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Prediction of Cross‑Tension Strength 
of Self‑Piercing Riveted Joints Using Finite 
Element Simulation and XGBoost Algorithm
Jianping Lin1, Chengwei Qi1, Hailang Wan1, Junying Min1*  , Jiajie Chen2, Kai Zhang1 and Li Zhang2 

Abstract 

Self-piercing riveting (SPR) has been widely used in automobile industry, and the strength prediction of SPR joints 
always attracts the attention of researchers. In this work, a prediction method of the cross-tension strength of SPR 
joints was proposed on the basis of finite element (FE) simulation and extreme gradient boosting decision tree 
(XGBoost) algorithm. An FE model of SPR process was established to simulate the plastic deformations of rivet and 
substrate materials and verified in terms of cross-sectional dimensions of SPR joints. The residual mechanical field 
from SPR process simulation was imported into a 2D FE model for the cross-tension testing simulation of SPR joints, 
and cross-tension strengths from FE simulation show a good consistence with the experiment result. Based on the 
verified FE model, the mechanical properties and thickness of substrate materials were varied and then used for FE 
simulation to obtain cross-tension strengths of a number of SPR joints, which were used to train the regression model 
based on the XGBoost algorithm in order to achieve prediction for cross-tension strength of SPR joints. Results show 
that the cross-tension strengths of SPR steel/aluminum joints could be successfully predicted by the XGBoost regres-
sion model with a respective error less than 7.6% compared to experimental values.
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1  Introduction
Reduction in weight of automobile parts is a prevailing 
trend in automobile industry. An effective method for 
lightweight is using high strength steel and aluminium 
alloy as materials of automobile parts [[1]]. There are 
several researches on the development of lightweight 
materials [[2]], advanced material testing [[3]], accu-
rate simulation of forming process [[4]], and so on. With 
regard to the mechanical joining process of high strength 
steels and aluminium alloys, self-piercing riveting (SPR) 
is a suitable method [[5]] due to the advantages of envi-
ronmental friendliness, high joint strength and stiff-
ness [[6]], easy access to visually inspect the joints and 

possibility of manual application [[7]]. Nowadays, SPR 
has been widely used by major automotive manufactur-
ers, and some scholars even use electromagnetic-SPR to 
widen its application [[8], [9]].

Joint strength is the primary factor to evaluate SPR joint 
quality. The strengths of SPR joints are generally obtained 
through conventional mechanical tests, which is costly 
and time-consuming. To solve this problem, Sun and 
Khaleel [[10]] proposed an analytical model to predict 
the static strength based on some cross-sectional dimen-
sions of SPR joints and characteristics of substrates. Nine 
different cases consisting of aluminium and steel mate-
rials with various thicknesses and strength grades were 
examined to validate the model. Later, an empirical equa-
tion without using cross-sectional dimensions of SPR 
joints was established by Haque et al. [[11]]. The empiri-
cal equation can achieve the prediction of cross-sectional 
dimensions and lap-shear strengths directly based on the 
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force-displacement curve of SPR process, and the pre-
dicted strengths of SPR joints matched the experimen-
tal strengths reasonably. Xie et  al. [[12]] established an 
empirical model to predict SPR steel/steel joints strength 
under all kinds of failure modes. Considering the strength 
reduction in the case of group rivets, Yan et al. [[13]] pro-
posed a design method based on the model of transmis-
sion dynamics of infectious diseases to estimate the shear 
strength of the rivet connections. The nominal shear 
strength of SPR joint could be appropriately predicted. 
Ma et  al. [[14]] built a model to predict the lap-shear 
strength of SPR joints according to top sheet thickness 
and undercut dimension, the model was only able to pre-
dict the lap-shear strength of SPR joints made of specific 
materials (AA6061-T6 and mild steel CR4) with various 
thickness. Although analytical or empirical model can 
predict the strength of SPR joints, their applications were 
mostly limited by the cost of the experiments required to 
calibrate the model, complex calculations, and poor ver-
satility, etc.

