [132]. Based on the contribution of Dai, Sun 
[18, 133] expanded the differential mapping to the analy-
sis of spatial mechanisms. For the applications of finite 
screw to mechanism analysis, Huang [120–122] built the 
forward kinematic equations of some serial mechanisms. 
Sun and his colleagues [133–136] proposed a generic 
method to formulate motion equations for different types 
of mechanisms. Finite motion based type synthesis and 
instantaneous motion based kinematic analysis of parallel 
mechanisms are integrated by a consistent algebraic man-
ner in their method.

5.2  Finite Screw and Its Computations
Finite motion description by screw directly reflect the 
Chasles’ axis together with the angular and linear displace-
ments. The 1-DoF finite motion could be parameterized as 
finite screw in 6-dimensional quasi-vector form as

where sf  , r f  , θ , t have the same meanings as given in Eqs. 
(2), (3).

Composition operation of finite screws could be per-
formed by screw triangle product signed as “ △ ”. The com-
position of two 1-dimensional finite screws results in a 
linear combination of the two original screws, their trans-
lational parts and the screw along their common per-
pendicular. In this way, the analytical expression of the 
composited motion can be easily obtained in an approxi-
mately linear manner, which simplifies the nonlinear com-
position of finite motions

where 

Sf ,1△Sf ,2 =
1

1−tan
θ1
2 tan

θ2
2 sTf ,2sf ,1





Sf ,1 + Sf ,2 −
1

2
Sfc,12

−Sfp,1 − Sfp,2



, 

Sf ,i = 2 tan θi
2

(

sf ,i
r f ,i × sf ,i

)

+ ti

(

0

sf ,i

)

, i = 1, 2,

(32)Sf = 2 tan
θ

2

(

sf
r f × sf

)

+ t

(

0

sf

)

,

(33)Sf ,1···n = Sf ,1 △ Sf ,2 · · · △ Sf ,n,

Sfc,12 =













2 tan θ1
2 sf ,1 × 2 tan θ2
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2 tan
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2
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Similar to the intersection algorithm of dual qua-
ternions, the intersection of finite screws is achieved 
through formulating the simultaneous equations 
and solving the common range of the finite screw 
expressions

5.3  Instantaneous Screw and Its Computations
Instantaneous motion description by screw directly 
reflect the Mozzi’s axis together with the amplitude of 
velocity. The instantaneous motion of rigid body could 
be parameterized as instantaneous screw in 6-D vector 
form as

Sfp,1 = tan
θ1

2
tan

θ2

2
t2

(

0

sf ,1

)

, Sfp,2 = tan
θ1

2
tan

θ2

2
t1

(

0

sf ,2

)

.

(34)
Sf ,1 = Sf ,2 = · · · = Sf ,i = · · · = Sf ,m, i = 1, 2, . . . ,m.

5.4  Mappings between Finite and Instantaneous Screws
As far as we know, the exponential map does not exist 
between instantaneous screw and finite screw. That is 
because finite screw describes the displacement in a Gib-
son form, which break the linear transformation format 
of finite motion description of matrix Li Group and dual 
quaternion.

In spite of the lack of exponential map, differential map 
between displacement and velocity can be performed 
directly by taking differentiations of finite screw Sf  with 
respect to time. For 1-DoF or multi-DoF finite screw Sf  , 
the corresponding instantaneous screw system would be 
formulated as

(36)Ṡf

∣

∣

∣

∣

θ=0
t=0

= θ̇

(

sf
r f × sf

)

+ ṫ

(

0

sf

)

= St ,

(37)Ṡf ,12···n
∣

∣

θk = 0
tk = 0, k = 1, 2, · · · , n

= Ṡf ,1
∣

∣

θ1 = 0
t1 = 0

+ Ṡf ,2
∣

∣

θ2 = 0
t2 = 0

+ · · · + Ṡf ,1
∣

∣

θn = 0
tn = 0

= St,1 + St,2 + · · · + St,n.

where st , rt , ω and p have the same meanings as given in 
Eq. (11).

For robotic mechanism, the velocity of moving plat-
form relative to the fixed platform forms a screw sys-
tem, which is composed by a set of 1-DoF screws. In the 
process of performance modeling and design of robots, 
screw system plays an important role in mobility analysis 
and Jacobian formulation. For serial mechanisms, screw 
system could be measured as the combination of the 
instantaneous screws producing by each kinematic joint. 
When mechanisms with parallel structures, intersection 
operation of the screw systems generated by a series of 
connected chains is carried out. Due to the work of Rico 
and Duffy [137–139], screw systems were classified and 
proved to be subspaces, sometimes even sub-algebras 
of the Lie algebra se(3) of the Euclidean group SE (3). 
Therefore, the combination and intersection operation 
could be written as the form in Eq. (12) and Eq. (13), 
respectively.

