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An Interpretable Denoising Layer for Neural 
Networks Based on Reproducing Kernel Hilbert 
Space and its Application in Machine Fault 
Diagnosis
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Abstract 

Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis, 
while the noise mixed in measured signals harms the prediction accuracy of networks. Existing denoising methods in 
neural networks, such as using complex network architectures and introducing sparse techniques, always suffer from 
the difficulty of estimating hyperparameters and the lack of physical interpretability. To address this issue, this paper 
proposes a novel interpretable denoising layer based on reproducing kernel Hilbert space (RKHS) as the first layer for 
standard neural networks, with the aim to combine the advantages of both traditional signal processing technology 
with physical interpretation and network modeling strategy with parameter adaption. By investigating the influenc-
ing mechanism of parameters on the regularization procedure in RKHS, the key parameter that dynamically controls 
the signal smoothness with low computational cost is selected as the only trainable parameter of the proposed layer. 
Besides, the forward and backward propagation algorithms of the designed layer are formulated to ensure that the 
selected parameter can be automatically updated together with other parameters in the neural network. Moreover, 
exponential and piecewise functions are introduced in the weight updating process to keep the trainable weight 
within a reasonable range and avoid the ill-conditioned problem. Experiment studies verify the effectiveness and 
compatibility of the proposed layer design method in intelligent fault diagnosis of machinery in noisy environments.
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1  Introduction
In practical engineering, gears, shafts, bearings, and 
other key components in rotating machinery frequently 
occur various failures due to severe work conditions 
such as alternating load and long operational time [1, 
2]. To capture such failures before disasters, develop-
ing timely and accurate fault diagnosis methods for 
rotating machinery is important. In recent decades, 
with the rapid development of sensor technology and 

data-driven techniques, intelligent machine health 
monitoring methods based on machine learning have 
become an important research field in engineering [3–
5]. As a dominating branch of machine learning, deep 
learning methods manage to utilize deep architectures 
with stacked layers to extract essential features hidden 
in data and achieve excellent prediction performance 
[6]. Some commonly used deep learning architec-
tures, such as deep belief networks (DBNs) [7, 8], 
deep auto-encoders (DAEs) [9–11], and convolutional 
neural networks (CNNs) [12–14], have been success-
fully applied in machine fault diagnosis. Unfortunately, 
when the actual data acquisition environment becomes 
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complicated and uncontrollable, the sampling data are 
inevitably mixed with noise, which may pose challenges 
to reliable feature extractions and increase the risk of 
overfitting. Therefore, it is crucial to develop effective 
methods to eliminate the effects of noise and improve 
the accuracy of feature extraction and fault diagnosis.

In recent years, the challenge introduced by noise for 
deep learning has attracted widespread attention from 
scholars, and the corresponding solution can be roughly 
divided into two categories according to whether it 
modifies the original network structure. Techniques 
entailing no network structure modifications, such 
as the signal preprocessing based denoising method, 
are successfully applied in fault diagnosis of rotating 
machinery [15, 16]. Instead of the raw signal, the data 
processed by signal analysis techniques, such as the 
wavelet transform, are applied to fit the deep neural 
network model. However, since parameters used in sig-
nal processing methods are dependent on noise whose 
properties are hard to obtain, the selection of parame-
ters has become an obstacle. Using extra noise to train 
deep neural networks is another denoising method 
eliminating the need for network structure modifica-
tions [17], where the input is taken as the clean signal 
mixed with the well-designed noise similar to the prac-
tical environment noise, while the output is taken as 
the original clean signal. Via unsupervised learning like 
DAE, this method can robustly extract hierarchical fea-
tures for further classification or regression. However, 
this method requires clean signals obtained in advance, 
which is extremely difficult to achieve in practical engi-
neering. Another popular denoising method is to mod-
ify the network structure and using the raw data to fit it, 
where techniques to prevent overfitting, such as drop-
out in DAE [18] and pooling in CNN [19], have been 
widely applied in various noisy working conditions [20, 
21]. These techniques can be interpreted as reducing the 
complex co-adaptation between neurons and following 
the idea of biological evolution [22]. However, its physi-
cal interpretability is not as sufficiently rigorous as that 
of conventional machine learning methods. Moreover, 
the selection of hyper-parameters, such as the keep-
probability of dropout, still haunts users. Designing 
dedicated neural networks is another way to achieve 
noise reduction by modifying the network structure. For 
example, adding the residual building units to CNN is 
one of the relatively new methods that has been proven 
to improve the accuracy of the classification task [23]. 
However, the complicated network design also intro-
duces a vast number of parameters to the network 
model and increases the risk of overfitting. Meanwhile, 
the special network structure design undermines its 
compatibility with different networks.

