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Abstract 

In this study, a humanoid prototype of 2-DOF (degrees of freedom) lower limb exoskeleton is introduced to evaluate 
the wearable comfortable effect between person and exoskeleton. To improve the detection accuracy of the human-
robot interaction torque, a BPNN (backpropagation neural networks) is proposed to estimate this interaction force 
and to compensate for the measurement error of the 3D-force/torque sensor. Meanwhile, the backstepping controller 
is designed to realize the exoskeleton’s passive position control, which means that the person passively adapts to the 
exoskeleton. On the other hand, a variable admittance controller is used to implement the exoskeleton’s active follow-
up control, which means that the person’s motion is motivated by his/her intention and the exoskeleton control tries 
best to improve the human-robot wearable comfortable performance. To improve the wearable comfortable effect, 
serval regular gait tasks with different admittance parameters and step frequencies are statistically performed to 
obtain the optimal admittance control parameters. Finally, the BPNN compensation algorithm and two controllers are 
verified by the experimental exoskeleton prototype with human-robot cooperative motion.
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1  Introduction
In recent decades, the wearable robot has been widely 
applied in the field of medical rehabilitation engineering. 
One typical representative is the lower limb exoskeleton, 
which has played an essential role in the patient’s reha-
bilitation training with limb injuries and hemiplegia.

Generally, several exoskeleton prototypes have been 
developed for various functional requirements. Khamar 
et  al. [1] designed the knee exoskeleton composed of a 
four-bar mechanism and a curved one. Aguirre-Ollinger 
et  al. [2] developed a stationary 1-DOF exoskeleton to 
assist the knee with flexion and extension exercises. Fur-
thermore, the lower limb exoskeleton was driven by a 
hydraulic actuator and series elastic actuators (SEAs) in 
Refs. [3] and [4], respectively.

The exoskeleton is a type of wearable robot attached 
to the operator’s body and helps the operator complete 

specific tasks [5]. It is worth noting that the system stabil-
ity of human-robot coordinated motion and the motion 
tracking the designed controller’s performance are cru-
cial, which directly determines the wearable comfort-
able effect between person and exoskeleton. Hence, a 
repetitive learning controller was adopted for motion 
assistance in Ref. [3]. An adaptive control scheme and a 
learning control approach were proposed to handle peri-
odic uncertainties in Ref. [6]. Guo et al. [7, 8] synthesized 
the structural parameter of an overload carrying exoskel-
eton. They proposed a human-robot coordinated control 
approach to improve the exoskeleton’s aid-force effi-
ciency in the walking stance phase. Li et al. [9] presented 
a fuzzy approximation based adaptive backstepping con-
troller in the exoskeleton.

Furthermore, with the development of artificial intel-
ligence (AI) technology, some AI algorithms have also 
been used in the exoskeleton’s control design. For exam-
ple, Duong et  al. [10] proposed an adaptive controller 
based on the Radial Basis Function (RBF) neural net-
work to compensate for the dynamic uncertainty error. 
Meanwhile, He et  al. [11] designed an adaptive neural 
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network controller with input saturation to improve the 
upper limb exoskeleton’s dynamic performance.

According to Ref. [12], the control mode of the exo-
skeleton is roughly divided into two categories: active 
mode and passive mode. For the passive mode, the 
desired trajectories of exoskeleton are designed based 
on specific rehabilitation training tasks in advance. 
Comparing with the exoskeleton with passive mode, 
the desired trajectory of active mode is generated based 
on operator’s real-time motion instead of setting in 
advance.

