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Model Parameter Transfer for Gear Fault 
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Abstract 

Gear fault diagnosis technologies have received rapid development and been effectively implemented in many 
engineering applications. However, the various working conditions would degrade the diagnostic performance and 
make gear fault diagnosis (GFD) more and more challenging. In this paper, a novel model parameter transfer (NMPT) 
is proposed to boost the performance of GFD under varying working conditions. Based on the previous transfer 
strategy that controls empirical risk of source domain, this method further integrates the superiorities of multi-task 
learning with the idea of transfer learning (TL) to acquire transferable knowledge by minimizing the discrepancies of 
separating hyperplanes between one specific working condition (target domain) and another (source domain), and 
then transferring both commonality and specialty parameters over tasks to make use of source domain samples to 
assist target GFD task when sufficient labeled samples from target domain are unavailable. For NMPT implementation, 
insufficient target domain features and abundant source domain features with supervised information are fed into 
NMPT model to train a robust classifier for target GFD task. Related experiments prove that NMPT is expected to be a 
valuable technology to boost practical GFD performance under various working conditions. The proposed methods 
provides a transfer learning-based framework to handle the problem of insufficient training samples in target task 
caused by variable operation conditions.
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1  Introduction
Gear has been used extensively in transmission system 
due to its large velocity ratio, strong bearing capac-
ity, compactness and high efficiency [1‒4]. Gear fault 
diagnosis (GFD) also becomes one of the most impor-
tant research hotspots from both industrial and aca-
demic communities for ensuring the safe and efficient 
operation of gear transmission system. Till now, with 
the development of sensing methods (e.g., vibration, 
rotor speed, acoustic signal and others), data-driven 
methods [5, 6], which are based on analyzing meas-
ured data without need of a deep understanding of 

the mechanical drive systems, have become more and 
more attractive and been proved to be valid in the field 
of gear fault diagnosis. Generally, there are two steps 
in data-driven method: (1) constructing a classification 
model based on sampled data, and (2) using the well-
trained model to predict the mechanical fault type. In 
many existing researches, the fault diagnostic task can 
be treated as a problem of pattern recognition, which 
usually is composed of two technical processes: (1) 
feature extraction, and (2) fault recognition. The pur-
pose of feature extraction is to obtain low-dimensional 
fault descriptors from high-dimensional vibration data. 
There are many advanced signal processing methods 
that have been proposed to provide cognizable fea-
tures, such as wavelet transform (WT) [7], principal 
components analysis (PCA) [8], singular value decom-
position (SVD) [9], empirical mode decomposition 
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(EMD) [10], etc. Then, conventional machine learning 
methods (e.g., extreme learning machine, support vec-
tor machine and neural network) are employed to build 
a gear fault diagnostic model. However, these conven-
tional methods usually work for GFD under constant 
speed and load conditions, thus having weak generality 
when facing with variable working conditions. Gener-
ally, gears are often working under time-varying oper-
ating conditions, for example, the running states of gas 
turbines or wind power generators change very often 
while working, and the operation parameters of plane-
tary gearbox may vary correspondingly, thus inevitably 
resulting in a consequence that the extracted features 
in one time period might be different from those in 
the next time period. More importantly, the identi-
cal and independent distribution (IID) between train-
ing data and test data is required to ensure effective 
implementation of these conventional machine learn-
ing methods. Recently, these problems have aroused 
researchers’ interest and received intensive attentions. 
For example, Song et al. [11] developed a new singular 
value decomposition interpolation (SVDI) based sig-
nal processing method, in which the time-domain and 
frequency-domain characteristic matrices extracted 
from vibration signals under discrete working condi-
tions were firstly decomposed into singular vectors, 
rotation matrices and characteristic means with SVD, 
then these three parts were interpolated to reconstruct 
the target eigenmatrix for data augmentation. Han et al. 
[12] utilized empirical mode decomposition (EMD) 
to decompose vibration signals into several intrinsic 
mode functions (IMF), and extracted feature vectors 
that consist of time domain indexes, frequency domain 
indexes, energy domain characteristic parameter and 
fractal box dimension from the selected IMF to inves-
tigate the dynamic feature of vibration signal accu-
rately and improve the robustness of feature vectors 
under different loads for GFD. Meanwhile, Zhao et  al. 
[13] designed a synchrosqueezing transform (SST) and 
deep convolutional neural network (DCNN) based 
method for gearbox fault classification under varying 
operation conditions, where a new index, the envelope 
time-frequency representation (TFR), was calculated 
by using SST, then DCNN was adopted to dig underly-
ing features of the TFRs and determine the fault type 
of planetary gearbox automatically. In general, most 
of these methods can achieve good results by explor-
ing advanced feature extraction methods or building a 
complex network classifier, but they rely on sufficient 
labeled training dataset normally, which could degrade 
performance when facing with insufficient data. How-
ever, only a few number of labeled samples collected for 