Considering the excellent interpretability of classical 
data preprocessing methods and the self-adaption of 
network modeling strategies, combing the classical data 
processing methods as a part of the neural network 
has been regarded as an effective and well-interpreted 
method [24]. Through the backpropagation of the neu-
ral network, parameters of the classical data processing 
method can be adaptively estimated without manual 
intervention. Besides, the original physical interpret-
ability of the classical approach is also retained. Among 
various classical data processing approaches, using the 
representation theory to solve the regularization prob-
lem in the reproducing kernel Hilbert space (RKHS) 
is an effective denoising method. Few parameters and 
multiple kernel choices render this approach widely 
applicable [25, 26]. Faced with the dilemma of the cur-
rent denoising method for neural networks, we pro-
posed a novel, well-compatible, and well-interpreted 
denoising layer based on RKHS in this paper. By ana-
lyzing the regularization problem in RKHS, the param-
eter that controls the system bandwidth and the signal 
smoothness is chosen as the only trainable parameter 
of the proposed layer. Due to this few-parameter layer 
design, the overfitting problem of the whole network 
can be alleviated. Meanwhile, based on the derivation 
of the forward and backward propagation of the pro-
posed denoising layer, this only trainable parameter can 
be adaptively adjusted to fit the noise level of the origi-
nal noisy data. Moreover, since the size of the denoised 
data is the same as that of the raw data, the established 
denoising layer can be conveniently embedded into var-
ious neural networks like DBN and CNN. The experi-
mental studies in Section  5 verify the effectiveness of 
the novel denoising layer in improving identification 
accuracy.

The remainder of the paper is as follows. In Section 2, 
we briefly introduce the theoretical basis of the RKHS 
based denoising method. The forward and backward 
propagation of the proposed denoising layer is presented 
in Section  3, and machine fault diagnosis using the 
interpretable denoising layer is presented in Section  4. 
In Section  5, the experimental studies demonstrate the 
effectiveness and compatibility of the proposed method. 
Conclusions are given in Section 6.

2 � RKHS Based Denoising Method
Given a finite number of noisy time-series samples 
D = {ti, xi}

l
i=1 , the functional relation f  between time 

step ti and xi can be approximated by minimizing the reg-
ularization problem as
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where the regularization term 
∥

∥f
∥

∥

2

K
 is a norm in RKHS 

H , which is induced by the symmetric positive defi-
nite kernel K, and � is the corresponding regularization 
parameter. By introducing the regularization term that 
includes the prior knowledge of the solution, the smooth-
ness of the mapping function f  can be controlled so that 
the undesired behaviors can be penalized [27]. Using dif-
ferent kernels, we can get various regularization tasks. In 
this paper, the Gaussian kernel is chosen due to its con-
ciseness and universality, which is defined as

where σ is a hyperparameter in this kernel function, 
which denotes the standard deviation of the Gaussian 
function and controls the smoothness of the kernel.

According to the representer theorem [28], the map-
ping function f  is effectively constricted in the RKHS 
H induced by K, and the minimizer of the regulariza-
tion problem can be formulated as

where · represents the dot product, K (t) is the vector of 
functions defined as (K (t))i = K (t, ti) , and c is the cor-
responding vector of coefficients defined as (c)i = ci . The 
relationship between x and c can be represented as

where the matrix K and the vector x are defined as 
(K )ij = K (ti, tj) and (x)i = xi , respectively, and I denotes 
an l × l identity matrix.