The real-time human motion intention can be obtained 
according to the human-robot interaction, divided into 
the cognitive human-robot interaction (cHRI) and the 
physical human-robot interaction (pHRI). Since the 
human-robot interaction force/torque belongs to the 
pHRI, both admittance control and impedance control 
[13] effectively address the human-robot coordinated 
motion. As introduced in Ref. [14], some excellent lit-
erature about admittance control and impedance con-
trol of human-robot coordinated motion has been 
published. For example, an admittance control based on 
human stiffness estimator was adopted for the exoskel-
eton robot, and a variable admittance control based on 
online neural network training is proposed in Ref. [15]. 
Buchli et al. [16] presented a learning variable impedance 
control with a reinforcement learning (RL) algorithm PI2 
to handle some uncertainties. Yang et  al. [17] adopted 
an admittance adaptation method in robots to interact 
with unknown environments. Additionally, some litera-
ture has also discussed the stability of admittance con-
trol and impedance. Furthermore, the detection method 
of admittance controller stability and the correspond-
ing admittance parameter updating based on the energy 
tank was proposed [18–20]. Meanwhile, the frequency 
domain detection for admittance controller stability was 
given in Refs. [21, 22]. Furthermore, a stability condition 
related to stiffness, damping, and their rates of change 
was proposed in Ref. [23]. Kim et  al. [24] presented an 
admittance controller based on the passivity theory for 
a powered upper-limb exoskeleton to guarantee human-
robot stability. Gui et  al. [25] presented a practical and 
adaptive method to estimate active joint torque using 
electromyography (EMG) signals for a custom lower 
limb robotic exoskeleton with two DOFs. Zhuang et  al. 
[26] presented an EMG-based admittance controller to 
realize both synchronized and stable human-robot inter-
action. Yu et  al. [27] presented an adaptive impedance 
control strategy to track a target impedance model and 
neural networks are used to compensate for uncertainties 
in robotic dynamics. The compliant control has also been 
applied to some other field, such as collaborative robot 
[28] and leg robot [29].

In this study, a humanoid prototype of the 2-DOF lower 
limb exoskeleton was designed, and two exoskeleton con-
trol schemes are introduced to realize the human-robot 
coordinated motion. Inspired by previous studies about 
the online instability index [21, 22], the exoskeleton’s var-
iable admittance control is studied to improve the wear-
able comfortable effect between person and exoskeleton. 
The main contributions of this paper are twofold.

(I) The 2-DOF lower limb exoskeleton prototype is 
designed based on a rigid humanoid structure. Mean-
while, the human-robot interaction force is measured by 
the 3-D force/torque sensor. To compensate for this sen-
sor measurement error, the BP neural network can online 
estimate the real interaction force.

(II) Two modes realize the human-robot coordinated 
motion. In the passive exoskeleton mode, the backstep-
ping controller is designed to realize the exoskeleton’s 
desirable position tracking. Meanwhile, the person 
should passively adapt to the exoskeleton and endure 
a certain human-robot impedance. In the exoskeleton 
active mode, a variable admittance controller is used 
to implement the exoskeleton’s follow-up control. In 
this condition, the person’s motion is motivated by his/
her intention, and then the exoskeleton is driven by the 
admittance controller to improve the human-robot wear-
able comfortable performance. The variable admittance 
controller is designed according to the experimental sta-
tistical method. Finally, the effectiveness of two motion 
modes has been verified by the wearable experiment of 
the specified tester as shown in Figure 1.

The remainder of this paper is organized as follows. 
The mechanical structure of the exoskeleton prototype 
and the human-robot interaction force estimation is 
introduced in Section  2. The backstepping controller 
and admittance controller in the passive mode and active 
mode is designed in Section  3. The variable admittance 
parameter strategy based on the statistical experiment 
results is designed in Section 4. The experimental verifi-
cation is given in Section  5. Finally, the conclusions are 
drawn in Section 6.

2 � Design of the Exoskeleton Platform
2.1 � Anatomy of Human Upper‑limb
The humanoid mechanical structure of the exoskeleton 
prototype is shown in Figure  2. To guarantee strength 
and durability, the exoskeleton limbs are manufac-
tured of stainless steel material. The prototype leg has 
2-DOF motion, i.e., the hip and knee joints. Both joints 
are driven by a disc motor with a servo driving mod-
ule. Several sensors and elements have been installed 
between person and robot, which may decline the com-
pactness and coupling effect of the human-robot sys-
tem. A curved rigid structure is designed to replace the 
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traditional straight thigh and shank of the exoskeleton 
to solve this problem. Furthermore, both the thigh and 
the shank length can be regulated concerning the dif-
ferent tester.

To protect the operator’s safe, analyzing the physi-
ological structure of the human lower limb, two types 
of limited position protection by mechanical and pho-
toelectric devices are adopted. The exoskeleton is 
equipped with several universal wheels to move/fixed 

the mechanical frame. Meanwhile, the exoskeleton pro-
totype height can be regulated in practice to suit the 
different tester.

2.2 � Electrical System Design
The electrical system is also the critical component of 
the exoskeleton prototype, which includes the real-
time data collection and processing, the control com-
mands distribution, and the  servo motor actuator. 