In general, a large amount of experiment results is 
required to verify the prediction accuracy of theoretical 
model, however, using FE method to obtain joint strength 
is more economical than experiment. Several researches 
report that the mechanical behavior of SPR joints can 
be well simulated by FE model. Westerberg [[15]] used 
ABAQUS/Explicit to simulate the T-peeling test of SPR 
joint, the cross-sectional dimensions of experimental 
joints were used to build the simulation model. Various 
test speeds were used in the simulation, and the results 
showed that the mechanical performance was similar at 
a test speed of 1, 10 and 25 m/s, but the maximum load, 
energy absorption and failure displacement of SPR joint 
were higher when tested at a higher speed of 100 m/s. 
Porcaro et  al. [[16]] studied the mechanical behavior of 
SPR joints through LS-DYNA. A 2D model was estab-
lished for SPR process simulation, and then the simula-
tion results of residual stress and strain from the SPR 
process model were imported into a 3D model for the 
simulation of joint strength. Bouchard et al. [[17]] com-
pared the predicted shear strengths obtained from the 
simulation model with and without the initial mechani-
cal fields caused by SPR process, their results indicated 
that the prediction results obtained from the model con-
sidering initial mechanical fields matched better with the 
experiment results. Result from Moraes et al. [[18]] dem-
onstrated that residual stresses and plastic strain from 
the SPR process dramatically changed the quasi-static 
and fatigue behaviors of SPR joint. As reviewed above, 
an FE model considering the plastic strain and residual 
stress induced from SPR process can effectively help the 
prediction of SPR joint strengths, but it is still a time-
consuming method.

The engineering application of machine learning 
method is an attractive approach lately. The advantage of 
using machine learning method to build predict model 
for the strength of SPR joints is that the model is scal-
able, in other words, the prediction accuracy can be 
improved with the increasing of used training data. Chen 
et al. [[19]] applied least squares support vector machine 
(LSSVM) to predict grinding chatter and reached a pre-
diction accuracy rate of 96%. Shao et  al. [[20]] extract 
feature from motors’ original signals and used deep 
belief networks (DBN) to achieve automated and intel-
ligent fault diagnosis for induction motors. Fujishima 
et  al. [[21]] proposed a novel compensation method 
using deep learning algorithm to compensate the ther-
mal deformation in machine tool structure. Postel et  al. 
[[22]] designed an approach for the inverse identifica-
tion of parameters during cutting operation to predict. 
Yavuz et  al. [[23]] developed an artificial neural net-
work (ANN) model to estimate the shear capacities of 
the FRP-strengthened reinforced concrete beams, they 
concluded that the ANN model had a better prediction 
accuracy than existing building code approaches. Qin 
et  al. [[24]] used deep-learning technology to establish 
an end-to end relationship between cross-sectional SEM 
images of cement backfill beam (CPB) and its mechani-
cal strength, a convolutional neural network was used 
to predict the mechanical strength of CPB based on the 
features extracted from the cross-sectional SEM images. 
But prediction models using machine learning algo-
rithms usually require huge data sets to achieve accurate 
predictions, and it is not economical to obtain data sets 
through experiments. To solve this problem, Liu et  al. 
[[25]] developed a model based on FE model and ANN 
to predict and compensate force-induced deformation of 
machine tools for dual-machine-based riveting system.

After comparing the above methods, it is deduc-
ible that using machine learning method to predict the 
strength of SPR joint based on FE model data is effec-
tive and time-saving. Therefore, a model was developed 
to predict the cross-tension strength of SPR joints based 
on FE model data and XGBoost regression model in this 
work. The structure of the work is organized as follows: 
Section 2 introduces the SPR process and mechanical test 
experiment. In Section 3, the detail of FE modeling and 
model validation are provided. In Section  4, the estab-
lishment and analysis of the strength prediction model 
are discussed in details, and the conclusions and outlook 
are summarized in Section 5.