According to Eqs. (3) and (4), the denoised time-
series can be represented as

where the vector b(t) of the basis functions is defined as

Two parameters σ and � are to be determined in the 
basis functions b(t) as well as the related function f (t) . 
To clarify the effects of two parameters on the denois-
ing process, we conduct a set of tests for variable analy-
sis, including four cases with different � and three cases 
with different σ 2 . In these tests, the kernel size and the 
adjacent time step interval are set as 500 × 500 and 1, 
respectively. The impulse signal impacts the system at 

(1)f = arg min
f ∈H

1

l

l
∑

i=1

(xi − f (ti))
2 + �

∥

∥f
∥

∥

2

K
,

(2)K (ti, tj) = exp

(

−
(ti − tj)

2

2σ 2

)

,

(3)f (t) = c · K (t),

(4)(K + �I)c = x,

(5)f (t) = x · b(t),

(6)b(t) = (K + �I)−1
K (t).

the 250th time step, and the corresponding impulse 
response is shown in Figure 1.

From Figure  1, it is clear to see that this denoising 
method acts as a low-pass filter. Changes in either one of 
the two parameters can dynamically adjust the system 
bandwidth and make the system response f (t) sharper or 
smoother. Considering the complexity of subsequent cal-
culations, the regularization parameter � is chosen as the 
only trainable variable to control the system bandwidth 
changes. Meanwhile, to ensure the denoising system has 
optimal dynamic adjustable range via changing � , the fixed 
value of σ should also have specific constraint rules. When 
σ is fixed at a small value, as shown in Figure 1(a), the sys-
tem is equivalent to a filter with a low quality factor, which 
greatly affects the frequency resolution capability of the 
system. When σ is fixed at a large value, as shown in Fig-
ure 1(c), the system more like an ideal filter, but it is hard 
to change the system bandwidth by adjusting the param-
eter � . In order to make the RKHS based denoising method 
have adequate performance in bandwidth control, the fixed 
value of σ can be determined by cross-validation so that the 
adjustable bandwidth range of the system is balanced with 
the quality factor.

3 � Interpretable Denoising Layer Design for Neural 
Networks

3.1 � Forward Propagation of the Denoising Layer
To reduce the effect of noise, we propose a novel interpret-
able denoising layer based on RKHS in front of the tradi-
tional neural networks. According to Eqs. (5) and (6), given 
the noisy input signal x with length L, the forward mapping 
of the denoising layer in the entire network can be written 
as

where the output vector z indicates the denoised signal, 
and z has the same length as the original input signal x. 
By connecting with the subsequent network layer, the 
only trainable parameter � in this layer can be adaptively 
adjusted in the entire network. The regularization param-
eter � should always be kept positive. Meanwhile, the 
proposed denoising system bandwidth will change slower 
and slower as the parameter increases. To ensure that the 
system bandwidth changes within a reasonable range, the 
exponent function and power function are adopted to 
express the parameter � as

where γ is the trainable parameter actually used in the 
neural network, and α is a power term that further bal-
ance the relationship between the speed and the range of 
change of γ.

(7)z = K (K + �I)−1
x,

(8)� = eγ
α

,α = 1, 3, 5, . . . ,
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3.2 � Backpropagation of the Denoising Layer
Generally, in the training process of stacked neural 
networks, an iterative gradient-based backpropagation 
is used to solve the optimization problem. In order to 
make the proposed noise reduction layer compatible 
with the standard networks, it is necessary to use a sim-
ilar technique to update the weights of the proposed 
noise reduction layer. Since the proposed denoising 
layer is set as the first layer of the whole network, only 

the trainable parameter γ needs to be updated. The gra-
dient δγ of γ can be calculated as

where J  denotes the loss of the entire network, ∂ denotes 
the derivative operator, and the matrix T is defined as

(9)δγ =
∂J

∂z

∂z

∂γ
= −αγ α−1eγ

α ∂J

∂z
KT

−1
T

−1
x,

Figure 1  Influences of σ and � on f  when the system is excited by an impulse signal: a σ 2
= 1 , b σ 2

= 10 , and c σ 2
= 100
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In practical applications, we notice that a small learn-
able parameter γ will cause the ill-conditioned problem for 
the inversion of T. To overcome this obstacle, the updated 
value of the trainable parameter is restricted within a rea-
sonable range by introducing a piecewise function

where γt denotes the infimum that meets the calcula-
tion accuracy requirement of the inverse matrix T−1 , 
δ denotes the gradient actually used during the update 
process, and η denotes the learning rate, which is a posi-
tive scalar that determines the size of the gradient update 
step.