Figure 1  Control scheme of lower limb exoskeleton in active model and passive mode

Figure 2  Mechanical structure of the 2-DOF lower limb exoskeleton platform
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Hence, the electrical system is classified as three parts: 
the data collection module, the actuator driving mod-
ule, and the control module, as shown in Figures  3, 4. 
The data collection module includes the human-robot 
interaction forces measured by 3-D force/torque sen-
sors (JNSH-2-10kg-BSQ-12), two joint angles measured 

by the absolute encoder (INC-4-150 and INC-3-125), 
and the driven torque measured by the torque sensor 
integrated into the motor. To drive the leg of exoskel-
eton motion, the actuator driving module executes the 
control demands by two servo motor actuators (GDM1-
100N2/120N2) together with two servo motor drivers 

Figure 3  Electronic system of 2-DOF lower limb exoskeleton prototype
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(Elmo-G-SOLHOR15/100EE). Then the control module 
is responsible for the control algorithm implementation 
and the control demands generation. The control algo-
rithm is programmed at MATLAB/Simulink to generate 
a .so file, which is downloaded into the Labview software 
and runs in the hardware controller (NI-cRIO-9035). 

2.3 � Human‑Robot Interaction Force Correction
Since the operator’s direct intention is expressed by real-
time human-robot interaction force/torque, the 3-D 
force sensor’s measurement accuracy is critical for the 
controller performance. However, the sensor information 
includes the human-robot interaction force and the grav-
ity of the metal component, the cable tensile force, and 
so on. For the 3-D force sensor, the X-axis, Y-axis, and 
Z-axis directions are shown in Figure 4.

Since the mathematical model of the tensile force 
and the gravity of the metal component are difficult to 
be built accurately, comparing with compensating the 
measurement error by calculating the interference term, 
the BP neural network is adopted to correct the human-
robot interaction force based on the sampling dataset. 
For the sampling dataset, because the sampling experi-
ment is conducted without an operator, the measurement 
of the sensor is seen as the measurement error. The struc-
ture of the neural network is shown in Figure 5.

The experiment found a remarkable correlation 
between the force sensor error and two joint angles 
dynamics. For each dimension of the force sensor, the BP 
neural network has four inputs (hip and knee joint angles 
and their angular velocities). Meanwhile, the neural net-
work output is the estimated value of the force sensor 
error.

Three-layer is used to compose the neural networks: an 
input layer, hidden layer, and output layer. For the ith hid-
den neuron, the value is computed by

where xj is the inputs to neural network, x0 = 1 is the 
bias, x1 = θhip , x2 = θ̇hip , x3 = θknee and x4 = θ̇knee , the 
function ϕ(hi) is the sigmoidal activation function given 
by

The output neuron is given by

 where the neural network Ĉ is the estimated value of the 
force sensor error, n is the number of the hidden neu-
rons, and y0 = 1.

The cost function is designed as the mean squared 
error (MSE)

where M is sample points number in the training set.

3 � Control Mode of Lower Limb Exoskeleton
According to patients’ different recovery goals, the lower 
limb exoskeleton’s working mechanism can be roughly 
divided into active mode and passive mode. More spe-
cifically, for the passive mode, the exoskeleton’s desired 
trajectories are designed based on specific rehabilitation 
training tasks in advance. Relatively, the desired joint 
trajectories are generated based on the real-time human 
motion intention. In other words, the exoskeleton needs 

(1)yi = ϕ(hi) = ϕ

(

∑4

j=0
ωijxj

)

,

(2)ϕ(hi)= tanh(hi).

(3)Ĉ =
∑n

i=0
ω′
iyi,

(4)MSE =
1

M

M
∑

m=1

(

C − Ĉ
)2

Figure 4  Sensors, actuators, and drivers are used in the exoskeleton 
electronic system Figure 5  BP neural network structure is used for the human-robot 

interaction force correction
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to follow the tester’s motion to realize the human-robot 
coordination task.

3.1 � Exoskeleton’s Dynamic Model
The dynamic of 2-DOF exoskeleton prototype is 
described as follows:

where θ ∈ R
2 is the position coordinates of the robotic 

joints, τ ∈ R
2 is the input driven torque, τdis ∈ R

2 is the 
human-robot interaction torque, M(θ) ∈ R

2×2 is the 
inertia matrix, C(θ ,θ̇) ∈ R

2×2 is the centripetal and Cori-
olis torques, G(θ) ∈ R

2 is the force of gravity contributed 
by the exoskeleton, τ f(θ̇) ∈ R

2 is the joint friction torque.

