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Multi‑Scale Convolutional Gated Recurrent 
Unit Networks for Tool Wear Prediction in Smart 
Manufacturing
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Abstract 

As an integrated application of modern information technologies and artificial intelligence, Prognostic and Health 
Management (PHM) is important for machine health monitoring. Prediction of tool wear is one of the symbolic appli-
cations of PHM technology in modern manufacturing systems and industry. In this paper, a multi-scale Convolutional 
Gated Recurrent Unit network (MCGRU) is proposed to address raw sensory data for tool wear prediction. At the bot-
tom of MCGRU, six parallel and independent branches with different kernel sizes are designed to form a multi-scale 
convolutional neural network, which augments the adaptability to features of different time scales. These features of 
different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term 
dependencies and learn significant representations. At the top of the MCGRU, a fully connected layer and a regression 
layer are built for cutting tool wear prediction. Two case studies are performed to verify the capability and effective-
ness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline 
models.
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1  Introduction
The development of Prognostic and Health Management 
(PHM) has motivated the research in the field of machine 
health monitoring to detect faults and predict machine’s 
future conditions [1–4]. In modern manufacturing sys-
tem, the worn tool is harmful for the metal cutting pro-
cess and often causes additional costs [5]. The cutting 
tools will gradually become blunt during the manufactur-
ing process, as shown in Figure 1, because of a lot of fac-
tors like abrasion, deformation and attrition. As a result, 
the quality of the products will be degraded. It is there-
fore crucial to monitor and predict the cutting tool wear 
online so as to prevent the quality from degradation [6].

Aiming at monitoring the working conditions of cut-
ting tools and predicting tool wear, many methods, 
direct or indirect, online or offline, have been researched. 
Traditionally, by performing cutting tests under differ-
ent working conditions, data about the cutting tools are 
acquired and then analyzed with the help of optimiza-
tion techniques including the response surface method-
ology (RSM) and the design of experiments (DOE). This 
approach is time-consuming and inefficient because the 
number of the tests required is large [7]. The finite ele-
ment method (FEM) [8–10] has also been used in dif-
ferent cutting tasks [11, 12] and to predict cutting tool 
wear. Over the last two decades, methods based on deep 
learning and neural networks have started to be used for 
the estimation and prediction of cutting tool wear. Ko 
et  al. [13] designed an autoregressive model followed 
by a highly parallel neural network to monitor the cut-
ting state. Özel et  al. [14] used neural networks for the 
prediction of cutting tool wear and its surface roughness. 
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Ghosh et al. [6] designed a sensor fusion model with the 
help of neural network to extract and fuse features from 
various signals for the estimation of cutting tool’s aver-
age flank wear. By using Adaptive Neuro Fuzzy Inference 
System, Sharma et  al. [15] developed a method for tool 
wear estimation. Venkata et al. [16] fed the cutting speed, 
the radius of nose and the volume of removed material 
to a multilayer perceptron model for the prediction of 
amplitude vibration, surface roughness, and tool wear. 
Zhao et  al. [17] designed a convolutional bi-directional 
LSTM networks to monitor machine health, as well as 
to predict the tool wear depth. In general, researchers 
divide these methods into two major categories: physics-
based methods and data-driven methods. In tasks of tool 
wear prediction, physics-based methods based on grey 
models and particle filters [18] have proven to be effec-
tive. However, these methods usually require accurate 
and high-quality domain knowledge, which is often una-
vailable under complex and noisy working conditions. 
Moreover, most of them are unable to be upgraded with 
online data. Data-driven methods are now more attrac-
tive because they are able to address these issues. Deep 
learning theories and large amounts of data collected 
by advanced sensors have promoted the development 
of data-driven online methods. Two phases are usu-
ally included in data-driven models [19], where the first 

phase is to train models with collected data and then the 
other phase is to apply the trained models to online data 
to monitor the conditions or make predictions. The key 
of these two phases is that deep learning theories enable 
the model to better extract features and derive represen-
tations of machine conditions hidden in the data, and 
therefore enable it to make better predictions based on 
online data. In this paper, we research data-driven meth-
ods with the help of deep learning theories to predict cut-
ting tool wear.

Data-driven methods take single or multiple sen-
sory data as input, feeding them into training models to 
extract features and learn representations. Online data 
will then be fed into the well trained models to make 
predictions. Data and models are two core parts of data-
driven methods. Figure 2 shows the basic framework of 
data-driven methods. The raw time series data collected 
by sensors are in sequential forms, whose sequential 
characteristics are difficult to be discovered by previous 
work focusing on developing models to extract multi-
domain features. These models, trying to extract statis-
tical, frequency and time-frequency features, require 
intensive expert knowledge and feature engineering. 
Some models, such as the Markov models and Kalman 
filters [20–22], are capable of addressing sequential data, 
but they are not good at capturing long-range depend-
encies. It is important to capture connections and infor-
mation in time scale because in real working conditions, 
the features are often submerged by heavy background 
noise, which will cause failures in these models. The 
development in the field of neural networks and deep 
learning has offered solutions to address these issues, 
and one of these solutions is Recurrent Neural Network 
(RNN). Traditionally, neural networks deal with inputs 