4 � Machine Fault Diagnosis with the Denoising 
Layer

4.1 � Deep Neural Networks Based Fault Diagnosis
Unlike traditional data-driven methods in which the man-
ual design and feature extraction are needed [29, 30], deep 
learning using neural networks offers a powerful and effec-
tive solution without hand-crafted features for machine 
fault diagnosis. In a fault classification task with m cat-
egories, by building neural networks with n hidden lay-
ers of transformations, the hierarchical feature behind the 
machinery data can be extracted and represented as

where the m-dimensional feature vector h is defined as 
(h)i = hi , and φ(i) is used for the mapping of the ith hid-
den layer, such as the linear combination with a nonlin-
ear activation function or the convolution operation. To 
normalize the learned features to a probability distribu-
tion over predicted output classes, a softmax function 
pi is added to the end of the stacked network, and pi is 
defined as

where the m-dimensional feature vector h is mapped into 
an m-dimensional output vector p. p is formulated by 
∑

i pi = 1 . To evaluate the performance of the classifier, 
the cross-entropy J  is used as the loss function, which is 
defined as

(10)T = K + eγ
α

I .

(11)γ = γ − ηδ, s.t., δ =

{

−1, γ < γt ,

δγ , γ ≥ γt ,

(12)h = φ(n)(. . . φ(2)(φ(1)(x)) . . .),

(13)pi =
ehi

∑m
j=1 e

hj
,

(14)J = −

m
∑

c=1

yc log(pc),

where yc represents the target probability of the occur-
rence of the cth fault type. If the sample belongs to the cth 
fault type, yc is set as 1. Otherwise, yc is set as 0. Through 
the backpropagation algorithm based on the gradients 
updating, the value of the loss function J  decreases until 
the network has the optimal recognition performance.

4.2 � Procedure of Fault Diagnosis Using the Denoising 
Layer

Combined with the proposed interpretable denoising 
layer, the entire procedure for intelligent fault diagnosis 
of the machinery in noisy environments can be summa-
rized as follows.

(1)	 Data Acquisition

	 Use sensors and data acquisition equipment to col-
lect the original time-domain vibration signals and 
the corresponding state labels of the machine to be 
diagnosed in the running state.

(2)	 Data Preprocessing

	 Split the original signal into data segments of equal 
length, and standardize the data samples as inputs 
of the network. Use the one-hot encoding to indi-
cate the state labels of the machine as outputs of the 
network. Randomly divide the processed samples 
into the training, validation, and test sets, respec-
tively.

(3)	 Backbone Preparation

	 According to the characteristics of the signal to be 
analyzed, select an appropriate stack neural net-
work, such as DBN and CNN as the backbone 
model, where the input layer size of the network 
should be the same as the input sample. Accord-
ing to the number of fault categories, set the soft-
max layer as the last layer and determine the cross-
entropy loss function as the objection function via 
Eqs. (13) and (14).

(4)	 Denoising Layer Design

	 Design the interpretable denoising layer that matches 
the size of the input sample, and then perform the 
forward and backward propagation algorithms as 
specified in Eqs. (7)‒(11).
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(5)	 Model Combination

	 Prefix the proposed interpretable denoising layer to 
the selected backbone network to construct the 
combined denoising neural network.

(6)	 Model Training and Validation

	 Train the combined network with the training data-
set. Update the proposed denoising layer via Eqs. 
(9)‒(11), and use the backpropagation algorithm to 
update the remaining layers. Utilize the validation 
dataset to evaluate the training performance of the 
denoising network, and choose the network frame-
work with the lowest validation loss to predict the 
fault category to be assessed with the test dataset.

To illustrate the above machine fault diagnosis proce-
dure, the whole algorithm is summarized in Figure 2.

5 � Experiment and Analysis
To validate the proposed denoising layer for machinery 
fault diagnosis, the proposed interpretable denoising 
layer is embedded in the standard neural networks to 
conduct fault diagnosis for the following two systems.