training probably exist in many real-world applications, 
which hinder the promotion of these methods greatly.

Therefore, how to train a robust model with high accu-
racy under limited labeled data is important. Recently, 
transfer learning (TL), a fast-growing filed of machine 
learning, has been emerging due to its knowledge trans-
fer ability [14]. To be delighted, the amount of labeled 
target data (termed as target domain, TD) maybe small, 
but there are still plenty of relevant data which can be 
obtained in machine industry from another time period 
(e.g., under another speed and load) or adjacent com-
ponents (termed as source domain, SD). By utilizing the 
TL technology, useful information can be extracted from 
existing or previous task to boost the learning efficiency 
of target task. The model parameter transfer (MPT), one 
of the transfer learning architectures, is an effective tool 
to transfer the shared parameters or prior distributions 
of hyperparameters. Recently, most of these approaches 
are designed to work for multitask learning (MTL). 
For example, Lawrence et  al. [15] succeeded in learn-
ing parameters from multiple tasks through the shared 
Gaussian process (GP) prior. Bonilla et al. [16] proposed 
a GP-based model to learn the shared model knowledge 
over tasks. Schwaighofer et  al. [17] succeed in learning 
multi-tasks by utilizing the combination of hierarchical 
Bayesian framework (HB) and GP. Besides, Evgenious 
et  al. [18] proposed a new algorithm by referencing HB 
idea to solve multitask learning in the frame of support 
vector machine (SVM). All these methods can be easily 
modified for TL. Strictly speaking, MTL tries to learn dif-
ferent tasks jointly and simultaneously, while TL prefer 
to improve the performance of TD task with the help of 
knowledge extracted and stored from SD data. Compar-
ison between MTL and TL is shown in Figure  1. Intui-
tively, we may minimize the difference in parameters of 
classification hyperplane between TD and SD to transfer 
the knowledge obtained from SD, so that a robust GFD 
model with better performance in TD can obtained.

According to the above analysis, a novel model param-
eter transfer (NMPT) approach, which aims at excavat-
ing and further transferring the shared characteristic 
parameters of hyperplane for the problems of insuffi-
cient labeled training samples and non-IID between 
source and target domains, is developed to assist target 
gear fault identification using source domain data. Spe-
cifically, on this basis of controlling the empirical risk of 
source domain, the proposed method further integrates 
the advantage of the conventional MPT and TL together, 
which can be concluded that: (a) the least square sup-
port vector machine (LSSVM) based MPT can charac-
terize the shared and domain-specific parameters over 
tasks; and (b) the idea of TL is introduced to dig and 
extract transferable knowledge and to minimize the 
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distributional discrepancies between source and target 
domains. To sum up, the novelties and main contribu-
tions of this paper can be summarized as:

•	 Based on controlling the empirical risk of source 
domain features in LSSVM framework, an improved 
TL model is proposed by further minimizing the dis-
crepancies of separating hyperplanes between source 
and target domains, and then transferring both 
shared and domain-specific parameters over tasks to 
make use of source domain data to assist target diag-
nostic task;

•	 The model parameter transfer idea is innovatively 
introduced to the area of gear fault diagnosis, which 
provides a new idea for gear fault diagnosis under var-
iable working conditions, especially when sufficient 
training data from target domain are not available.

The rest of this paper is organized as follows. In Sec-
tion 2, the theoretical background is briefly presented. 
Section  3 concentrates on introducing details of the 
proposed NMPT method and then gives the whole 
framework of  GFD. Section  4 illustrates the experi-
mental study and proves that NMPT can achieve good 
results in GFD under variable working conditions. 
Finally, some conclusions drawn from this paper are 
listed in Section 5.