Figure 1  Degradation of cutting tools
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and outputs independently, which is not so reasonable in 
some sequential tasks. RNN is proposed to make use of 
information in arbitrary long sequences, and to capture 
the calculated information. However, the problem of gra-
dient exploding and vanishing in traditional RNN weak-
ens its power. Some improved variants of RNN have been 
designed to solve this problem, and one of them is LSTM, 
namely Long Short-Term Memory Network. LSTM is 
good at solving problems that in need of information 
about previous events [23], which means that it is better 
at addressing sequential data of various length and cap-
turing long-term dependencies. LSTM needs sufficient 
data to train while in real working conditions, while there 
may be no sufficient labeled data. Gated Recurrent Unit 
(GRU) network performs better under such situations. 
Proposed in 2014, GRU [24] is a more efficient variant of 
LSTM that shares many similar properties. With compa-
rable performance to LSTM on sequence modeling, GRU 
has fewer parameters and is easier to train. Here, we 
introduce GRU networks to be one part of our network 
architecture. As one type of neural networks, GRU is 
able to extract features and learn representations without 
expert or domain knowledge, but it may be not robust 
because of the existence of noise in the raw sensory data. 
Compared with GRU, Convolutional Neural Network 
(CNN) is more robust when the data has noise interfer-
ence. The convolutional operations in the CNN are able 
to extract abstract features by applying learnable filters to 
the convolutional layers to convolve with sequential data. 
For this reason, in Ref. [17], Zhao et  al. adopted a one-
layer CNN as a local feature extractor. However, as the 
information hidden in the sequential data is complicated 
and diverse, this local feature extractor with only one ker-
nel size cannot extract all of the useful information. To 
address this issue, filters of different sizes are adopted to 
form a multi-scale convolutional layer to extract different 
significant features. Here, we use this multi-scale convo-
lutional network to extract hidden but important features 
and then these features will be concatenated into a single 
feature map.

In this paper, we propose a model combining multi-
scale CNN and GRU named Multi-scale Convolutional 
Gated Recurrent Unit Network (MCGRU) to predict 
cutting tool wear. In this model, the multi-scale CNN 
consists of six parallel branches, and they are independ-
ent of each other. These branches are able to extract local 
features, as well as abstract ones from high level. Then 
these feature maps will be merged into a single feature 
map. Temporal information is encoded and representa-
tions are learnt in a two-layer GRU network, built on the 
top of the merge layer. We experiment on an open source 
dataset from cutters of high-speed Computer Numeri-
cal Control (CNC) milling machine, containing acoustic 

emission data, accelerometer data and dynamometer 
data [25]. Additionally, another experiment of CNC tool 
wear is carried out, through which current and vibration 
data and tool wear depth are sampled. Based on these 
sequential data and their corresponding tool wear depth, 
we compare the predicting ability of our model with that 
of several state-of-the-art models.

This paper is organized as follows. In Section  2, we 
review some related work about CNN and GRU. Based 
on classic CNN and GRU, the MCGRU is designed and 
its details are presented in Section 3. Two case studies on 
the prediction of tool wear are conducted in Section  4. 
More details about the model and future steps are dis-
cussed in Section 5. Finally, conclusions are presented in 
Section 6.

2 � Review of Related Work
2.1 � Convolutional Neural Network
Convolutional Neural Network has proven very power-
ful in many recognition and classification tasks [26–28]. 
It has also shown the power to address sequential data 
in task of natural language processing [29–31]. In the 
convolutional layers, filters slide over sequential data to 
extract features and filters in the pooling layers will focus 
on the most salient ones. Additionally, the training pro-
cess can be sped up and the model’s performance can 
be improved by adding batch normalization layers [32]. 
The capability of CNN can be further improved by stack-
ing the above layers to build a “deep” CNN. Besides, the 
width of CNN can also influence its performance. In 
the inception module [33], parallel branches consisting 
of convolutional and pooling layers with different ker-
nels are designed. This architecture allows the model to 
recover both local features via kernels of smaller sizes 
and high abstract features via that of larger sizes.

In our MCGRU network, an architecture of six paral-
lel branches of CNN is designed to process the input 
sequential data before it is fed to GRU units. Kernels with 
different sizes are adopted in different branches to extract 
local and abstract features at the same time. The model 
itself is going to determine which features are significant 
to be chosen.

2.2 � RNN, LSTM and GRU​
Recurrent Neural Network (RNN) is mainly proposed 
to handle long term dependencies while processing 
sequential data in task of natural language processing. 
The hidden states in RNN use the outputs of the previ-
ous states as the inputs of the next states, which means 
that the sequential information is preserved. As weights 
are shared across time, RNN is able to process sequen-
tial input of any length. However, the problem of gradient 
exploding and vanishing emerged as the major obstacle 
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to traditional RNN’s performance. To avoid this problem, 
Long Short-Term Memory Network was proposed by 
Sepp and Jürgen [34] in 1997 and was improved by Felix 
Gers’ team [35] in 2000. It is able to prevent backpropa-
gated error from vanishing [36] and memorize a state 
for different time periods with the help of the input gate, 
forget gate and output gate, which manage the flow of 
information in the network. As another variant of RNN, 
Gated Recurrent Unit (GRU) was introduced to solve the 
vanishing problem. With only a reset gate and an update 
gate, GRU has comparable performance to LSTM. How-
ever, there are fewer parameters in GRU because it lacks 
an output gate and has less complex structure, which 
means that it is more efficient and can be used under sit-
uations where there is no sufficient data. Considering the 
effectiveness of GRU, it has been more and more widely 
used to learn significant representations in time series 
data.

In the proposed MCGRU network, two-layer GRUs are 
adopted to process the output of the multi-scale convolu-
tional layers. Effective representations will be learnt here 
and to be used in the prediction of tool wear.