5.1 � Fault Diagnosis of Rolling Bearing
In this subsection, the original experimental vibration 
data are obtained from the rolling bearing fault data 
acquisition experimental bench of the Bearing Data 
Center in Case Western Reserve University (CWRU) 
[31], as shown in Figure 3. The required data are collected 
by accelerometers and the digital audio tape recorder at 
the driven end of the motor housing. The sampling fre-
quency is set as 48 kHz. Under this sampling frequency, 
the available data include three bearing fault types: inner 
race pitting, ball pitting, and outer race pitting. Each type 
of fault has different degrees of damage. In order to bal-
ance the proportion of various types of datasets, we select 
datasets with similar data lengths. Each set contains two 
subsets corresponding to two damage levels for each fail-
ure. In the selected datasets, pits with diameters of 0.007 
inches and 0.021 inches represent the minor fault and the 
serious fault, respectively. Therefore, six fault conditions 
are considered in this validation experiment in total, 
and the details of all the used datasets are described in 
Table 1.

To further illustrate the effects of noise on identifica-
tion, an additional Gaussian white noise with zero mean 
is added to the original dataset. The signal to noise ratio 
(SNR) of the noise is set to 10 dB, 5 dB, 0 dB, and − 5 dB, 
respectively. Together with the original datasets, a total 
of five types of datasets with different noise levels are 
analyzed in the following experiments.

For data preparation, all the datasets are resampled 
using 500-point. Since the original length of the data-
set, each type of fault corresponds to 300 samples, 1800 
samples are used in this experiment in total, where the 
numbers of training samples, verification samples, and 

Figure 2  General procedure of machine fault diagnosis

Figure 3  Configuration of the experimental system used by CWRU​

Table 1  Description of the experimental rolling bearing pitting 
failures

Label Fault location Fault diameter Fault severity

1 Inner raceway 0.007 inches Minor fault

2 Inner raceway 0.021 inches Serious fault

3 Ball 0.007 inches Minor fault

4 Ball 0.021 inches Serious fault

5 Outer raceway 0.007 inches Minor fault

6 Outer raceway 0.021 inches Serious fault
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test samples are set to 1000, 300, and 500, respectively. 
Besides, during the training process of the following DBN 
based model, these samples are standardized.

(1)	 DBN with the Denoising Layer

	 In this subsection, the DBN model, which leads to 
the revolution of deep learning, is applied as the 
backbone and competitive method of the proposed 
denoising layer. As an essential part of DBN, the 
restricted Boltzmann machine (RBM) is a special 
undirected probability graph model that includes 
a visible layer and a hidden layer. Its weights and 
biases can be obtained through unsupervised 
learned with the contrast divergence algorithm 
[32]. By stacking RBMs, the hidden layer of the for-
mer RBM is regarded as the visible layer of the lat-
ter RBM, and then a deep network with trainable 
parameters that can be pre-trained is formed. In 
this experiment, as shown in Figure 4, the DBN is 
stacked by four RBMs, and unit numbers of all the 
hidden layers are set as 180, 60, 20, 6, respectively.

	 Generally, the RBM is designed for binary visible and 
hidden units. However, in this task, the probabil-
ity distribution ability of the RBM on real value is 
required. To address this issue, the Gaussian-Ber-
noulli RBM (GBRBM) [33] is utilized to pre-train 
the first hidden layer of the entire DBN, while the 
standard Bernoulli-Bernoulli RBM (BBRBM) [6] is 

used to pre-train the other layers. After pre-train-
ing each individual RBM, the proposed denoising 
layer is added in front of the network, and the lay-
ers of the entire neural network need to be further 
fine-tuned for classification by the backpropagation 
algorithm. To conveniently calculate the denoising 
algorithm and ensure the trainable parameters have 
a good performance, the unit time step interval is 
applied in Eq. (2), and the associated variance σ 2 
is chosen as 10. Besides, the parameter α formed 
in Eq. (8) and the infimum γt used in Eq. (11) are 
set as 3 and −3 , respectively. For classification, the 
softmax layer is added to the end of the stacked net-
work, and the cross-entropy in Eq. (14) is used as 
the loss function. The Adam optimizer is used in 
the fine-tuning of the network, and the maximum 
training epoch is 1000. Table  2 lists the five aver-
age test results, corresponding to five noise levels. 
Besides, the test results estimated by the DBN with-
out the denoising layer are also listed in this table.