2 � Theoretical Background
This study is going to leverage the NMPT model under 
LSSVM framework for GFD. Therefore, in this section, 
the fundamental theory of LSSVM as well as its improve-
ment for MTL are briefly reviewed.

2.1 � Least Squares Support Vector Machine (LSSVM)
First, the basic principle of training a SVM-based model 
for classification problem is to find the optimal separat-
ing hyperplane (f = w*φ(x) + b) in a reproducing kernel 
Hilbert space (RKHS) [19]. According to structural risk 
minimization (SRM) principle, the optional w and b can 
be obtained by minimizing the following function:

where C is positive real regularized parameter, w is 
weight vector defining the orientation of separating 
hyperplane, R represents structural risk, Remp denotes 
loss function which controls the error of separating 
hyperplane f on training data, and different kinds of Remp 
can contribute to different forms of SVMs. By utilizing 
squared error function, the SRM problem in LSSVM is 
to compute the optimal decision-made separating hyper-
plane according to the vector x and its label y∈{−1,+1} 
by minimizing the following function with a constraint, 
which can be formulated as:

where ei is error function, φ(·) denotes a transform func-
tion that maps the input features x into RKHS, b is a bias 
term, N indicates the total number of training samples. 
Then a classification hyperplane f = w*φ(x) + b is con-
structed for this task.

(1)min R =
1

2
�w�2 + C × Remp,

(2)
min
ω,e,d

J (w, e) = 1
2
�w�2 + C
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N
∑
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Figure 1  Comparison of multitask learning (MTL) and transfer 
learning (TL): a MTL; b TL
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2.2 � Multi‑Task LSSVM (MTLSSVM)
Given m learning tasks, the MTL aims to learn all tasks 
simultaneously rather than individually. Let each task 
∀i∈m, we have ni training samples 

{

xi,j , yi,j
}ni
j=1

 , thus the 
total number of training samples is N =

∑m
i=1 ni.

Based on the regularization framework and hierarchi-
cal Bayesian framework, some researchers assumed that 
all wi can be rewritten as wi = w0 + vi, where w0 (play-
ing the role of mean vector) and vi carry the information 
of commonality and specialty over tasks [20, 21], respec-
tively. That is to say, when m learning tasks are analogous 
to each other, the vectors vi tend to be “small”, otherwise, 
the vector w0 tends to be “small”. To this end, the follow-
ing optimization problem which is similar to LSSVM 
for single task is solved to estimate all vi as well as w0 
simultaneously:

where C and λ are positive real regularized parameters, 
b =

{

b1, b2, · · · , bm
}T

, ei =
{

ei,1, ei,2, · · · , ei,ni
}T

, 
Zi =

{

ϕ(xi,1)yi,1 , ϕ(xi,2)yi,2, · · · , ϕ(xi,ni)yi,ni}, 
yi =

{

yi,1, yi,2, · · · , yi,ni
}T

.

These previous works of LSSVM and MTLSSVM 
are not oriented to the target task where there exists 
the problem of insufficient training data or non-IID 
between training and testing data. Whereas, it is sig-
nificant to derive useful information from these existed 
models to enhance the TD task. Therefore, different 
from the single task learning and multitask learning, 
the proposed NMPT utilizes SD data (related but dif-
ferent from TD) to solve target domain problems with 
a specific structure, which is introduced in the following 
section.

3 � Proposed NMPT Framework for GFD
The proposed NMPT method via transferring the knowl-
edge of classification hyperplane from SD to TD is pre-
sented in this section.

3.1 � Basic Definition
Given SD and TD, the main purpose of NMPT can be 
described as: under LSSVM framework, NMPT aims to 
improve the performance of TD classification model ft = 
wt*xt + bt by using the knowledge from source domain 
classifiers model fs = ws*xs + bs, where the SD and TD 
are different but similar in some aspects. In addition, the 
training data is set as follows:

(3)

min
w,e,d

J (w0, {vi}
m
i=1, {ei}

m
i=1)

=
1

2
�w0�

2 +
1

2
×

�

m

m
∑

i=1

�vi�
2 +

C

2

m
∑

i=1

eTi ei,

s.t., (w0+vi)
TZi + biyi=1ni − ei, i = 1, 2, · · · ,m,

where Ds, Dt are SD and TD labeled data, respectively; xsj
,ysj denote the jth feature vector and corresponding label 
of SD data;xti,y

t
i denote the ith feature vector and corre-

sponding label of TD data; Ns and Nt represent the num-
ber of SD and TD, in this paper, Nt<< Ns.