2.3 � Neural Networks and Tool Wear Prediction
Neural networks have been successfully used in tasks of 
machine condition monitoring like tool wear prediction 
because of their excellent features extraction and repre-
sentations learning capabilities [37–42]. Artificial Neural 
Networks (ANN) were firstly adopted and were proved to 
have good performance in the machine condition moni-
toring tasks. However, with more and more interference 
and as the working conditions become more and more 
complex, ANN is no longer good at solving these prob-
lems. As a result, Convolutional Neural Networks (CNN) 
was introduced in this field. The depth of the networks 
and their learning ability enable themselves to learn what 
they need in these tasks. However, most of these models 
make use of the features manually extracted and designed 
from raw data, while ignoring the representations and the 
relations of different time steps hidden in the sequential 
data. For tool wear prediction, the information about 
the condition of cutting tools remains to be discovered. 
Our proposed MCGRU combines multi-scale CNN 
with GRU to learn features and representations without 
the intervention of human designed features, which the 
information behind the raw sensory data can be explored 
as much as possible and the prediction accuracy will be 
improved.

3 � Model
What we desire is an arm exoskeleton which is capable 
of following motions of the human upper-limb accurately 
and supplying the human upper-limb with proper force 

feedback if needed. In order to achieve an ideal control-
ling performance, we have to examine the structure of 
the human upper-limb.

Before presenting the MCGRU network, some nota-
tions used in this paper are clarified here. The task is to 
design a model for tool wear prediction based on the 
multiple in-process sensory data. A labeled time series 
dataset is given as D =

{(

xi, yi
)}N

i=1
 , which contains N 

tool conditions, and their corresponding labels yi , i.e., 
each tool condition corresponding to a tool wear that is 
measured and recorded as yi . Assuming that in each tool 
condition xi , q channels of sensory data are sampled and 
the length of each channel of sensory data is L . For each 
channel, the whole sequence is divided into l sections, 
i.e., l time steps. The ith cutting tool condition is

where vector xti ∈ Rd is the multiple channels of sen-
sory data sampled at time step t , i.e., the tth section, and 
d = q ∗ (L/l) is the dimensionality of xti , and (·)T repre-
sents the transpose. The goal is to predict the tool wear 
ŷi through xi . In our proposed Multi-scale Convolutional 
Gated Recurrent Unit, the Multi-scale Convolutional 
Network functions as a feature extractor and the Gated 
Recurrent Unit functions as a temporal encoder. Six par-
allel and independent branches of Convolutional Neural 
Network consisting of different kernels are designed to 
process the raw sensory data. Local and abstract features 
extracted are fed into a merge layer, on the top of which is 
a two-layer GRU designed to learn significant representa-
tions. Finally, the prediction is performed by a fully con-
nected layer and a regression layer. The MCGRU network 
is shown in Figure 3.

3.1 � Multi‑Scale CNN
In each branch of the multi-scale CNN, a five-layer 
CNN is adopted, which consists of two convolutional 
layers, one max-pooling layer and two batch normali-
zation layers. In the first convolutional layer of each 
branch, the kernel size equals to 1. The adoption of this 
convolutional layer is not only able to help extract more 
significant features, but also able to reduce the param-
eters of the model. For example, in one-dimensional 
convolution, a CNN containing one convolutional 
layer with kernel size equaling to 7 has more parame-
ters than that containing two convolutional layers with 
kernel sizes equaling to 1 and 7, respectively. A batch 
normalization layer is adopted at the top of the first 
convolutional layer. Batch normalization layers in hid-
den layers help to accelerate the training and augment 
the predicting accuracy. Then, the output of the batch 
normalization layer is fed into the second convolutional 

(1)xi =
[

x
1
i x

2
i · · · x

l
i

]T
,
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layer. The second convolutional layers with different 
kernels in different branches extract multiple time scale 
features hidden in the sequential data. Small kernels 
are able to extract local features, while large kernels are 
able to extract abstract features. Based on these multi-
time-scale features, the model itself learns to deter-
mine which ones should be concerned about. The last 
two layers are another batch normalization layer and a 
max-pooling layer. The max-pooling layer compresses 
the previous feature maps to further learn more sig-
nificant features. Then in a merge layer, all of the fea-
ture maps from different branches are concatenated 

into a single feature map. All of the features extracted 
from branches are reserved. The organization of these 
two kinds of structure is shown in Figure 4. Details are 
presented in the following contents respectively. Here 
we take the operations in one branch as example, and 
operations in other branches are the same.

3.1.1 � Convolution
In the convolutional layer of each branch in the Multi-
scale CNN, the 1-dimensional convolution opera-
tion is achieved by using a filter (kernel) v ∈ Rh×d to 

Input

1st

Convolution
+

BN
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ReLU
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Convolution
+

BN
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ReLU

Max-
Pooling
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Prediction

Deep GRU
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Figure 3  Structure of the proposed MCGRU​
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slide over xi ∈ Rl×d to convolve with the subsection 
x
t:t+h−1
i ∈ Rh×d from time step t to time step t + h− 1 . 

The xt:t+h−1
i  is given as follows:

where h is the kernel size. Additionally, a bias term b is 
added to get the complete convolution operation, which 
can be given as:

where j ∈ R represents the jth filter v and ◦ represents the 
Hadamard product.

As the filter slides over xi and the convolution opera-
tion is done, we get a vector cj , which is given by:

where p is the amount of zero padding, s is the sliding 
stride of the kernel, and (l − h+ 2p)/s + 1 is the length 
of the output after convolution operation. When s and p 
are set, the length of the output depends on the kernel 

(2)x
t:t+h−1
i =

[

x
t
i x

t+1
i

· · · x
t+h−1
i

]T

(3)ctj = vj ◦ x
t:t+h−1
i + b

(4)cj =

[

c1j c2j · · · c
(l−h+2p)/s+1

j

]T

size h . Different kernels size results in different output 
sizes. It is an important point because in each branch of 
our proposed Multi-scale CNN, different kernel sizes are 
chosen.