2 � Experimental Details
2.1 � Materials
The substrate materials used in this study were cold-
rolled zinc-galvanized steel CR590 (1.1 mm in thickness), 
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aluminum alloy S-6000-IH (1.2 mm in thickness), alu-
minum alloy AA6022-T4 (2.0 mm in thickness) and 
aluminum alloy AA5754-O (2.0 mm in thickness), 
respectively. The four materials used in this work have a 
wide application on body-in-white (BIW) of automotive. 
CR590 steel, a dual phase steel with a strength grade of 
600 MPa, is widely used in automobile’s A pillar, B pillar 
and their reinforcement plates. The Al alloys adopted in 
this work are widely used in inner and outer panels of car 
body. SPR is an effective method to join dissimilar mate-
rials, e.g., steel and Al alloy. The rivet material was 37Cr4 
steel. Table  1 summarizes the mechanical properties of 
experimental materials provided by suppliers. In order 
to obtain the specific material properties of the substrate 
materials used in SPR modeling, quasi-static uniaxial 
tensile tests were performed with the aid of digital image 
correlation (DIC) method according to the GB/T228.1-
2010 standard. The true stress-strain curves derived from 
uniaxial tensile test results were extrapolated using the 
Hollomon model (Eq. (1)), and the fitting parameters of 
substrate materials are summarized in Table 2. Due to the 
small volume and hollow structure of the rivet, compres-
sion tests with the wire rivet material along longitudinal 
direction were conducted to obtain its true stress-strain 
curve. Then, the acquired material property curve was 
fitted using the Hockett-sherby model (Eq. (2)) [[26]] 
with fitting parameters of B=1555.3 MPa, A=1762.3 
MPa, m=51.2 and n=0.80:

2.2 � SPR Joint Fabrication
Results from Abe et al. [[26]] showed that the SPR steel/
aluminum joints possess higher strength when steel was 
used as the top sheet. Therefore, in this work, the steel 
was used as the top sheet and the aluminum alloy used 
as the bottom sheet. The cross-sectional geometries of 
Zinc-coated 37Cr4 steel rivets with countersunk head 
and SPR die are illustrated in Figure  1. All SPR joints 

(1)σ = K ·εn,

(2)σ = B− (B− A)·e−mεnp .

were produced with the EPRESS Ltd. servo driven rivet-
ing equipment using a concave die as shown in Figure 1. 
The riveting speed was set to 1 mm/s and a riveting force 
of 50 kN (maximum force on the punch) was applied.

According to Zhu et al. [[27]], cross-tension joints for 
SPR are fabricated as shown in Figure 2. Three material 
combinations (A to C listed in Table 3) were considered 
in this study (referred to as SPR-A, SPR-B, SPR-C joints), 
and three joints were produced for each combination 
(Figure 2a). A customized fixture was used to ensure that 
the peeling force is along the central axis of the joint dur-
ing the cross-tension test (as presented in Figure 2b), and 
the cross-tension tests of SPR joints were performed with 
a cross-head speed of 10 mm/min on a universal testing 
machine MTS E45.105. The Keyence VHX-6000 digital 
microscope system was then used to observe the cross-
sectional morphology and dimensions of SPR joint.

Table 1  Mechanical properties of the substrate and rivet 
materials

Material grade Young’s 
modulus (GPa)

Ultimate tensile 
stress (MPa)

Yield stress (MPa)

CR590 198 621 369

S-6000-IH 62 225 120

AA6022-T4 62 262 159

AA5754-O 70 227 100

37Cr4 (rivet) 210 1700 1500

Table 2  Fitting parameters of Hollomon model for substrate 
materials

Material grade CR590 S-6000-IH AA6022-T4 AA5754-O

K (MPa) 999.4 390.0 449.6 448.5

n 0.17 0.21 0.18 0.29

Figure 1  Cross-sectional geometries of rivet and die
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3 � Numerical Simulation
3.1 � Finite Element Modeling of SPR Process
Numerical simulation of the SPR process and SPR joints’ 
cross-tension process was performed using the finite ele-
ment software Simufact. forming. It includes the implicit 
MSC Mar solver for non-linear applications and has SPR 
simulation module. In this study, the punch, die and 
blank holder were set as rigid bodies, and the rivet mate-
rial and the substrate materials were defined as elasto-
plastic materials in the numerical simulation. As shown 
in Figure 3, two rigid parts were added to facilitate subse-
quent simulation of cross-tension test. The punch speed 
was set to 1 mm/s, which is consistent with the actual riv-
eting speed in the riveting experiments, and the clamping 
force of 5 kN was applied to the blank holder through a 
compressed spring.