Lemma 1  [30]: For the terms M(θ) , C(θ ,θ̇) , G(θ) , the 
following properties always hold:

1) The parameter matrix M(θ) is symmetric and posi-
tive definite.

2) The parameter matrix Ṁ(θ)− 2C(θ ,θ̇) is 
skew-symmetric.

3.2 � Passive Control Based on Backstepping Controller
As shown in Figure  1, for the passive mode, to ensure 
the dynamic performance and system reliability, instead 
of the traditional PID controller, the model-based 

(5)M(θ)θ̈ + C(θ ,θ̇)θ̇ +G(θ)+ τ f(θ̇) = τ + τdis,

where the reference trajectory xr is generated according 
to the human walking gait and α ∈ R

2 is the virtual con-
trol variable.

The candidate Lyapunov functions of the state space 
model are selected as

Then the derivative of z1 yields

Hence, the derivative of V1 is given by

and the virtual control variable α is designed as

where K 1 ∈ R
2×2 is a positive definite matrix as the first 

control gain.
Then V̇1 yields 

According to Lemma 1, the time derivative of V2 is 
given by

Finally, the backstepping controller is designed as 
follows: 

 where K 2 ∈ R
2×2 is a positive definite matrix as the sec-

ond control gain.
Substituting Eq. (14) into Eq. (13), we have

Hence, the system state errors z1 and z2 converge to 
zero as t → ∞.

(7)
{

z1 = x1 − xr,
z2 = x2 − α,

(8)
{

V1 =
1
2z

T
1 z1,

V2 = V1 +
1
2z

T
2Mz2.

(9)ż1 = ẋ1 − ẋr = z2 + α − ẋr.

(10)V̇1 = z
T
1 ż1 = z

T
1 (z2 + α − ẋr),

(11)α=− K 1z1 + ẋr,

(12)V̇1=− z
T
1K 1z1 + z

T
1 z2.

(13)

V̇2=V̇1+z
T
2Mż2 +

1

2
z
T
2 Ṁz2

= −z
T
1K 1z1 + z

T
1 z2

+ z
T
2

(

τ + τdis − τ f − G − Cx2 −Mα +
1

2
Ṁz2

)

= −z
T
1K 1z1 + z

T
1 z2 + z

T
2

(

τ + τdis − τ f − G − Cα −Mα̇
)

.

(14)τ=− z1 − K 2z2 − τdis + G + Cα +Mα̇ + τ f,

(15)

V̇2=− z
T
1K 1z1 + z

T
1 z2 + z

T
2

(

τ + τdis − τ f − G − Cα −Mα̇
)

=− z
T
1K 1z1 − z

T
2K 2z2 ≤ 0.

controller, backstepping controller, is adopted based on 
the dynamic exoskeleton prototype.

For the 2-DOF exoskeleton as shown in Figure  2, 
according to exoskeleton dynamic (5), if the state vari-
ables are defined as x1=θ=[θ1, θ2]

T , x2=θ̇=[θ̇1, θ̇2]
T , the 

state-space model is shown as follows:

The state error of exoskeleton z1, z2 ∈ R
2 are defined as 

follows:

(6)
{

ẋ1 = x2,

ẋ2 = M
−1[τ + τdis − τ f − G − Cx2].
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3.3 � Active Control Based on Admittance Controller
For the exoskeleton active mode, as shown in Figure 1, 
to achieve the active control objective, a type of force/
position dual-control scheme is adopted based on real-
time human-robot interaction. More specifically, the 
reference trajectory is generated in real-time by the 
admittance controller for the outer force loop. Then, 
the inner position loop is designed by the backstepping 
controller (14).

The admittance control is adopted to correspond to 
the direct intention to motivate and achieve compli-
ant control. And based on the mechanical admittance 
concept, the target dynamic behavior between the 
motion of the exoskeleton’s joint/end-effector and the 
human-robot interaction (torque/force) is realized. In 
this paper, the admittance concept is built on a joint 
coordinate. Therefore, the target admittance θ ∈ R

2 and 
τdis ∈ R

2 can be usually expressed as a second-order 
system:

where θc ∈ R
2 denotes the equilibrium position of exo-

skeleton joint, M im , Bim , θ , θ̇ ∈ R
2 are the virtual iner-

tia, virtual damp, and virtual stiffness respectively, which 
usually are designed in the form of positive definite 
diagonal matrices generally, θ , θ̇ ∈ R

2 are the joint posi-
tion and joint angular velocity respectively. As shown in 
Figure  1, using the sampling human-robot interaction 
torque τdis , θ can be calculated and set as the reference 
trajectory θr of position control loop. Accordingly, as 
long as the inner loop position controller’s performance 
is outstanding enough, the designed dynamic (16) can be 
established.