Specially, to concatenate different outputs from differ-
ent branches, it is more meaningful to get outputs with 
same size. Therefore, the trick of zero padding is adopted 
in the convolution operation. In different branches, dif-
ferent amounts of zero padding are adopted, which helps 
the output to have the same size as the input, no matter 
which kernel size is chosen. As a result, the feature map 
can be given by:

3.1.2 � Batch Normalization
Instead of just normalizing the input of the CNN, we 
adopt batch normalization [32] layers to normalize the 
inputs within the network by using the variance and 
the mean of the values in the current mini-batch. In the 
batch normalization layer, the operation can be repre-
sented as follows:

As batch normalization layer does not change the fea-
ture map’s size, we therefore get:

3.1.3 � Activation Function
After the convolution and batch normalization opera-
tions, an activation function is added to bring in non-lin-
ear properties and therefore to learn non-linear complex 
arbitrary functional relationships between inputs and 
outputs. As a result, the convolution, batch normaliza-
tion and activation operations can be together given by:

where f (·) is an activation function. Here, we choose 
Rectified Linear Units (ReLU) [43] as the activation func-
tion in our proposed model.

The above three operations result in a feature map, 
which can be given by

(5)cj =

[

c1j c2j · · · clj

]T

(6)bnj = BN
(

cj

)

.

(7)bnj =

[

BN

(

c1j

)

BN

(

c2j

)

· · · BN

(

clj

) ]T

.

(8)atj = f
(

BN

(

v
T
j x

t:t+s−1
i + b

))

,

(9)aj =

[

a1j a2j · · · alj

]T

.

Convlutional 
Layer 1

BN Layer 1

Convolutional 
Layer 2

BN Layer 2

Max-Pooling 
Layer

Activation function

Activation function

Input

Output

Max-Pooling 
Layer

Convlutional 
Layer 1

BN Layer 1

Convolutional 
Layer 2

BN Layer 2

Activation function

Input

Output

(a) (b)

Activation function

Figure 4  a Structure of five of the six CNN branches, b structure of 
the sixth CNN branch
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3.1.4 � Max‑Pooling
By introducing pooling layers in the network, the previ-
ous feature maps’ size can be further reduced and more 
significant and abstract features can be extracted. Here, 
we adopt max-pooling operation. In one-dimensional 
pooling, with the pooling length k , the max-pooling 
operation uses a kernel to slide over the feature map to 
get the max value over the k consecutive values. Here we 
let the sliding stride equal to k , and as a result, the output 
of max-pooling operation can be given by:

where mi
j = max

(

a
(i−1)s
j , a

(i−1)s+1

j , · · · , a
(i−1)s+k−1

j

)

.

3.1.5 � Concatenation
In the concatenating layer, the feature maps from differ-
ent branches will be concatenated into a single feature 
map to merge all the local and abstract features. Assum-
ing that in the ith branch, the jth output of this branch is 
given by:

(10)mj =

[

m1
j m2

j · · · m
(l−k+2p)/s+1

j

]T

,

Then, the output of the concatenation layer is given as:

where N  is the serial number of branch, and Mi can be 
represented as

where Ki is the number of output of the ith branch.
To summarize, in the Multi-scale CNN, the shape of 

the input sequence is n× l × d . Here, n represents the 
total number of working conditions. As descripted above, 
before the concatenating layer, the output shape of the 
ith branch is n× ((l − k + 2p)/s + 1)× Ki . In different 
branches, kernel sizes from small to large help to extract 
local and abstract features. Compared to the original 
raw sequence, these multi-time-scale features can bet-
ter represent the properties of the working conditions. 
As these features are merged in the concatenating layer, 
the following GRU is added to learn significant represen-
tations of the working conditions. To be more specific, 

(11)mij =

[

m1
ij m

2
ij · · · m

(l−k+2p)/s+1

ij

]T

.

(12)Concatenation=
[

M1 M2 · · · MN

]

(13)Mi =
[

mi1 mi2 · · · miKi

]

,

Output of 
1st Convolutional 
layer    (with zero 

padding)
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BN + Activation

Output of 
2nd  Convolutional 
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(with zero padding)
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BN + Activation

Output of 
Max-pooling
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Length
of input

(time step)
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length
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2

Figure 5  Framework of multi-scale CNN
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the framework of the Multi-scale CNN is illustrated in 
Figure 5.

3.2 � Deep GRU​
Under real industrial conditions, clean sample data is 
difficult to obtain. Compared to LSTM, GRU is better at 
dealing with such situations where there is no sufficient 
data. Here, on the top of the Multi-scale CNN, a two-
layer GRU network is designed to excavate vital repre-
sentations from the multi-time-scale features. The deep 
GRU is presented as follows.

3.2.1 � Gated Recurrent Unit
In GRU, the inputs are the hidden state ht−1 at previous 
time step t − 1 and the data xt at the current time step 
t , and the output is the hidden state ht . The output ht 
depends on the previous hidden state ht−1 , the update 
gate zt , the reset gate rt and the candidate hidden state 
h̃t . The reset gate rt enables the unit to drop any infor-
mation in the hidden state that is less meaningful or 
irrelevant, so as to focus on the information that is more 
important. The update gate zt determines the informa-
tion from the previous and the candidate hidden state 
that can be passed to the current hidden state [23]. The 
relating equations can be given by:

where σ is the sigmoid activation function, W z , U z , W r , 
U r , W h and Uh are shared weight matrices which are 
learned during training, bz , br , bh are learnable biases. 
The basic structure of a one-layer GRU is shown in Fig. 6.