The Coulomb friction law was used in the SPR pro-
cess simulation. The friction coefficient between 

bottom sheet and die was set to 0.4, while the friction 
coefficients elsewhere were set to 0.15 [[28]]. A 2D 
axisymmetric model was used for SPR process simu-
lation to save calculation time. The rivet was meshed 
using 4-nodes quadrilateral elements with a mesh size 
of 0.15 mm×0.15 mm, while the top and bottom sheets 
were meshed using 4-nodes advancing front quad ele-
ments with a mesh size of 0.2 mm×0.2 mm. SPR of two 
sheet combinations was modelled: 1.1 mm/1.2 mm and 
1.1 mm/2.0 mm. As shown in Figure  4, mesh refine-
ment boxes were applied to the rivet tip (solid rectangle 

Figure 2  Schematic dimension of specimen and optical image of test setup (a) dimensions of cross-tension joint, (b) cross-tension test setup

Table 3  Summary of joining combinations for cross-tension 
strength analysis

Combination A B C

Top sheet material (thick-
ness)

CR590 (1.1 mm)

Bottom sheet material 
(thickness)

S-6000-IH 
(1.2 
mm)

AA6022-T4 (2.0 mm) AA5754-
O (2.0 
mm)

Figure 3  Boundary condition of SPR process simulation
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in Figure  4) and the central deformation areas of the 
top and bottom sheets (dashed rectangle in Figure  4) 
to distribute fine meshes and improve the prediction 
accuracy without remarkably increasing calculation 
time. Due to large deformations occurring at the cut-
ting zone in front of the rivet tip, mesh rezoning algo-
rithm was necessary. The remeshed elements in the 
cutting zone become smaller until the minimum blank 
thickness is reached to achieve accurate geometrical 
cutting. The minium mesh size of top and bottom sheet 
during remeshing was set to be 0.025 mm×0.025 mm.

A geometrical criterion based on a separate thickness 
(i.e., 0.05 mm) was implemented to define the finish of 
rivet piercing through the top sheet (i.e., CR590 steel) 
in the simulation model. As illustrated in Figure  5, the 
top sheet is assumed as completely pierced by the rivet 
when its minimum remaining thickness is less than the 
separate thickness. The riveting process was controlled 
by the riveting force and were terminated when the rivet-
ing force reached 50 kN. After that the punch and blank 
holder were moved up to release the joint from the die, 
then the spring back of SPR joints were calculated.

3.2 � Finite Element Modeling of Cross‑Tension Testing 
of SPR Joints

The model of cross-tension test in this study was estab-
lished based on the result of SPR process simulation. 
It is assumed that the rivet periphery was under per-
fectly axisymmetric loading right before failure during 
cross-tension test [[10]]. Under this assumption, a 2D 
axisymmetric model can be used to simulate the cross-
tension process to save simulation time. The boundary 

condition of 2D cross-tension test model is shown in 
Figure 6. The load was applied to a rigid part (grey part 
in Figure 6), and the loading speed was set to 10 mm/
min for 2D cross-tension model. The coulomb friction 
coefficients at all contacts in the model were set to 0.15.

3.3 � Validation
To verify the established simulation model of SPR pro-
cess, the cross-sectional morphologies and dimensions of 
SPR-A and SPR-B joints obtained from simulation were 
compared with those obtained from experiments. It can 
be seen from Figure  7 that the profiles obtained from 
simulations matched well with those from experiments. 
According to Haque’s research [[29]], the undercut (UD) 
and the minimum remaining thickness (RT) of the bot-
tom sheet are two key dimensions that reflect SPR joint 
quality. Therefore, the values of UD and RT were meas-
ured for joints obtained from experiment and simulation 
as summarized in Table 4. Good agreement between the 
simulations and the experiments indicates that the devel-
oped simulation model is capable of predicting the defor-
mation of the rivet and sheets during SPR process.