For the exoskeleton cooperative walking experiment, 
the virtual inertia M im is set as 0. Furthermore, since 
the motion gaits of the different operators have other-
ness widely, it is arduous to predict the operator’s motion 
intention in advance. Consequently, the equilibrium posi-
tion θc can be set as the current joint position. Generally 
speaking, without human-robot interaction, the exoskel-
eton is considered to have completed the cooperative 
walking task perfectly at the current moment, and the 
exoskeleton robot should remain at the current position. 
Consequently, the discrete form of admittance controller 
is rewritten at t +� as follows:

 where � denotes the control interval of exoskeleton pro-
totype, θ(t) denotes the joint position at time t, θ̇ r(t+�) , 

(16)
M im(θ̈ − θ̈c)+ Bim(θ̇ − θ̇c)+ K im(θ − θc) = τdis,

(17)
Bim

[

θ̇ r(t+�)− θ̇(t)
]

+ K im[θ r(t+�)− θ(t)] = τdis(t+�),

θ r(t+�) ∈ R
2×2 denote the reference joint angular veloc-

ity and joint position respectively at time t +� , and 
θ r(t+�) is obtained based on τdis(t+�) and designed 
admittance parameters Bim and K im.

4 � Variable Admittance Parameter Strategy
For the admittance controller with fixed admittance param-
eters, the response time and the control accuracy exhibit 
an inverse relationship. And for the complex application 
scenarios, fixed admittance control is difficult to express 
excellent performance and meet specific requirements. 
More specifically, if the operator walks with higher step 
frequency, the smaller admittance parameters need to be 
set to reduce human-robot impedance, which guarantees 
the faster dynamic response and the exoskeleton’s favor 
flexibility. On the contrary, for the operator with lower 
step frequency, the dynamic response speed requirement 
in the human-robot coupling system is reduced. Hence, 
the higher admittance parameters are set and increase the 
human-robot impedance, which improves the steady con-
trol accuracy and system stability.

The variable admittance parameter strategy needs 
to be formulated to guarantee the operator’s wearable 
comfort and safety in different applications, reflected 
by the real-time human-robot interaction torque. Since 
the exoskeleton flexibility is contradicted with its stabil-
ity, the admittance parameter regulation is essential to 
design the variable admittance controller in different 
conditions.

According to the above analysis and discussion, the 
admittance parameters can be regulated for operators 
with similar height and weight based on the real-time 
step frequency to guarantee the wearable comfortable 
effect of the human-robot coupling system. Notably, a 
type of wearable comfortable evaluate factor needs to 
be defined to balance the flexibility and control accuracy 
for different step frequencies. In this paper, the statistical 
experiment is realized to evaluate wearable comfortable 
and formulate a variable admittance strategy.

In the statistical experiment, based on the fixed admit-
tance controller, the operator (age: 25 years old, height: 
180 cm, and weight: 57.4 kg) completed multiple sets of 
exoskeleton cooperative walking experiments with differ-
ent step frequency and different admittance parameters. 
Simultaneously, several real-time data have been recorded 
by Labview, such as human-robot interaction torque, two 
joint angle. The exoskeleton cooperative walking experi-
ments had respective K = 5000 sampling points with 
seven groups according to the step frequency (24 step/
min, 26 step/min, 28 step/min, 30 step/min, 32 step/min, 
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34 step/min, and 36 step/min). And the data sampling 
period is T=10 ms. Moreover, the virtual damping and 
virtual stiffness of two joints are regulated to keep their 
ratio as follows:

where β denotes the scale factor, Bhip,0 = 0.045, Khip,0 = 
0.04, Bknee,0 = 0.022 and Kknee,0 = 0.037 denote the basic 
admittances of two joint coordinates. Hence, the admit-
tance parameters are unified regulated by adjusting β.