	 According to the test results, the classification accu-
racy of the network decreases in the presence of 
noise. When noise with the SNR being − 5  dB is 
mixed into the original dataset, the classification 
accuracy of the competitive DBN is reduced to half 
of the original. Compared with the competitive 
DBN, the DBN with the proposed denoising layer 
can efficiently improve the classification accuracy. 
In the presence of strong noise, adding the denois-
ing layer can increase the accuracy by 10% at most. 
Figure  5 indicates the variance in validation loss 
during the training process. Obviously, the pro-

Figure 4  DBN based structure applied to the experiment

Table 2  Classification accuracy of the DBN based experiment 
(%)

Additional noise level Original 10 dB 5 dB 0 dB − 5 dB

DBN 83.60 69.12 59.56 48.56 40.08

DBN with the denoising layer 85.20 77.28 69.00 58.96 48.12 Figure 5  Variance of the validation loss based on DBN
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posed network can make the validation loss reach a 
smaller cross-entropy loss. When stronger noise is 
mixed into the data, the loss difference between the 
proposed DBN and the competitive DBN is more 
significant.

(2)	 CNN with the Denoising Layer
	 CNN is an important branch of deep neural net-

works and has shown its success in various appli-
cations, including machine fault diagnosis. Accord-
ing to the application of spatially shared weights 
and the pooling layers, the parameters in CNN are 
much fewer than the typical full connected network 
and make the model more robust. Besides, the one-
dimensional CNN (1d-CNN) has been shown to 
have similar properties to Fourier transform, which 
helps the network extract the frequency features 
from the time sequence and thus is beneficial to the 
fault diagnosis. Hence, this following experiment 
uses a 1d-CNN as another backbone of the pro-
posed denoising method.

The applied network architecture in detail is shown 
in Figure 6, which consists of two combined blocks that 
are composed of a convolutional layer and a max-pool-
ing layer to learn features. Six convolution filters with a 
length of four points exist in the first combined block, 
and the pooling size of the max-pooling operation is 
set as 15. In the second combined block, the length 
of the convolutional filter and the pooling size remain 
unchanged, while the number of filters is increased to 

12. Meanwhile, the zero-padding is used in the convo-
lution operation, ensuring that the signal length before 
and after the procedure remains the same. After learn-
ing features, the output is flattened and then sent into 
a full-connected layer. As before, the softmax layer is 
added to the end of the whole network for classifica-
tion, and the cross-entropy defined in Eq. (14) is used.

The proposed denoising layer is added in front of the 
network, where the parameters used to calculate the 
kernel and propagation remain unchanged. After that, 
the whole network is trained using the backpropagation 
algorithm. The Adam optimization is still applied, and 
the maximum training epoch is set as 1000. The five 
average test results, corresponding to five noise levels, 
are listed in Table  3. For comparison, the test results 
estimated by the competitive CNN without the denois-
ing layer are also listed in this table. Meanwhile, the 
variance in validation loss during the training process is 
shown in Figure 7.

The experimental results show that compared with 
DBN, CNN has better classification performance in 
fault diagnosis. For the dataset without additional noise, 
the proposed denoising layer improves the classifica-
tion accuracy of the network by 0.44%. In fact, thanks to 
the advantages of weight sharing and pooling, the clas-
sification accuracy of the original CNN is already high, 
so the proposed noise reduction method has little room 
for further improvement in accuracy. Nevertheless, in 
the presence of strong noise, the classification accuracy 
is still increased by nearly 4% with the aid of the pro-
posed denoising layer. Meanwhile, Figure  7 shows that 
the proposed network can reduce the validation loss just 

Figure 6  CNN based structure applied to the experiment

Table 3  Classification accuracy of the CNN based experiment 
(%)

Additional noise level Original 10 dB 5 dB 0 dB −5 dB

CNN 96.60 93.56 90.20 80.68 63.92

CNN with the denoising layer 97.04 95.24 92.32 83.64 67.88

Figure 7  Variance of the validation loss on the bearing dataset based 
on CNN
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as demonstrated in the last experiment. According to 
the experimental results of DBN and CNN, the proposed 

denoising layer can be considered as an effective and 
compatible neural network.