Figure 4  Schematic of the SPR process simulation model
Figure 5  Illustration of the separate thickness for blanking of the top 
sheet

Figure 6  2D FE model of cross-tension test for SPR joint
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Figure 8 presents the comparisons of force-displace-
ment curves between simulation and experiment. The 
strength obtained experimentally and numerically for 
SPR-A are 1.57±0.02 kN and 1.61 kN (with an error 
of 2.54%), while for SPR-B 3.04± are 0.02 kN and 3.18 
kN (with an error of 4.61%), respectively. It can be 
observed that the strengths of SPR-A and SPR-B joints 
obtained from simulations were close to the experi-
mental values, while a difference in the failure dis-
placement was observed for both of SPR-A and SPR-B 
joints, which is attributed to the following two aspects: 
(1) To ensure that the specimen can be clamped 
smoothly, the diameter of mounting holes (i.e., 13 
mm) on the specimen are larger than that of used fix-
ing bolts (i.e., 12 mm), and the sliding gap is ~1 mm 
for top and bottom specimens during cross-tension 
testing; therefore, a sliding displacement of ~2 mm is 
generated during tensile testing, which does not occur 
in simulation (referred to Figure  9). (2) The deform-
able area of specimens in simulation model is set as 
a semicircle with a radius of 15 mm (referred to Fig-
ure  9), which is smaller than that in experiment (i.e., 
a square with a size of 38 mm×38 mm), thus, a larger 
deformation displacement is generated for SPR joints 
during cross-tension test. However, this work mainly 
focuses on the joint strength, and a good agreement 
was found between FE model and experiment with 
respect to the cross-tension strength for SPR-A and 

SPR-B joints (with only an error of 1.3%). As a result, 
the established FE model is capable of predicting the 
cross-tension strength for SPR joints.

4 � Prediction of Cross‑Tension Strength of SPR 
Joints Using XGBoost Regression Model

4.1 � XGBoost Regression Model
Theoretically, the traditional neural network method can 
achieve the regression through fitting of any non-linear 
function, but it has poor stability and highly depends 
on data quantity. XGBoost is a scalable end-to-end 
tree boosting algorithm with high stability and accu-
racy, which was recently proposed by Chen et al. [[30]]. 
It has strong fitting ability and is suitable for regression 
compared with tradition back-propagate algorithm. A 
regularization term was introduced into the objective 
function of XGBoost regression model to avoid the over-
fitting phenomenon that occurs in tradition decision tree 
algorithms. The Classification and Regression Trees was 
used as base learner. The overall objective function of 
XGBoost regression model is expressed by Eq. (3):

The parameters of XGBoost model can be divided 
into three categories: overall parameters, acceleration 
parameters and tuning parameters. For overall param-
eters, when the booster parameter is set to ‘gblinear’, the 
model is a linear model, and when the booster parameter 
is set to ‘gbtree’, the model is a tree-based model. In this 
work, the booster parameter was set to ‘gbtree’ to reflect 
the highly nonlinear relationship between the input data 
and output data. Among the acceleration parameters, 
there are many parameters that need to be adjusted. The 
eta value controls the robustness of the model, and the 
default value of 0.3 was used in this work. Other param-
eters are determined during training of the model.

4.2 � Data Set of the XGBoost Regression Model
To acquire a sufficient number of data as input, the thick-
ness and material properties (K and n parameters in the 
Hollomon hardening law) of the bottom sheet were var-
ied and then used for simulations. Six material properties 
with various K and n values were created for the bottom 
materials of SPR joints as listed in Table 5 and used for FE 

(3)Obj(θ) = L(θ)+�(θ)+ C .