3.2 � NMPT Architecture
In this section, the proposed NMPT approach is discussed. 
As mentioned above, the method mainly utilizes the labeled 
data from SD and TD to solve the target GFD problem. 
First, inspired by the work of multitask LSSVM framework 
[21, 22], we assume that the parameters, wt and ws form 
both tasks can be separated into two parts, respectively:

 where w0 is the shared parameter, vs and vt are the 
domain-specific parameters of SD and TD tasks, respec-
tively. Then, based on previous transfer strategy that con-
trols empirical risk of source domain, we want to find 
the knowledge from ws and transfer it to wt ulteriorly. As 
enough training data can prevent the model from over-
fitting, parameter w0 from ws is set as one of transfer 
knowledge. In addition, by minimizing the term μ|| vt−vs 
||2 during the optimization process, we can also recog-
nize and apply knowledge of vs learned from SD. Hence, 
to achieve this goal, an extension of LSSVM to transfer 
learning case is built as follows:

 where w0 and μ|| vt − vs ||2 are transfer learning items, 
Cs, Ct, λ and μ are positive real regularized parameters. 
An illustration that describes the diagram of NMPT is 
presented in Figure 2.

As less tagged target training data will cause the cor-
responding classification model to show some tendency 
towards performance degradation, the decision boundary 
with parameter wt from target task could suffer from this 
problem. However, by utilizing the knowledge of ws from 
source domain, NMPT architecture can ensure a relatively 
small generalization error on the target domain by mainly 
focusing on achieving the following goals: (1) learning a more 
accurate w0 for target domain; (2) reducing the difference of 

(4)
Ds =

{

(xsj , y
s
j )

}

, j = 1, 2, · · · ,Ns,

Dt =
{

(xti , y
t
i )
}

, i = 1, 2, · · · ,Nt,

(5)wt = w0 + vt, ws = w0 + vs

(6)

min
w,e,d

J (w0, vt , vs, e)

= 1
2
�w0�

2 + 1
2
× �

2

(

�vt�
2 + �vs�

2
)

+ Ct
2

Nt
∑

i=1

e2i

+Cs
2

Ns+Nt
∑

i=Nt+1

e2i + µ�vt − vs�
2,

s.t.,yti {(w0 + vt)
Tϕ(xti )+ bt} = 1− ei, i = 1, 2, · · · ,Nt,

ysj {(w0 + vs)
Tϕ(xsj )+ bs} = 1− ej , j = 1, 2, . . . ,Ns,
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model parameters by minimizing μ|| vt−vs ||2 (see the purple 
line in Figure 2). These two goals can make source domain 
model be applicable for target domain and ensure the lead-
ing role of Dt in building classification model for target task. 
In addition, by comparing eq. (2) with eq. (6), we find the 
NMPT model tries to make the separating hyperplane of SD 
be qualified for TD classification task from two aspects on 
the basis of SRM principle: one is to minimize the margin 
discrepancies of training data between SD and TD to adjust 
separating hyperplane, the other is to control loss function 
on SD data, simultaneously. All these two improvements can 
prove a good capability of generalization on TD.

Then, the solving process of NMPT optimization prob-
lem (c.f. Eq. (6)) is listed as follows:

First, the Lagrangian function for Eq. (6) is built as:

(7)

L(w0, vt , vs, b, e, a)

=
1

2
�w0�

2 +
1

2
×

�

2

(

�vt�
2 + �vs�

2
)

+
Ct

2

Nt
∑

i=1

e2i

+
Cs

2

Ns+Nt
∑

i=Nt+1

e2i +µ�vt − vs�
2

−

Nt
∑

i=1

ai

{

yti {(w0+vt)
Tϕ(xti )+ bt} − 1+ ei

}

−

Nt+Ns
∑

i=Nt+1

ai

{

ysi {(w0+vs)
Tϕ(xsi )+ bs} − 1+ ei

}

,

where ai is a Lagrange multiplier. Then, according to 
Karush–Kuhn–Tucker (KKT) conditions, the solutions 
for optimality are yielded as:

(8)

∂L

∂w0
= 0 → w0 =

Nt
�

i=1

aiy
t
iϕ(x

t
i )+

Nt+Ns
�

i=Nt+1

aiy
s
iϕ(x

s
i ),

∂L

∂vt
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�

2
vt + 2µ(vt − vs)−

Nt
�

i=1

aiy
t
iϕ(x

t
i ) = 0,

∂L

∂vs
= 0 →

�

2
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Nt+Ns
�
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aiy
s
iϕ(x

s
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Figure 2  Schematic diagram of NMPT
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where vt and vs can be derived as:

By eliminating w0, vt, vs and ei through substitution, one 
linear system can be obtained as follows:

where a = [a1, a2, · · · , aNt , aNt+1, · · · , aNt+Ns]
T, 

b = [bt , bs]
T, Y 1 = [yt1, y

t
2, · · · , y

t
Nt , y

s
1, y

s
2, · · · , y

s
Ns], 

I = [1, 1, · · · , 1](Nt+Ns)×1,0 = [0, 0], Y = blockdiag(ys, 
yt), yt = [yt1, y

t
2, · · · , y

t
Nt ]

T,ys = [ys1, y
s
2, · · · , y

s
Ns]

T, 
Ω is (Nt + Ns) × (Nt + Ns) symmetric matrix 

(9)
vt =

(

1+
4µ
�

)

w0 −
Nt+Ns
∑

i=Nt+1

aiy
s
iϕ(x

s
i )

�

2
+ 4µ

=

4µ
�

(

Nt
∑

i=1

aiy
t
iϕ(x

t
i )+

Nt+Ns
∑

i=Nt+1

aiy
s
iϕ(x

s
i )

)

+
Nt
∑

i=1

aiy
t
iϕ(x

t
i )

�

2
+ 4µ

,

vs =

(

1+
4µ
�

)

w0 −
Nt
∑

i=1

aiy
t
iϕ(x

t
i )

�

2
+ 4µ

=

4µ
�

(

Nt
∑

i=1

aiy
t
iϕ(x

t
i )+

Nt+Ns
∑

i=Nt+1

aiy
s
iϕ(x

s
i )

)

+
Nt+Ns
∑

i=Nt+1

aiy
s
iϕ(x

s
i )

�

2
+ 4µ

.

(10)
[

0

Y
Y 1

Ω

][

b
a

]

=

[

0

I

]

,

Ω=�0 +�1 +
1
C INt+Ns, Ω1= blockdiag(Ωt, Ωs), K rep-

resents the kernel function, the detail element in Ω is 
defined as:

(11)

�0ij =

(

1+
4µ

�

/(

�

2
+ 4µ

))

yiyjK (xi, xj), yi, yj ∈ Y 1,

(

xi, xj ∈
[

xt1, x
t
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t
Nt , x

s
1, x

s
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s
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]

,
)

�tij =
1

�

2 + 4µ
yti y

t
j K (xti , x

t
j ) , i, j ∈ [1,Nt],

�sij =
1

�

2 + 4µ
ysi y

s
jK (xsi , x
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j ), i, j ∈ [1,Ns].
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The best fit values of parameters a, bt and bs can be finally 
worked out, then the corresponding decision function can 
be constructed as follows:

3.3 � Complete Process of NMPT Model for Gear Fault 
Diagnosis

In the proposed framework, an intrinsic time-scale 
decomposition (ITD) architecture is first introduced to 
decompose a vibration signal into a set of proper rota-
tion components (PRCs). Then, the energy parameter 
of each proper rotation component (PRC) is calculated 
to conduct dimensionality reduction and construct fea-
ture vectors. By structuring and solving the optimization 
problem of NMPT (c.f. Eq. (6)) using the learned fault 
representations, the parameters of NMPT model (includ-
ing w0, vs vt, bs and bt) can be learned simultaneously. 
Finally, the target data are fed into NMPT to output the 
predicted fault categories. Figure 3 gives the overall pro-
posed framework for NMPT-based GFD.

(12)y = sgn





�

1+
4µ

�

��

�

2
+ 4µ

��

×

�

Nt
�

i=1

aiy
t
iK (xti , x)+

Nt+Ns
�

i=Nt+1

aiy
s
iK (xsi , x)

�

+
1

�

2 + 4µ

Nt
�

j=1

aiy
t
j K (xtj , x)+ bt



.