(35)St = ω

(

st
rt × st + pst

)

,
6  Discussions
After respectively reviewing the three mathematical tools 
applied in topology and performance modeling and anal-
ysis of robotic mechanisms, further discussions on com-
parisons among them and their applications will be given 
in this section.

6.1  Comparisons among the Three Methods
Based upon Sections 3–5, it can be seen that the instan-
taneous screws, matrix Lie algebra, and pure dual quater-
nions for instantaneous motion description are all linear 
vector spaces, and their algebraic structures are isomor-
phic to each other. Thus, only the mathematical tools for 
finite motion description will be compared here. The dif-
ferences among matrix Lie group, dual quaternions, and 
finite screws rise from their different algebraic structures. 
In order to discuss the differences of these three math-
ematical tools in describing rigid body finite motion, we 
firstly look into their algebraic structures and the rela-
tionships among them and SE(3).

Any transformation matrix in the matrix Lie group can 
be represented by a 4 × 4 real matrix, a 6 × 6 real matrix, 
or a 3 × 3 dual matrix etc. Because these three represen-
tations are isomorphic with each other, we take 4 × 4 
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real matrix representation as an example in Section  3. 
The entire set of each kind of these matrices has the 
same inner closure and associative properties with SE(3). 
Hence, the matrix Lie group forms a homomorphism of 
SE(3). Furthermore, it is an isomorphism of SE(3), since 
there exists a bijective mapping between them. The 
matrix Lie group is also a representation of SE(3). This is 
because the matrix operations play as linear transforma-
tions acting on the 6-dimensional vector space. Dual qua-
ternions have similar features. Half part of the entire set 
of dual quaternions with positive rotational angles is also 
an isomorphism and a representation of SE(3). Thus, the 
entire set of dual quaternion is a double cover of SE(3). 
The transformation matrices in matrix Lie group can be 
composited by multiplication with linear transformation 
formats. The same operation can be performed by dual 
quaternions.

Different from transformation matrix and dual quater-
nion, finite screw is invented to break the linear transfor-
mation format of finite motion description, which can be 
regarded as a general form of Gibbs vector. Finite screw 
does not act on any vector space, and cannot transform 
any coordinate of geometric point or line. It is a math-
ematical tool purely for finite motion description, and 
it can express the basic elements of Chasles’ motion in 
a straightforward manner. The composition algorithm 
of finite screws, i.e., screw triangle product, maintains 
the screw format, which directly leads to the expres-
sions of basic elements of the resultant Chasles’ motion. 
Although the entire set of finite screws under screw tri-
angle product has the same inner closure and associative 
properties with SE(3), it is not a representation of SE(3). 
In other words, it only forms a isomorphism of SE(3).

Any element of SE(3) is a combination of rotation 
matrix and translation vector. It is a homogeneous trans-
formation of the coordinates of points. In this way, all 
representations of SE(3) cannot break the inherent linear 
transformation formats. Hence, only finite screw with 
screw triangle product can express and composite finite 
motions in a non-redundant and direct manner.

All the three methods reviewed in Sections 3–5 could 
be used to describe and compute all situations of finite 
motions. To further investigate the relationships among 
them, we rewrite the element in dual quaternion in the 
following way,

Compare the above equation and Eq. (1)–(3) with finite 
screw in Eq. (32). It is noted that the information of a 

(38)
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2
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2
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+
t

2
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2
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finite motion, i.e., the Chasles’ axis and the correspond-
ing rotational angle and translational distance, is involved 
in the 3 × 3 rotation matrix and 3 × 1 translation vector 
in, and is not easy to be extracted. Hence, for elements in 
matrix Lie group, at least 12 items are needed to describe 
the 6-dimensional finite motion. For dual quaternion, 
8 items are needed, and the dual vector in D covers all 
the finite motion characteristics while the dual scalar is 
redundant. Finite screw contains the whole finite motion 
characteristics in the 6-dimensional quasi-vector form. 
Thus, it is non-redundant. Motion descriptions by finite 
screw are more concise. On this basis, the composition 
of two finite motions could be obtained by three cross 
product computations and their linear combination. The 
redundancy of matrix Lie group and dual quaternions 
results in more operations in the process of computing 
the composition and intersection of finite motions. In 
the whole, finite and instantaneous screw based method 
has the most concise formats to describe mechanism 
motions, and provides the most explicit algorithms for 
the computation.