5.2 � Fault Diagnosis of Planetary Gearbox
To further verify the feasibility and applicability of 
the proposed method, the proposed denoising layer is 
applied to a planetary gearing system. The experimental 
setup is shown in Figure 8. In this experiment, a plane-
tary gearbox whose components can be replaced is set up 
in a simple drive system, and the accelerometer is fixed 
on the cage of the gearbox to sample the required data. 
The measurements can be further fed into the computer 
via a data acquisition card, and the sampling frequency 
is set as 10.24 kHz. As shown in Figure 9, four types of 
designed faults are considered, which include tooth frac-
tures of three different gears and the outer race pitting 
of the rolling bear. Five corresponding health conditions 
considered in this case are listed in Table 4, which indi-
cates the normal state, the single fault, the double fault, 
the triple fault, and the compound fault of the gear and 
rolling bearing, respectively.

Figure 8  Configuration of the experimental planetary gearing 
system

Figure 9  Defective component of the experimental planetary 
gearing system: a tooth fracture of the ring gear, b tooth fracture of 
the sun wheel, c tooth fracture of the planetary gear, and d outer race 
pitting of the rolling bearing

Table 4  Description of the experimental failures of the planetary 
gearing system

Label Ring gear Sun wheel Planetary gear Rolling 
bearing

1 Normal Normal Normal Normal

2 Tooth fracture Normal Normal Normal

3 Tooth fracture Tooth fracture Normal Normal

4 Tooth fracture Tooth fracture Tooth Fracture Normal

5 Tooth fracture Normal Normal Outer race 
pitting

Table 5  Classification accuracy of the CNN based experiment 
(%)

Additional noise level Original 10 dB

CNN 92.38 89.47

CNN with the Denoising Layer 94.74 92.88

Figure 10  Variance of the validation loss on the planetary gearbox 
dataset based on CNN
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As before, an additional Gaussian white noise with zero 
mean is added to the original dataset to demonstrate the 
effects of noise on identification, where the SNR of the 
noise is set to 10 dB. Thus, two types of datasets with dif-
ferent noise levels are analyzed in the following experi-
ments. For data preparation, the datasets are divided 
into 500-point samples as before, and each health condi-
tion corresponds to 1000 samples. Thus, a total of 5000 
samples are used, where numbers of training, verifica-
tion, and test samples are set to 3000, 1000, and 1000, 
respectively.

The 1d-CNN model is used as the backbone and 
also the competitive method of the proposed denois-
ing approach. The only difference between the network 
structure used here and the 1d-CNN used in Section 5.1 
is the number of units of the fully connected layer and the 
softmax layer, which has changed from six to five. Other 
hyperparameters, including the parameters control-
ling the training process, remain changed. The average 
results of five tests using the original and improved CNN 
models, corresponding to two noise levels, are listed in 
Table  5, and the variation in validation loss using two 
models during the training process is shown in Figure 10.

According to the above results, the dataset mixed with 
additional noise affects the classification accuracy of the 
network in a similar manner as before. Compared with 
the original CNN model, the network with the proposed 
denoising layer still helps in the minimization of the vali-
dation loss. Besides, whether or not additional noise is 
added into the dataset, the classification accuracy of the 
network can be increased by more than 2% with the aid 
of the denoising layer. In the presence of the additional 
noise, the proposed layer helps the network increase 
classification accuracy more significantly. Thus far, the 
effectiveness of the proposed denoising layer in practical 
application has been well demonstrated.

6 � Conclusions
In the present study, based on the regularization in 
RKHS, a novel interpretable denoising layer is proposed 
as the first layer of a standard neural network to reduce 
the effect of noise on prediction results. (1) By analyzing 
the influencing mechanism of parameters in the regulari-
zation process in RKHS, the parameter with the low com-
putational cost and clear physical meaning for denoising 
is selected as the only trainable parameter of this layer. 
(2) The forward and backward propagation algorithms of 
the proposed layer are proposed, which ensure not only 
the adaptability of the trainable parameter updates, but 
also the compatibility of the denoising layer with vari-
ous network structures. (3) The procedure of mechanical 
fault diagnosis using the denoising layer is summarized, 
and experimental studies further show that the proposed 

novel denoising method is well compatible with various 
networks and greatly helps in practical fault diagnosis in 
noisy environments.

On the other hand, the proposed method still has 
the limitation in selecting the kernel function reason-
ably according to the size and dimensions of samples. In 
fact, this limitation plagues all kernel-based regression 
methods, and the hybrid kernel function is expected to 
become an innovative solution. The authors will continue 
to research this topic in the future.
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