3.2.2 � Deep GRU Gated
As mentioned above, the capability of a neural network 
can be improved by “going deeper” [44, 45]. In a deep 
neural network, there exists more non-linear operations 
and more abstract features and representations can be 
learned. Inspired by this idea, we stack two GRU lay-
ers to get a deep architecture, in which each GRU layer 
contains different number of units. In the deep GRU, as 
shown in Figure 7, while the output of each hidden state 
in one layer propagating through time, it is also the input 
of the hidden state in the next layer. Features at low level 
are therefore learned and passed to the next layer to learn 

(14)zt = σ(W zxt +U zht−1 + bz),

(15)rt = σ(W rxt +U rht−1 + br),

(16)h̃t = tanh (W hxt +Uh(rt ◦ ht−1)+ bh),

(17)ht = (1− zt) ◦ ht−1 + zt ◦ h̃t ,

x1 x2 x3 xn

h1 h2 h3

hn

Input 
sequence

GRUs 

Figure 6  One-layer GRU​
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higher-level representations. By stacking GRU layers, the 
network is able to learn essential representations at dif-
ferent time scales more effectively.

3.3 � Fully Connected and Linear Regression Layer
The output representation of GRU network is flattened as 
h and then fed into a fully connected layer to be prepared 
for the linear regression layer. The operation of the fully 
connected layer can be given as follows:

where o is the output of the fully connected layer, W is 
the transformation matrix, b is the bias, and f (·) is the 
activation function. We use ReLU here as the activation 
function. Finally, the fully connected layer’s output o is 
fed into a regression layer and the tool wear of the ith 
working condition is therefore predicted, which can be 
given by

3.4 � Training and Regularization of MCGRU​
The Mean Absolute Error (MAE) is adopted as the loss in 
the training process, which is given by:

where n represents the total number the samples.
The optimizer we adopt here is Root Mean Square 

Propagation (RMSProp) [46]. It is a very robust optimizer 
with pseudo curvature information. RMSProp is useful 
for mini batch learning because the gradients are normal-
ized by the magnitude of the recent gradients, enabling 
it to handle stochastic objectives properly. RMSProp is a 
nice optimizer for recurrent neural networks like LSTM 
and GRU.

As mentioned above, GRU rather than LSTM is cho-
sen in our proposed model because in real working con-
ditions, there is usually no sufficient labeled data. When 
going deep and when there is no sufficient data, the net-
work may be too complex to train and the problem of 
overfitting may appear. In order to solve this problem, 
regularization methods should be added within the net-
work. Here, we adopt a Dropout [47] layer after the GRU 
network, as well as after the fully connected layer. Drop-
out layer enables the network to ignore those neurons 
that are randomly selected during the process of forward 
propagation. Therefore, the network will not rely too 
much on some local features. In our proposed model, we 
only use dropout during training process, but not in test-
ing process, and the dropout ratio is set to be 0.3.

(18)o = f (Wh+ b),

(19)ŷi = Woi.

(20)loss = MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣,

4 � Experiments
4.1 � Case 1: High Speed CNC Machine Tool Wear Dataset
4.1.1 � Descriptions of Datasets
The first experiment is a high speed CNC machine run-
ning under dry milling operations [48]. This dataset is 
presented on the “prognostic data challenge 2010” data-
base [25]. The experimental platform and the details are 
shown in Figure  8. In this experiment, six cutters are 
used to cut over an identical workpiece while each cut-
ter made 315 cuts. When training and testing our model, 
six channels of data including forces and vibrations are 
used. A LEICA MZ12 microscope was utilized to meas-
ure the flank wear of each flute when the experiment was 
finished. The values of the wear were then taken as the 
target value.

In this dataset, six cutting tools are used to do the 
experiment, which means six collections of data (C1, C2, 
· · · , C6) can be used. To compare with the results in Ref. 
[17], we adopt three cutting tools, i.e., three data collec-
tions C1, C4 and C6 as our training and testing sets here. 
Each data collection contains 315 samples, correspond-
ing to 315 tool wear. To make good use of this dataset, 
a three-fold strategy is adopted. Among these three data 
collections, two of them are taken as the training set 
and the other is the testing one. As a result, we get three 
cases. For example, when C1 is testing set and C4, C6 are 
training test, this case is denoted as c1. The other two 
cases c4, c6 can be deduced from the above example. The 
details of these three cases are shown in Table 1.

Online Data Acquisition

Charge
Amplifier

Data 
Acquisition

Card

Microscope
LEICA MZ12

Tool Wear Measurement

CNC Milling Machine

Accelerometer

Force Sensor

Cutting Tool

Workpiece

Microscope

Machining
Table

Tool 
Wear

Force,
Vibration 
Signals

Model

Figure 8  Details of the CNC machine and the data collected system

Table 1  Details of the three dataset cases

Set Name Training Set Testing Set Number of 
samples in 
Training Set

Number 
of samples 
in Testing 
Set

c1 C4 + C6 C1 630 315

c4 C1 + C6 C4

c6 C1 + C4 C6
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As the sampling frequency is too high, for each chan-
nel, the sampled sequence is divided by 512 to get several 
sections, and the first forty sections are used. As a result, 
each original sequence is transformed into a datum with 
a length of 40, and therefore at each time step, the dimen-
sionality is 3072 (6 channels). As descripted above, in 
the training process, the input shape of the network is 
630×40×3072 and in the testing process, that of the net-
work is 315×40×3072.