6.2  Future Works on Applications of the Three Methods
From the discussion in previous sections, three uni-
fied mathematical tools are proved to have the abili-
ties of description, computation and mapping of finite 
and instantaneous motions. With the aid of the unified 
mathematical frameworks, the integrated topology and 
performance modeling and design can be studied, which 
is meaningful but still rarely investigated in the current 
researches. Therefore, the next problem is how to apply 
the above mathematical tools to the integrated modeling 
and design. Since both the topology and performances 
are considered, the integrated modeling and design pro-
cess can be interpreted as (1) finding out all possible 
topologies having the same desired mobility, (2) formu-
lating the performances of every topological structure, 
and (3) searching for the optimal topology and perfor-
mances. Having the above unified mathematical tools, 
type synthesis and performance modeling can be carried 
out in the same mathematical framework, as shown in 

Figure 2 Application of unified mathematic tools in integrated 
analysis and design
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Figure 2. For instance, type synthesis can be implemented 
by the finite motion based methods. By the mapping 
between finite and instantaneous motions, the perfor-
mance model would be done by instantaneous motion 
based methods. Hence, both the topological and perfor-
mance parameters can be defined in the optimal design.

The detail integrated modeling and design process 
might be conducted as follows. First of all, the expected 
motion is described in a finite motion format based on 
matrix Lie group, dual quaternion or finite screw. By 
taking the advantages of intersection and composition 
operations, the available limbs and mechanisms would 
be generated. More details are referred to [35, 51, 86]. 
Because the type synthesis is implemented in an alge-
braic manner, the parameterized topology models are 
obtained. Then, the finite motion based topology model 
is directly applied as the displacement model relative to 
the initial pose. In order to construct the performance 
models with topology parameters, the differential map-
ping between matrix Lie group and Lie algebra, dual 
quaternion and pure dual quaternion, finite screw and 
instantaneous screw are utilized. In this way, the veloc-
ity model of 1-DoF kinematic joint, multi-DoF limbs 
and end-effector could be obtained in the forms of Lie 
algebra, pure dual quaternion and instantaneous screw, 
respectively. With the velocity model available at hand, 
the velocity/force features, stiffness performance can be 
further analyzed. By the first-order derivation of velocity, 
accelerations would be further formulated, with which 
the dynamic model is obtained. Up to this point, the inte-
grated modeling for topology, kinematic, stiffness and 
dynamic is captured. Finally, both topological and dimen-
sional parameters can be taken as design variables in 
optimal design, resulting in optimized topological struc-
ture with its dimensions.

Besides the methodology of integrated topology 
and performance modeling and design, another pos-
sible application of the reviewed mathematical tools is 
the automatic software development. It could be seen 
that every step of the integrated modeling and design 
is performed by algebraic expressions and computa-
tions, which facilitates this procedure to be realized in 
automatic manner using computer programming lan-
guages. By applying computation software like Mat-
lab and Maple, composition, intersection and mapping 
algorithms of finite and instantaneous motions based on 
the three unified mathematic tools could be compiled as 
modularized programs. In this way, for given motion pat-
tern, type synthesis can be automatically implemented to 
obtain all the feasible robotic mechanisms. The topology 
models are regarded as the displacement models. Then 
performance models in terms of velocity and accelera-
tion can be directly constructed and analyzed by taking 

the first- and second-order derivation of its displace-
ment model. The automatic software in the future work 
will improve the efficiency of integrated robot design and 
make the methods to be easily applied by the mechanical 
engineers without studying the mathematical knowledge.

7  Conclusions
Topology and performance of mechanism are the main 
focuses in the development of robotic mechanism. It 
has long been a desire to carry out the integrated analy-
sis and design as topology and performance are mutually 
affected each other. A unified mathematical framework 
is the fundamental preparation. Three mathematical 
tools, i.e., Lie group and Lie algebra, dual quaternion 
and pure dual quaternion, finite screw and instantaneous 
screw, are comprehensively reviewed. The history, finite 
motion, instantaneous motion and the mapping relation 
of each mathematical tool are introduced, in which the 
description, computation and intersection of two types of 
motions are given. A discussion on the three mathemati-
cal tools is also presented. This paper aims at providing 
a reference on the mathematical tools in topology and 
performance integrated analysis and design, and helps 
reader select the appropriate method when implement-
ing the analysis and design of robotic mechanisms.
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