4.1 � Stability Evaluation with Different Step Frequency
By referring to the definition of the instability index pro-
posed in Refs. [21, 22], the corresponding stability index 
in the angle coordinate system for the exoskeleton is 
defined as follows:

 where T is the sampling interval, ω0 is the lowest fre-
quency of the Fast Fourier Transform (FFT), ωs/2 is 
determined by the Nyquist sampling theorem, Pτ ,hip(ω) 
and Pτ ,knee(ω) are the magnitudes of the ωc frequency 
component derived from the FFT of two interaction 
torque signals, P0,hip(ω) and P0,knee(ω) are the two joint 
thresholds to address the sampling noise and the other 
irrelevant high frequency signal. The crossover frequency 
ωc = 2 Hz is determined by experiment for two joints. 
Two magnitudes P0,hip(ω) and P0,knee(ω) are selected as 
0.2883 and 0.3120 for two joints, respectively.

The stability index Iω[KT ] is defined as the sum of 
squares for the ratio of the high-frequency components 
Pτ ,hip(ω) and Pτ ,knee(ω) to all the frequencies compo-
nents. Meanwhile, it is also considered to be the instabil-
ity evaluation of the admittance controller. By analyzing 
the statistical experimental results, as shown in Figure 6, 
with the particular operator’s step frequency, as the scale 
factor β increases, the corresponding stability factor 

(18)Bim =

[

Bhip 0
0 Bknee

]

= β

[

Bhip,0 0
0 Bknee,0

]

,

(19)K im =

[

Khip 0
0 Kknee

]

= β

[

Khip,0 0
0 Kknee,0

]

,

(20)

Iω[KT ] =











ωs/2
�

ω=ωc

Pτ ,hip(ω)

2

ωs/2
�

ω=0

Pτ ,hip(ω)

− P0,hip











2

+











ωs/2
�

ω=ωc

Pτ ,knee(ω)

2

ωs/2
�

ω=0

Pτ ,knee(ω)

− P0,knee











2

,

generally shows a decreasing trend. Hence, compared 
with the lower scale factor β, the exoskeleton human-
robot coupling system with a higher scale factor β shows 
more excellent stability.

4.2 � Human‑robot Interaction Index with Different Step 
Frequency

For the human-robot cooperative motion, the tolerable 
interaction torque is one important objective to evaluate 
the suitable exoskeleton. Hence, it is necessary to design 
a reasonable scale factor to guarantee a small interaction 
torque. The human-robot interaction index for the exo-
skeleton is defined as follows:

where τext,hip,i and τext,knee,i are two joint interaction tor-
ques of the ith sampling data. The human-robot interac-
tion index Iτ ,ext [KT ] is the sum of squares for two joint 
interaction torques.

By analyzing the statistical experimental results, as 
shown in Figure 7, with the particular operator’s step fre-
quency, as the scale factor β increases, the human-robot 
interaction index generally shows an increasing trend. 
Hence, compared with the higher scale factor β, the exo-
skeleton human-robot coupling system with the lower 
scale factor β shows more excellent flexibility and opera-
tor’s freedom.

4.3 � Wearable Comfortable Performance with Different 
Step Frequency

Both frequency oscillations and the magnitude of human-
robot interaction torque are the essential factors affecting 
wearable comfortable. Considering the above statistical 
experimental results, it is reasonable to define the wear-
able, comfortable performance to evaluate wearable com-
fortable by balancing the two elements mentioned above. 
Based on the stability index (20) and human-robot inter-
action index (21), the wearable comfortable performance 
of 2-DOF lower limb exoskeleton is defined to overall 
evaluate the favorable admittance controller as follows:

where Iω[KT ] and Iτ ,ext [KT ] denote the gain of the stabil-
ity index and human-robot interaction index respectively. 
In this study, KFre and KTor are selected as 900 and 1, 
respectively. The statistical experiment for the wearable 
comfortable performance is shown in Figure  8. For the 
different step frequency (24 step/minute, 26 step/min, 28 
step/min, 30 step/min, 32 step/min, 34 step/min, and 36 

(21)

Iτ ,ext [KT ] =

(

1

K

K
∑

i=0

∣

∣τext,hip,i
∣

∣

)2

+

(

1

K

K
∑

i=0

∣

∣τext,knee,i
∣

∣

)2

,

(22)I[KT ] = KFreIω[KT ] + KTorIτ ,ext [KT ],
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step/min), the corresponding optimal scale factor β is 13, 
13, 10, 8, 8, 6, and 6, respectively.