4.1.2 � Experiment Setup
The following models shown in Table 2 will be compared 
with our proposed MCGRU model. Regression models 
including LR, SVR and MLP, cannot process sequential 

data directly, and hence we firstly extract the related 
features. Here, ten features, containing statistical fea-
tures, frequency features and time-frequency features are 
extracted from raw data. Details are shown in Table 3. As 
there are six channels of signals, the dimensionality of the 
input is 60. In LR, there is no hyper parameter. In SVR, 
the regularization parameter is set as 0.1 and the kernel is 
Radial Basis Function (RBF). As for the MLP, the param-
eters of three hidden layers are set as (140, 280, 900) and 
we choose ReLU as the activation function.

The other compared models are able to address 
sequential data directly. The input shape is therefore 
40×3072. The five-layer CNN has the same structure as 
one branch of our proposed MCGRU. The kernel sizes 
in the two convolutional layers are 1 and 7, quantities of 
kernels are 32 and 64, and the pooling size is set as 2. The 
setting of the MCNN (Multi-scale Convolutional Neu-
ral Networks) is the same as that of our MCGRU. As for 
the basic recurrent models, including RNN, LSTM and 
GRU, the quantity of units is set as 192. And for the deep 
recurrent models, including Deep RNN, Deep LSTM, 
and Deep GRU, the quantity of the units in two layers is 
set as (180, 240). The CBLSTM, that is Convolutional Bi-
Directional LSTMs, is proposed by Zhao et al. [17]. Here, 
the same settings in [17] are adopted for this model. The 
CGRU (Convolutional GRU) has a five-layer CNN with 
the same settings as the previous CNN model and a two-
layer GRU with units (180, 240).

In our proposed MCGRU, from branch 1 to branch 6, 
the kernel size of the convolutional layers is set as (1, 1), 
(1, 3), (1, 5), (1, 7), (1, 9), (1, 11) , and the quantity of ker-
nels is set as (32, 64). The kernel size of the pooling layer 
in all the branches is set as 2. Here, as the input shape 
is 40×3072, and the zero padding is adopted, the output 
shapes of each branch are the same, that is 40×32. Then, 
these six outputs are concatenated to get an output shape 
of 40×192. The quantity of units in the next two GRU 
layers is set as (180, 240) and the output units of the fully 
connected layer is set as 120. All of the activation func-
tions in our model are Rectified Linear Unit (ReLU).

To evaluate the capability of the previous models, the 
Mean Absolute Error (MAE) and the Root Mean Squared 
Error (RMSE) are adopted. The MAE focuses on the 
average magnitude of the errors, without considering 
their direction. As a quadratic scoring rule, the RMSE 
measures the average magnitude of the error. The MAE is 
given in Eq. (20), and the RMSE is given by:

where ŷi represents the predicted tool wear and yi is the 
actual tool wear.

(21)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

ŷi − yi
)2
,

Table 2  Details of the compared models

Models Details Input of the model

LR Linear regression Features extracted 
from raw signalsSVR Support vector regression

MLP Multi-layer perceptron

CNN Five-layer convolutional Neural 
network

Raw signals

MCNN Multi-scale convolutional Network

RNN Basic RNN

Deep RNN A two-layer RNN

LSTM A one-layer LSTM

Deep LSTM A two-layer LSTM

GRU​ A one-layer GRU​

Deep GRU​ A two-layer GRU​

CBLSTM Convolutional bi-directional LSTMs 
[18]

CGRU​ Convolutional GRU​

Table 3  Details of the extracted features

Index Features Expressions

Statistical Root mean square
√

1

n

∑

n

i=1
x
2
i

Variance 1

n

∑

n

i=1
(xi − x)2

Maximum max (x)

Skewness
E

[

(

x−µ
σ

)3
]

Kurtosis
E

[

(

x−µ
σ

)4
]

Peak-to-peak max (x)−min (x)

Frequency Spectral Skewness ∑

i=1
k

(

fi−f

σ

)3

S(fi)

Spectral Kurtosis ∑

i=1
k

(

fi−f

σ

)4

S(fi)

Spectral power ∑

k

i=1
(fi)

3
S(fi)

Time-frequency Wavelet energy ∑

N

i=1
ωt2φ(i)/N
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These models are trained and tested using a Linux 
Server with two NVIDIA 1080Ti GPUs and a 4.2 GHz 
INTEL i7-7700K CPU.

4.2 � Case 2: Experiment of the Reliability of CNC Machine 
Tool

4.2.1 � Descriptions of Datasets
The second experiment is of the reliability test of CNC 
machine tool. It is carried out on a CNC machine, as 
showed in Figure  9. The cutting tool, as showed in Fig-
ure 10, is utilized to process a 45# steel bar, and the relat-
ing parameters are shown in Table 4.

As shown in Table  4, three channels of data are sam-
pled, including the vibration signal, the AE-RMS signal 
and the current signal of the spindle motor. The tool wear 
corresponding to each working condition is also meas-
ured and recorded to be the label. Here, we did the exper-
iment with 9 cutting tools and got 840 samples in total. 
All of the cutting tools have the same initial tool wear. 
Each sample corresponds to a working condition. To be 
different from the first experimental case, in this case, we 
randomly chose samples from all of the cutting tools as 
the testing set and the training set. Both the training set 
and the testing set contain samples from the nine cutting 
tools. As a result, the training set include 735 of the 840 
samples, and the rest are used as the testing set. Similarly, 
as the sampling frequency is too high, for each signal, the 
sequence is divided by 256 to get several sections, and the 
first 20 sections are selected. Hence, each data sample is 
transformed into a sequential datum with a length of 20, 
and at each time step, the dimensionality is 768 (3 chan-
nels). As descripted above, in the training process, the 
input shape of the network is 735 × 20 × 768 and in the 
testing process, that of the network is 105 × 20 × 768.