4 � Experiment and Discussion
4.1 � Descriptions of Experimental Simulator and Datasets
To conduct experimental verification, the testing platform, 
drivetrain dynamics simulator (DDS), is shown in Figure 4. 
It includes driving motor, speed regulator, planetary gear-
box, reduction gearbox, brake device, brake regulator. Dur-
ing data collection, the variety of speeds and loads can be 
implemented through speed regulator and brake regula-
tor, respectively. Meanwhile, there are altogether 7 vibra-
tion sensors (model: 608A11, sample frequency: 5120 Hz) 
in the structure, one is mounted on the surface of motor 
to measure z-axial vibration signal of the motor (F1), the 
rest are as follows: three for planetary gearbox (F2) and 

three for reduction gearbox (F3). Except for the healthy 
gear (Healthy, C1), there are four different types of gear 
faults, denoted as a small piece of material breaking away 
from tooth (Chipped, C2), a tooth fracturing at the loca-
tion of root (Missing, C3), the emergence of cracks on root 
cracked (Cracked, C4) and the loss of material from the 
contacting surface of tooth (Worn, C5). The descriptions of 
fault types and different experiment conditions are shown 
in Table 1.

4.2 � Experimental Results and Analysis
4.2.1 � Feature Extraction
Intrinsic time-scale decomposition (ITD) , proposed by 
Frei et al. [23], is a time frequency analysis method which 
can adaptively decompose a given vibration signal X into 
a series of proper rotation components (PRCs) and a 

Motor

Planetary 
gearbox

Reduction 
gearbox

Brake

Brake 
regulator

Motor 
controller

(b)(a)

Motor Brake

Planetary 
gearbox

F2

F3
Reduction 
gearbox

x
y

z

x
y

z

z

F1

Figure 4  Spectra quest’s drivetrain dynamics simulator: (a) The real chart of system; (b) The structure chart of system

Table 1  Gear fault type and working conditions

Fault
types

C1
Healthy

C2
Chipped

C3
Missing

C4
Cracked

C5
Worn

Speeds
(r/min)

S1
1200

S2
1800

S3
2400

‒

Load
(N·m)

L1
0

L2
10.97

L3
14.63

‒

Fault
location

F3
Reduction gearbox
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monotonous trend signal (remaining baseline signal) with 
low end effects and high efficiency, which can described as:

 where p denotes the final decomposition level, Hi is the 
ith PRC, Lp is the remaining baseline signal.

Nevertheless, these obtained PRCs with ITD technol-
ogy are too complex to be taken as fault vectors as inputs 
for conducting fault classification directly. Thus, the 
energies of first six level PRCs are calculated for dimen-
sionality reduction of PRCs and fault feature design.

4.2.2 � Experimental Study
In this part, the diagnostic performance of the proposed 
NMPT is first analyzed, then, in order to further demon-
strate the superiority of NMPT, it is also compared with 
other methods:

LSSVM(non-transfer): Least squares support vector 
machine;
MTLSSVM (non-transfer): Multi-Task LSSVM;
TCA [24]: Transfer component analysis;
DSM [25]: Domain selection machine;
ELSSVM [26]: Enhanced LSSVM

For a fair comparison, all kernel-based methods use the 
Radial Basis Function (RBF) as the kernel function. In this 
study, 2000 sampled data points of original vibration sig-
nal under each specific working condition were fed into 
ITD model for feature extraction. Regardless  in source 
or target domain, each gear fault category contains 
200 samples under any chosen working condition. The 
datasets to perform experiments are set as follows: for 
LSSVM, 10 samples of each fault type are selected from 
target domain; for MTLSSVM and those transfer strate-
gies, both the aforesaid 10 target domain samples and 
100 source domain samples are arranged. Moreover, 100 
testing samples from target domain are also arranged, 
and there is no overlap between training and testing sam-
ples in target domain. Therefore, the total size of train-
ing set is 50 and 550 for LSSVM and the rest methods, 
respectively; the total size of testing set is 500. In order to 
quantitatively describe the domain differences, the Kull-
back-Leibler (KL) divergence is calculated by:

 where KL( ·|| ·) represents the KL divergence between 
Ds and Dt. Table  2 shows the descriptions of datasets 
(from DA1 to DA10) as well as their corresponding KL 