Hence, based on the corresponding optimal scale fac-
tor in different step frequencies, the variable admittance 
strategy is developed by function fitting for the step fre-
quency range from 24 step/min to 36 step/min as follows:

where ω denotes the real-time step frequency, P1 = 
−0.002367, P2 = 0.291, P3 = −13.29, P4 = 266.5 and P5 = 
−1965 denote the fitting coefficient.

(23)β=P1ω
4 + P2ω

3 + P3ω
2 + P4ω + P5,

Figure 6  Stability index of the admittance control by statistical experiment results
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5 � Experiment
5.1 � Stability Evaluation with Different Step Frequency
For the error correction experiment of the 3-D force 
sensor, the 12 BP neural networks (Thigh-Down-X, 
Thigh-Down-Y, Thigh-Down-Z, Thigh-Up-X, Thigh-
Up-Y, Thigh-Up-Z, Shank-Down-X, Shank-Down-Y, 

Shank-Down-Z, Shank-Up-X, Shank-Up-Y, Shank-Up-Z) 
with the structure as shown in Figure 5 had been trained 
by the sampling set. Furthermore, the neuron number is 
60, the network learning rate is 0.1, and the setting train-
ing epoch is 1000. The data for both train and verification 
sample set include two joint angles, angular velocities, 

Figure 7  Human-robot interaction index of the admittance control by statistical experiment results
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and sensor forces. Meanwhile, the data had been ran-
domly divided into two types of samples in a fixed pro-
portion. In this study, the setting train sample number is 
5000, and the verification sample number is 1000. Con-
sidering the training process of the BP neural network, 
the neural network performance on the train set, valida-
tion set, and test set are shown in Figure 9.

As shown in Figure 10, the performance on the valida-
tion sample set by the BP neural networks indicates that 
the average prediction error percent of Thigh-Down-X, 
Thigh-Down-Y, Thigh-Down-Z, Thigh-Up-X, Thigh-Up-
Y, Thigh-Up-Z, Shank-Down-X, Shank-Down-Y, Shank-
Down-Z, Shank-Up-X, Shank-Up-Y, Shank-Up-Z are 
3.3728%, 5.3527%, 1.9347%, 1.4701%, 1.0529%, 13.3203%, 

Figure 8  Wearable comfortable performance by using the admittance controller
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Figure 9  Training process of BP neural network
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Figure 10  Prediction error percentage of the 3-D force/torque sensor by using 12 BP neural networks



Page 14 of 17Chen et al. Chin. J. Mech. Eng.           (2021) 34:22 

3.1732%, 5.4756%, 30.3940%, 2.8546%, 4.5779%, 
31.6092%, respectively. Since the Z-dimension sensor 
force is mainly caused by unknown external disturbance, 
the prediction error percentage is higher, and the predic-
tion accuracy is relatively low. Hence, the error correc-
tion experiment of the 3-D force sensor is satisfactory.

5.2 � Backstepping Controller in Exoskeleton Passive Mode
The human walking gaits θ1d and θ2d for the desirable tra-
jectory are given by

 where ω = 0.4π, ak ,hip(k = 1, 2, 3, 4 ) are −2.874, −2.423, 
1.227 and −0.1462, bk ,hip(k = 1, 2, 3, 4 ) are 18.53, 
−2.016, and −0.3704 and 0.201, θ0,hip = 10.07, ak ,knee
(k = 1, 2, 3, 4 ) are 17.62, − 2.469, − 3.82 and − 0.1346, 
bk ,knee(k = 1, 2, 3, 4 ) are −1.494, 11.72, 1.014 and 0.2165, 
and θ0,knee = −17.49.

For the backstepping controller (14), the param-
eters M=[25.68+2.65cos θ2 , 6.91+1.32cos θ2 ; 
6.91+1.32cos θ2 , 6.91], C=[−1.32sin θ2θ̇2 , − 1.32 sin θ2
(θ̇1 + θ̇2) ; 1.32sin θ2θ̇1 , 0], G = [33.32sin(θ1 + θ2) + 
78.39sin θ1 ; 33.32sin(θ1 + θ2) ], and τ f = [31.38sgn(θ̇1) + 

(24)

θ1d =

4
∑

k=1

(

ak ,hip sin(kωt)+ bk ,hip cos(kωt)
)

+ θ0,hip,

(25)

θ2d =

4
∑

k=1

(

ak ,knee sin(kωt)+ bk ,knee cos(kωt)
)

+ θ0,knee,
15.55θ̇1 ; 43.67sgn(θ̇2) + 27.51θ̇1 ] are adopted in 
experiment. The control parameters are set as 
K 1 = diag{15, 15} and K 2 = diag{150, 150}.