Figure 9  CNC machine system for tool wear testing. a CNC machine 
and data acquisition system, b tool wear monitoring system

Figure 10  Tool wear: a Tool used for processing, b wear in tool

Table 4  Details of the second experimental case

Parameters Values

CNC machine FEELER FTC-20 CNC machine

Cutting tool Korea KORLOY, CNMG120408-HM

Cutting speed 200 m/min

Feed rate 0.15 mm/r

Cutting depth 2 mm

Workpiece Material: GB 45# steel

Diameter: 100 mm

Length: 300 mm

Vibration signal Sampling frequency: 32768 Hz

Sampling time: 2 s

Acoustic emission signal (AE-RMS) Sampling frequency: 25000 Hz

Sampling time: 2 s

Current signal of spindle motor Sampling frequency: 32768 Hz

Sampling time: 2 s

Surface roughness measuring instru-
ment

Mitutoyo SJ-201P

Tool wear measuring instrument MTO MZDH0670 microscope

Table 5  MAE of all the models in the first experimental case

Bold face indicates the best performance

Models Datasets

c1 c4 c6

LR 20.02 39.00 47.19

SVR 21.41 30.84 28.32

MLP 16.50 23.95 16.82

CNN 15.29 17.15 11.72

MCNN 14.34 16.51 11.07

RNN 14.37 14.85 15.78

Deep RNN 12.93 13.86 13.43

LSTM 13.86 14.52 13.64

Deep LSTM 12.59 13.30 11.46

GRU​ 13.36 14.29 12.12

Deep GRU​ 11.41 13.09 10.55

CBLSTM [18] 7.50 6.10 8.10

CGRU​ 9.65 10.98 10.06

MCGRU​ 6.87 6.04 7.42
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4.2.2 � Experiment Setup
The setup of this second experiment is almost the same 
as the first one. Same compared models and same set-
tings for these models are adopted. The two indexes used 
to evaluate the performance of the models are the MAE 
and the RMSE. The models are trained and tested using 
a Linux Server with two NVIDIA 1080Ti GPUs and a 4.2 
GHz INTEL i7-7700K CPU.

4.3 � Results
In this section, the comparison based on the MAE and 
RMSE of the above models are shown. Table 5 shows the 
MAE of each model in the first experimental case, while 
Table  6 shows the RMSE. The MAE and RMSE of each 
model in the second experiment are shown in Table 7.

As shown in the tables, the regression models LR, SVR 
and MLP have shown their capability to make predic-
tion of tool wear based on the features extracted from 
raw data, while they are not as good as the convolu-
tional models and recurrent models. Linear Regression 
performs worst in this task because it is a linear model 
in nature, which cannot make full use of the extracted 
features to make predictions. The SVR and the MLP 
perform better because the nonlinearity is introduced 
into the models so that the relationships among differ-
ent features can be better explored. In SVR, by adopting 
different kernels, the samples can be mapped to a high 
dimensional space. The RBF kernel we chose here shows 
its power to address regression tasks. The MLP is able to 
search an efficient mapping mode actively, which is effec-
tive and different from SVR.

However, compared to the above regression mod-
els, the convolutional models and recurrent models can 
address raw data to learn significant features and rep-
resentations, which enables them to have better perfor-
mance. By choosing different kernels, CNN is able to 
extract local or abstract features. In this task, MCNN 
performs better than CNN because it contains kernels 
of different sizes to extract local and abstract features in 
the same time. The depth and width we introduced here 
in these two models also help in predicting tool wear. 
Long-term dependencies in sequential data cannot be 
discovered by convolution operation, but it can be cap-
tured by recurrent models. As shown in the tables, in 
this task of addressing time series data, recurrent mod-
els perform slightly better than convolutional models. 
Here, LSTM and GRU are better than basic RNN because 
their gates enable them to be more powerful to cap-
ture long-term dependencies. What’s more, in this task, 
the amount of data is not large, which shows the GRU’s 
advantages under the situation where there is no suffi-
cient data. Here, the GRU performs better than LSTM. 
And as expected, the three deep recurrent models per-
form better than the three normal ones. In Ref. [17], the 
proposed Convolutional Bi-Directional LSTMs combines 
a local feature extractor CNN with a temporal encoder 
deep Bi-Directional LSTMs, which is able to excavate 
useful features hidden in the raw sensory data in both 
forward and backward ways. The CBLSTMs performs 
better than most of the above convolutional and recur-
rent models. As for the CGRU, it performs well, as the 
GRU is also able to learn significant representations on 

Table 6  RMSE of all the models in the first experimental case

Bold face indicates the best performance

Models Datasets

c1 c4 c6

LR 27.89 40.98 48.86

SVR 25.89 35.95 33.72

MLP 21.71 26.04 20.56

CNN 20.15 18.82 13.35

MCNN 21.09 18.26 12.69

RNN 17.48 18.38 19.56

Deep RNN 15.65 18.19 16.63

LSTM 16.76 17.64 16.26

Deep LSTM 16.32 17.27 13.79

GRU​ 16.57 17.48 13.93

Deep GRU​ 14.41 16.88 12.59

CBLSTM [18] 10.80 7.10 9.80

CGRU​ 14.38 13.95 12.27

MCGRU​ 8.27 6.81 9.08

Table 7  MAE and RMSE of all the models in the second 
experimental case

Bold face indicates the best performance

Models MAE RMSE

LR 8.28 9.32

SVR 8.27 8.78

MLP 7.76 8.54

CNN 6.53 8.27

MCNN 6.42 8.13

RNN 6.41 8.01

Deep RNN 6.37 7.93

LSTM 6.26 7.84

Deep LSTM 5.75 7.61

GRU​ 5.87 7.42

Deep GRU​ 5.02 6.37

CBLSTM[18] 5.17 7.02

CGRU​ 4.79 6.10

MCGRU​ 3.71 4.96
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basis of the features extracted by the CNN. Specially, in 
the second experimental case, the deep GRU and CGRU 
perform even better than the CBLSTMs, which shows 
the power of the GRU in dealing with small amount of 
data. Our proposed model, the MCGRU, performs best 
among these compared models.