(13)X=H1 +H2 + · · · +Hp + Lp,

(14)KL(Ds,Dt) =
KL(Ds||Dt)+ KL(Dt||Ds)

2
,

divergences. It shows that the KL indexes of all the data 
sets are larger than zero, which means there exists differ-
ences between SD and TD indeed. The signals that come 
from the same axis have relatively small KL divergence 
compared with those from different axes (e.g., transfer-
ring among different rotating speeds: DA1/DA3/DA4 vs 
DA2, different loads: DA5/DA7/DA8 vs DA8). Mean-
while, the KL divergence of nonadjacent mechanical 
components is larger than those adjacent to each other 
(DA10 vs DA9).

Table 2  Specific tests in experimental section

Test. Source domain Target domain KL divergence

DA1 [S1, L1, F3]-x [S2, L1, F3]-x 3.99

DA2 [S1, L1,F3]-x [S2, L1, F3]-y 6.79

DA3 [S1, L1,F3]-z [S2, L1, F3]-z 1.99

DA4 [S3, L1, F3]-z [S2, L1, F3]-z 4.21

DA5 [S2, L2, F3]-x [S2, L1, F3]-x 3.76

DA6 [S2, L2, F3]-x [S2, L1, F3]-y 5.01

DA7 [S2, L2, F3]-z [S2, L1, F3]-z 1.03

DA8 [S2, L3, F3]-z [S2, L1, F3]-z 1.43

DA9 [S2, L1, F2]-z [S2, L1, F3]-z 11.85

DA10 [S2, L1, F1]-z [S2, L1, F3]-z 30.07

DA3-SD, with 3 different fault types

C1

C3

C2

NMPT, with 3 different fault types

C1

C3

C2

(a)                         (b) 
Figure 5  Classification hyperplane of DA3-SD: a Original DA3-SD; b 
After model parameter transfer

DA7-SD, with 3 different fault types

C3

C2
C1

NMPT with 3 different fault types

C1

C2

C3

(a)                         (b) 
Figure 6  Classification hyperplane of DA7-SD: a Original DA7-SD; b 
After model parameter transfer
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First, Figures 5, 6, 7 and 8 give the visualized results of 
separating hyperplanes on four source domain datasets 
with three different fault types, including varying speeds 
(DA3), changing loads (DA7), adjacent mechanical parts 
(DA9 and DA10), to show the effectiveness of NMPT 
in minimizing the discrepancies of classification hyper-
planes between SD and TD caused by operation condi-
tions. Here, all datasets share the same target domain. By 
comparing these original classification hyperplanes, as is 
shown in Figure 5(a), Figure 6(a), Figure 7(a), Figure 8(a) 
and Figure  9, different working conditions can bring 
diversified results, which could easily cause erroneous 
diagnoses on target task when utilizing source domain 
samples as auxiliary training data directly. Whereas, 
NMPT tries to generalize the distinguishing ability from 
source domain to target domain, as shown in Figure 5(b), 
Figure  6(b), Figure  7(b) and Figure  8(b). Among them, 
Figure  5(b) and Figure  6(b) demonstrate similar results, 
which indicate that the proposed model are relatively 
more robust to transfer source domains from differ-
ent speeds or loads compared with that from adjacent 
mechanical components.       

Then, the performance of NMPT strategy for GFD 
from Test DA1 to DA10 are presented by confusion 
matrix, which are drawn in Figures  10, 11, and 12. In 
confusion matrix, the rows and columns show the 
actual and predicted fault types, respectively. The diag-
nostic accuracies of each fault type are shown in diago-
nal cells. Meanwhile, the misclassification rates are also 
listed outside the diagonal cells. Thus, from Figures 10, 
11, 12 and Table 2, we can find that:

(1) Even though there exists relatively high domain dif-
ferences between SD and TD in some data sets (e.g., DA9 
and DA10), the NMPT model can still learn a precise 
classification for target task (e.g., Figure 12(a) and (b));