Figure 7  Comparison of the joint cross-sectional profiles from the 
simulations and experiments (a) SPR-A joint, (b) SPR-B joint

Table 4  Comparison of the joint cross-sectional dimensions from the simulation and experiment

Joint Undercut (UD, mm) Error (%) Minimum remaining thickness (RT, mm) Error
(%)

FE model Experiment FE model Experiment

SPR-A 0.41 0.39 6.2 0.16 0.17 3.0

SPR-B 0.43 0.42 2.4 0.83 0.91 8.8
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model to acquire the cross-tension strengths. Only three 
kinds of thicknesses were selected for M3-M6 materi-
als since the required amount of data has been achieved. 
Accordingly, a total of 48 cross-tension strengths of SPR 
joints were obtained and then used as the input data for 
XGBoost model.

4.3 � Prediction Model Development and Analysis
The modeling steps of the XGBoost regression model are 
as follows [[30]]:

(1)	 Data processing. First, normalize the variables of K, 
n and thickness to keep their values in similar mag-
nitude levels. Then, the 48 base data sets of cross-
tension strengths were randomly divided into 34 
training sets and 14 testing sets. Finally, input the 
base data sets into the XGBoost regression model.

(2)	 Determine parameters of XGBoost model by train-
ing data sets. 34 training data sets are input into the 
XGBoost regression model with some basic param-
eters to determine remaining parameters, and then 
calculate the prediction strengths for 34 training 
data sets. If the prediction error for training data 
sets was smaller than the target value, the XGBoost 
regression model is obtained, otherwise, the param-
eters of XGBoost regression model will be updated 
and then used to calculate the prediction strengths.

(3)	 Calculate the prediction error for testing data sets. 
After obtained the parameters of XGBoost regres-
sion model, the cross-tension strengths of SPR 
joints in testing data sets were predicted, and then 

Figure 8  Comparison of force-displacement curve from FEM and 
experiment (a) SPR-A joint, (b) SPR-B joint

Figure 9  Failure mode of SPR-B joint in cross-section test
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the prediction error was calculated to see whether 
the prediction accuracy is guaranteed.

(4)	 Cross-validation. Cross-validation is a model 
assessment technique and generally used to evalu-
ate the prediction performance of a machine learn-
ing algorithm for new data sets that it has not been 
trained with. And 100 rounds of cross-validation 
were performed by using different seed parameters 
to acquire different random assignments of train-

ing and testing data sets. The prediction error of 
each round of cross validation was calculated and 
the average prediction error (cross-validation error) 
was used as a performance indicator.

(5)	 Obtain the optimal parameters of XGBoost regres-
sion model. Output the optimal parameters once 
the cross-validation error reaches the target value, 
eventually, the desired XGBoost regression model 
are acquired. The establishing process of the predic-
tion model is illustrated in Figure10.

After the training process was completed, testing set 
was used to verify the generalization capacity of the pre-
diction model. The coefficients of determination ( R2 ) for 
the training set and testing set were 0.9978 and 0.9677, 
respectively, which indicates that the prediction results of 
the model were accurate. Figure  11 shows that the pre-
diction results are consistent with input base data for the 
training set and testing set, and the percentage error of 
the training set and testing set is less than 1% and 8.5%, 
respectively. It can be concluded that the prediction 
model has good generalization ability.

4.4 � Validation of the Prediction Model
To verify the validity of the prediction model based on 
the FE model data, cross-tension strength of SPR-C 

Table 5  Hollomon model parameters and thickness of bottom 
sheet material used in the simulation

Bottom sheet material K (MPa) n Bottom sheet thickness (mm)

S-6000-IH 390.0 0.21 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 
1.9, 2.0

AA6022-T4 449.6 0.18 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 
1.9, 2.0

M1 419.8 0.20 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 
1.9, 2.0

M2 510.0 0.16 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 
1.9, 2.0

M3 390.0 0.30 1.2, 1.5, 2.0

M4 390.0 0.40 1.2, 1.5, 2.0

M5 510.0 0.30 1.2, 1.5, 2.0

M6 510.0 0.40 1.2, 1.5, 2.0

Basic model with initial

parameters

Calculate output error of

XGBoost model

Update model parameters
Satisfy termination

condition?
N

Obtain XGBoost regression

model
Y

Obtain optimal XGBoost

parameters

Base data set

Training data set Testing data set

Prediction of testing data

set and error calculation

Calculate prediction

strength

Satisfy termination

condition?