The result reveals that there is much information hid-
den behind raw sensory data that cannot be discovered 
by human designed features, while Multi-scale CNN is 
able to filter the noise from real working environment 
and explore the information as much as possible. The 
deep GRU is able to excavate the temporal informa-
tion to find a more accurate relationship between the 
input and output, namely the raw sensory data and the 

predicted tool wear. As the network goes wider, more 
meaningful features of different time scales can be dis-
covered, and as it goes deeper, the abstract and signifi-
cant representations can be learnt. The combination of 
the multi-scale features extractor Multi-scale CNN and 
the temporal encoder deep GRU is therefore proven to 
perform well in the task of tool wear prediction.

To be more specific, the prediction of the tool wear, 
the corresponding actual tool wear, and the error 
between these two values are illustrated in Figures 11, 
12, 13, 14. It is shown that in the first three figures, i.e., 
in the results of the first experimental case, the trend of 
the degradation of the cutting tool is robustly captured 
and error is acceptable. Specially, in Figure  14, nine 
ascending curves can be found in the curve of actual 
tool wear, that’s because in the second experimental 

Figure 11  Results of the first experimental case, when c1 is the 
testing set: the prediction of the tool wear, the corresponding actual 
tool wear, and the error between these two values

Figure 12  Results of the first experimental case, when c4 is the 
testing set: the prediction of the tool wear, the corresponding actual 
tool wear, and the error between these two values

Figure 13  Results of the first experimental case, when c6 is the 
testing set: the prediction of the tool wear, the corresponding actual 
tool wear, and the error between these two values

Figure 14  Results of the second experimental case: the predicted 
tool wear, the actual tool wear and the error
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case, we have sampled data from all of the nine cut-
ting tools to be the testing set and each ascending curve 
represents the data from a cutting tool. In this case, the 
results are also satisfying. Moreover, for each epoch, it 
consumes about 1 s to train. When testing, it consumes 
only 0.8 s to predict the tool wear of about 300 sam-
ples, which means that our proposed model is efficient 
enough to be used in real-time prediction.

5 � Discussion
In this section, we discuss the impact of the number of 
the branches in the Multi-scale CNN and the influence 
of the depth of the GRU. Some insights and motivation 
for the future steps are also discussed.

1)	 As we go wider by using multi branches to extract 
more features, it is important to point out that this 
operation increases the model’s parameters, which 
results in the difficulty in training and the risk of 
over fitting. Here, based on dataset c1 we compare six 
numbers of branches (2, 4, 6, 8, 10, 20) in a MCGRU 
and the MAE and RMSE results are illustrated in 
Table  8. It shows that as the number of branches 
increases, the performance of the model gets better 
and then remains almost the same, and when there 
are 10 or 20 branches, the performance gets worse, 

which means that blindly increasing the number 
of branches does harm to the model and cannot 
improve its performance. Here we finally adopt 6 
branches of CNN in our MCGRU.

2)	 The depth of the model also affects the performance 
of the model. We change the layers of GRU in the 
MCGRU to explore the impact of the depth. The 
number of layers of GRU is set as (2, 4, 6, 8) and the 
results are shown in Table 9. It is clear that the per-
formance of these four models is almost the same. 
A reasonable explanation is that in our two experi-
ments, there is no sufficient labeled data and there-
fore a shallow depth of GRU is powerful enough to 
discover the information behind the data. When 
there is a large amount of data, a GRU of more layers 
can be tried to further improve the capability of the 
model.

3)	 The robustness of a model is important to evaluate 
the performance of a model. In real working environ-
ment, the quality of the samples signals may be influ-
enced by the noise. It is important and interesting 
to build a model that is robust when there is a large 
amount of noise. And in our settings, different signals 
are combined directly, it is meaningful to design a 
better way of fusing the data from different sensors.

6 � Conclusions

(1)	 In this paper, we proposed a Multi-scale Convolu-
tional Gated Recurrent Unit Network (MCGRU) 
to address tool wear prediction task. We interpret 
the structure of this model by introducing the fea-
ture extractor: Multi-scale CNN and the encoder: 
Deep GRU. The Multi-scale CNN is able to extract 
both local and abstract features by kernels of differ-
ent sizes, and the Deep GRU is capable of capturing 
long-term dependencies and learning significant 
representations based on the features extracted in 
Multi-scale CNN.

(2)	 Moreover, the GRU performs better when there 
is no sufficient labeled data in real working condi-
tions. Profiting from these advantages, the MCGRU 
is able to make accurate and effective tool wear pre-
diction based on raw sensory data, without expert 
knowledge and feature engineering. Its satisfactory 
performance is further verified by two experimental 
cases and the comparisons with other models.
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Table 8  Comparison of different numbers of branches in the 
MCGRU​

The bold value means the best results

Dataset c1

Number of branches MAE RMSE

2 9.25 14.50

4 7.61 11.97

6 6.87 8.27
8 7.04 8.95

10 9.38 12.74

20 9.71 13.49

Table 9  Comparison of different numbers of GRU layers in the 
MCGRU model

The bold value means the best results

Dataset c1

Number of GRU layers MAE RMSE

2 6.87 8.27
4 7.02 8.92

6 7.13 9.45

8 6.97 8.67
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