(2) The NMPT model investigated in this study shows 
very similar GFD accuracies among varying loads (from 
DA5 to DA8), similar conclusion can be found in chang-
ing speeds (from DA1 to DA4), which verify the robust-
ness of NMPT to sensor axis factors. Meanwhile, the best 
performance of NMPT under different loads happens in 
diverse sensor axes (DA6). Whereas, transferring among 
the same axis can achieve performance improvement in 
the cases of varying rotating speeds (DA1 & DA3);

(3) The optimal classification performance occurs in 
the cases where source and target data come from the 

NMPT, with 3 different fault types

C1

C2

C3

DA9-SD, with 3 different fault types

C1

C2

C3

(a)                         (b) 
Figure 7  Classification hyperplane of DA9-SD: a Original DA9-SD; b 
After model parameter transfer

DA10-SD, with 3 different fault types

C1

C2

C3

NMPT, with 3 different fault types

C1

C2

C3

(a)                         (b) 
Figure 8  Classification hyperplane of DA10-SD: a Original DA10-SD; 
b After model parameter transfer

TD-[S2, L1, F3]-z,
with 3 different fault types

C1 C2

C3

Figure 9  The original classification hyperplane of [S2,L1,F3]-z
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same gearbox (from DA1 to DA8), among them, the best 
classification accuracy of NMPT reaches 98.8% (DA1 & 
DA3). Besides, the performance of utilizing motor data to 
assist the fault recognition of reduction gearbox is lower 
than transferring between reduction gearbox and plan-
etary gearbox;

(4) By comparing the accuracy and error rates in 
all data sets, there are many factors that can affect the 
model performance, among them, the mechanical com-
ponents that contribute source data is the most crucial 
element.

In general, the classification accuracy of NMPT is 
always over 94%. Therefore, NMPT model can avoid 
overfitting of GFD under various working conditions by 

making reasonable use of abundant labeled data form 
another working condition or adjacent components.

After investigating the classification performances of 
NMPT method on all data sets, it is still meaningful to 
further compare NMPT with other methods. Table  3 
lists the comparison results from DA1 to DA10, which 
are calculated over the whole categories. Among them, 
the classification performance of LSSVM model is the 
lowest mainly due to two things: (a) the LSSVM model 
is trained only by using the insufficient target domain 
samples, which will inevitably hinder the generalization 
performance according to the principles of structural 
risk minimization; and (b) the standard LSSVM model 
is lack of transferring knowledge among domains, while 

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.00

C1

C2

C3

C4

C5
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.08

0.00

0.00

0.02

0.00

0.00

C1

C2

C3

C4

C5
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(a)                         

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.02

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.00

C1

C2

C3

C4

C5
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.00

0.00

0.06

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C1

C2

C3

C4

C5
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(c)                         

(b)

(d)
Figure 10  Confusion matrix of NMPT on transferring datasets with varying speeds
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Figure 11  Confusion matrix of NMPT on transferring datasets with different loads
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NMPT can make the best use of source domain samples 
to provide a performance improvement of diagnostic 
model for target task. Compared with other models, 
NMPT possesses the highest accuracy in the whole 
datasets (with the highest diagnostic accuracy: 98.8%), 
which proves the superiority of NMPT in utilizing 
source domain signals to assist GFD in target domain 
and provides a practical method for improving GFD 
performance.

5 � Conclusions

(1)	 For the GFD problems under variable working con-
ditions, the structure of a NMPT-theoretic strat-
egy is presented, which utilizes ITD technology to 
structure fault characteristics for model parameter 
transferring. Experimental results indicate that the 
proposed method can achieve 97.16% diagnostic 
precision when the energies of first six level PRCs 
are set as feature vectors.

(2)	 The visualization results verify that NMPT can 
generalize the distinguishing ability from source 
domain to target domain, which is beneficial for 
GFD under various working conditions.

(3)	 With regard to the diagnostic performance, the 
NMPT model shows a strong robustness under 
different working conditions. Meanwhile, it can be 
found that the influence of working conditions on 
the GFD results is ordered by: rotating speed < load 
< location.

(4)	 The proposed model parameter transfer strategy 
show better performance than other popular meth-
ods, because NMPT can further minimize the dis-
crepancy of two decision boundaries over tasks. 
Thus, the proposed strategy is expected to be an 
effective and feasible tool to solve GFD problem 
with less labeled target training data.

(5)	 In the future, we could explore the relationships 
between KL indicator, working condition factors 
and GFD results to improve the universality of 
the NMPT model.
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