The angle responses of two exoskeleton joints and 
the corresponding tracking errors are shown in Fig-
ure  10, which indicates the satisfactory tracking per-
formance (|e1|< 0.016 rad, | e2|<0.04 rad). Furthermore, 
the human-robot interaction torques of the two joints 
are shown in Figure  11. Both interaction torques 
Torquehip and Torqueknee are less than 6 N·m by using 
the backstepping controller. These interaction torques 
are acceptable for the experienced tester. Therefore, the 
tester can follow the walking gait of the exoskeleton 
with minor tolerable impedance (Figure 12). 
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Figure 11  Two joint angle positions and errors by using the backstepping controller in exoskeleton passive mode

Figure 12  Human-robot interaction torque by using the 
backstepping controller in exoskeleton passive mode
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5.3 � Variable Admittance Controller in Exoskeleton Active 
Mode

To verify the admittance controller’s effectiveness with a 
variable admittance strategy (23), the comparative exper-
iments had been conducted based on the conception of 
wearable comfortable performance (22). Considering the 
people’s daily walking step frequency is time-varying, the 
step frequency varying rule of all 11 comparative experi-
ments has set as increasing from 24 step/min to 36 step/
min in 65 s evenly. More specifically, the 10 comparative 

experiments adopted traditional fixed admittance con-
troller with different scale factors β from 4 to 13, and 
another set of experiments used variable admittance con-
troller. The wearable comfortable performance (22) of 10 
comparative experiments is shown in Figure  13. Obvi-
ously, by analyzing the statistical experimental results, 
the best wearable comfortable performance is 12.0536 
when β is set as 8, and β that is too big or too small may 
express the worse wearable comfortable performance 

Figure 13  The wearable comfortable performance by using the constant admittance controller in different step frequency experiments

Figure 14  Variable scale factor β (23) and the transient walking frequency using the variable admittance controller in 65 s time
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because of high-frequency oscillations or bigger magni-
tude of human-robot interaction.

Meanwhile, for the variable admittance experiment, 
the varying trend of step frequency and corresponding 
variable scale factor β, which is increased from 6.4 to 
13.4, based on variable admittance strategy (23) shown 
in Figure  14. By analyzing the statistical experimental 
result, the wearable comfortable performance is 8.4593. 
Hence, compared with the fixed admittance control-
ler, the variable admittance controller has demonstrated 
more beneficial wearable comfortable performance in 
the human-robot cooperative walk with variable step fre-
quency. Theoretically, the variable admittance strategy 
(23) adjusts the β in real-time according to the operator’s 
step frequency to effectively meet and balance the stabil-
ity and flexibility requirements of the human-robot cou-
pling system. However, it is difficult for fixed admittance 
controller to take care of different walking states.

Eventually, two human-robot interaction torques by 
using the variable admittance controller in exoskel-
eton active mode are shown in Figure  15, and the cor-
responding human-robot interaction torques Torquehip 
and Torqueknee are less 7 N·m and 13 N·m respectively, 
which implies that the human-robot impedance of the 
collaborative motion in transient walking frequency is 
constrained in a certain boundary.

6 � Conclusions
In this study, the 2-DOF lower limb exoskeleton proto-
type is introduced. Firstly, the BP neural network is used 
to estimate and correct the 3-D force/torque sensor’s 
real-time measurement error. Then the backstepping 
controller (14) is designed to realize the exoskeleton’s 
passive control mode, which means that the person fol-
lows the exoskeleton with tolerable impedance. Sub-
sequently, a variable admittance controller is adopted 
to implement the exoskeleton’s active control mode 
and improves the human-robot wearable comfortable 

performance. The admittance parameters are designed 
according to both the human-robot interaction index 
and the stability index in different step frequencies of 
the human-robot cooperative walk. Finally, the proposed 
control schemes are verified by the exoskeleton experi-
mental prototype. They indicate that the variable admit-
tance controller has favorable wearable comfortable 
performances for a human-robot cooperative walk in dif-
ferent step frequencies in the exoskeleton active mode. 
Furthermore, the backstepping controller (14) guarantees 
the desired trajectory’s good position tracking perfor-
mance with tolerable human-robot interaction torque.
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