Calculate cross-validation

error

N

Update model parameters

Y

Data separation and

normalization

Figure 10  Flowchart of the cross-tension strength prediction model base on XGBoost algorithm
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joint was tested as a reference value for the predic-
tion value of XGBoost regression model. As shown in 
Table  6, the averaged cross-tension strength of three 
joints was measured as 2.52 kN, and the cross-tension 
strength obtained from FE model simulation is 2.69 
kN, while the predicted strength value of SPR-C joint 

Figure 11  Comparison between prediction and input base results of cross-tension strength for (a) training data sets and (b) testing data sets

Table 6  Comparison of the cross-tension strength from 
experiment, FE model and the prediction model

Resource Experiment FE model Prediction

Cross-tension strength (kN) 2.52 2.69 2.71

Deviation (kN) ±0.02 / /
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obtained from the XGBoost regression model is 2.71 
kN, and a prediction error of 7.6% is observed between 
experimental and predicted strengths, which indicates 
that the established XGBoost regression model can 
effectively predict the cross-tension strength of SPR 
joints.

Haque et al. [[10]] proposed an empirical model on the 
basis of characteristic force-displacement curves during 
SPR process, in which two critical empirical parameters 
depending on hardness and length of rivet were involved. 
Although a prediction error smaller than 8% was 
achieved for the cross-tension strength of SPR joint, the 
empirical model by Haque et  al. [[10]] relied heavily on 
the selection of empirical parameters and a considerable 
number of experimental data. In contrast, the prediction 
method proposed in this work exhibits similar prediction 
accuracy through much less experiments (e.g., cross-sec-
tional observations and cross-tension tests). In addition, 
FE simulation effectively enables our prediction method 
applicable to various experiment conditions, such as dif-
ferent material combinations. Another advantage of our 
prediction method is the capability of processing a larger 
amount of input data, which can be acquired through 
FE simulation with calibrated model rather than cost 
intensive experiments, to further improve the prediction 
accuracy.

5 � Conclusions
In this work, a cross-tension strength prediction method 
based on FE model simulation and XGBoost gradi-
ent descent decision tree algorithm is proposed. A 2D 
FE model of SPR process was established to acquire the 
residual mechanical fields including plastic strain and 
residual stress of rivet and substrate material, which were 
imported into the 2D FE model of cross-tension testing 
of SPR joints. The cross-sectional dimensions (i.e., under-
cut and minimum remaining thickness) and profiles of 
SPR joints were used to verify the SPR process model. To 
acquire the required input base data sets of cross-tension 
strengths of SPR joints for XGBoost regression model, a 
2D FE model simulation was conducted for cross-tension 
testing of SPR joints and validated by a good consist-
ence between experimental and simulation results. Then, 
the 48 base data sets of cross-tension strengths from 
FE model were used to train the built XGBoost regres-
sion model to achieve the prediction for cross-tension 
strength of SPR joint. Using the established XGBoost 
regression model with optimal parameters, the cross-ten-
sion strength of the CR590(1.1 mm)/AA5754-O(2.0 mm) 
SPR joint was predicted, the experimental results showed 
that the prediction model could predict the cross-ten-
sion strength of the SPR joint with an error of 7.6%. As 
a result, it is concluded that the established model based 

on FE model simulation and XGBoost algorithm can pre-
dict the cross-tension strength for SPR joints with a high 
accuracy and the XGBoost algorithm is feasible for the 
strength prediction of SPR joints.

The method proposed in this work exhibits obvi-
ous advantages over empirical models relying on cost-
consuming experiments to acquire experimental data, 
and it has a broad application potential and is capable 
to provide a guidance to predict SPR joint strength. The 
XGBoost algorithm, as an integrated learning algorithm, 
is more suitable for regression prediction on larger data 
sets (more than 100000 samples). Therefore, further 
research will focus on using the proposed method to pre-
dict cross-tension strengths of SPR joints with a larger 
variety of top sheet materials, rivet types and die profiles.
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