
Xu et al. Chin. J. Mech. Eng. (2021) 34:53
https://doi.org/10.1186/s10033-021-00565-4

ORIGINAL ARTICLE

Multi‑Scale Convolutional Gated Recurrent
Unit Networks for Tool Wear Prediction in Smart
Manufacturing
Weixin Xu1, Huihui Miao1, Zhibin Zhao1, Jinxin Liu1, Chuang Sun1 and Ruqiang Yan1,2*   

Abstract 

As an integrated application of modern information technologies and artificial intelligence, Prognostic and Health
Management (PHM) is important for machine health monitoring. Prediction of tool wear is one of the symbolic appli-
cations of PHM technology in modern manufacturing systems and industry. In this paper, a multi-scale Convolutional
Gated Recurrent Unit network (MCGRU) is proposed to address raw sensory data for tool wear prediction. At the bot-
tom of MCGRU, six parallel and independent branches with different kernel sizes are designed to form a multi-scale
convolutional neural network, which augments the adaptability to features of different time scales. These features of
different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term
dependencies and learn significant representations. At the top of the MCGRU, a fully connected layer and a regression
layer are built for cutting tool wear prediction. Two case studies are performed to verify the capability and effective-
ness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline
models.

Keywords:  Tool wear prediction, Multi-scale, Convolutional neural networks, Gated recurrent unit

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

1  Introduction
The development of Prognostic and Health Management
(PHM) has motivated the research in the field of machine
health monitoring to detect faults and predict machine’s
future conditions [1–4]. In modern manufacturing sys-
tem, the worn tool is harmful for the metal cutting pro-
cess and often causes additional costs [5]. The cutting
tools will gradually become blunt during the manufactur-
ing process, as shown in Figure 1, because of a lot of fac-
tors like abrasion, deformation and attrition. As a result,
the quality of the products will be degraded. It is there-
fore crucial to monitor and predict the cutting tool wear
online so as to prevent the quality from degradation [6].

Aiming at monitoring the working conditions of cut-
ting tools and predicting tool wear, many methods,
direct or indirect, online or offline, have been researched.
Traditionally, by performing cutting tests under differ-
ent working conditions, data about the cutting tools are
acquired and then analyzed with the help of optimiza-
tion techniques including the response surface method-
ology (RSM) and the design of experiments (DOE). This
approach is time-consuming and inefficient because the
number of the tests required is large [7]. The finite ele-
ment method (FEM) [8–10] has also been used in dif-
ferent cutting tasks [11, 12] and to predict cutting tool
wear. Over the last two decades, methods based on deep
learning and neural networks have started to be used for
the estimation and prediction of cutting tool wear. Ko
et al. [13] designed an autoregressive model followed
by a highly parallel neural network to monitor the cut-
ting state. Özel et al. [14] used neural networks for the
prediction of cutting tool wear and its surface roughness.

Open Access

Chinese Journal of Mechanical
Engineering

*Correspondence: yanruqiang@xjtu.edu.cn
1 School of Mechanical Engineering, Xi’an Jiaotong University,
Xi’an 710049, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1250-4084
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-021-00565-4&domain=pdf

Page 2 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53

Ghosh et al. [6] designed a sensor fusion model with the
help of neural network to extract and fuse features from
various signals for the estimation of cutting tool’s aver-
age flank wear. By using Adaptive Neuro Fuzzy Inference
System, Sharma et al. [15] developed a method for tool
wear estimation. Venkata et al. [16] fed the cutting speed,
the radius of nose and the volume of removed material
to a multilayer perceptron model for the prediction of
amplitude vibration, surface roughness, and tool wear.
Zhao et al. [17] designed a convolutional bi-directional
LSTM networks to monitor machine health, as well as
to predict the tool wear depth. In general, researchers
divide these methods into two major categories: physics-
based methods and data-driven methods. In tasks of tool
wear prediction, physics-based methods based on grey
models and particle filters [18] have proven to be effec-
tive. However, these methods usually require accurate
and high-quality domain knowledge, which is often una-
vailable under complex and noisy working conditions.
Moreover, most of them are unable to be upgraded with
online data. Data-driven methods are now more attrac-
tive because they are able to address these issues. Deep
learning theories and large amounts of data collected
by advanced sensors have promoted the development
of data-driven online methods. Two phases are usu-
ally included in data-driven models [19], where the first

phase is to train models with collected data and then the
other phase is to apply the trained models to online data
to monitor the conditions or make predictions. The key
of these two phases is that deep learning theories enable
the model to better extract features and derive represen-
tations of machine conditions hidden in the data, and
therefore enable it to make better predictions based on
online data. In this paper, we research data-driven meth-
ods with the help of deep learning theories to predict cut-
ting tool wear.

Data-driven methods take single or multiple sen-
sory data as input, feeding them into training models to
extract features and learn representations. Online data
will then be fed into the well trained models to make
predictions. Data and models are two core parts of data-
driven methods. Figure 2 shows the basic framework of
data-driven methods. The raw time series data collected
by sensors are in sequential forms, whose sequential
characteristics are difficult to be discovered by previous
work focusing on developing models to extract multi-
domain features. These models, trying to extract statis-
tical, frequency and time-frequency features, require
intensive expert knowledge and feature engineering.
Some models, such as the Markov models and Kalman
filters [20–22], are capable of addressing sequential data,
but they are not good at capturing long-range depend-
encies. It is important to capture connections and infor-
mation in time scale because in real working conditions,
the features are often submerged by heavy background
noise, which will cause failures in these models. The
development in the field of neural networks and deep
learning has offered solutions to address these issues,
and one of these solutions is Recurrent Neural Network
(RNN). Traditionally, neural networks deal with inputs

Figure 1  Degradation of cutting tools

Historical
data
or

features

Online data or features

Machine

Model training
(Neural Networks, SVM, Random Forest, etc.)

Trained model

Regression,
Classification, etc.

Figure 2  Basic framework of data-driven methods

Page 3 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53 	

and outputs independently, which is not so reasonable in
some sequential tasks. RNN is proposed to make use of
information in arbitrary long sequences, and to capture
the calculated information. However, the problem of gra-
dient exploding and vanishing in traditional RNN weak-
ens its power. Some improved variants of RNN have been
designed to solve this problem, and one of them is LSTM,
namely Long Short-Term Memory Network. LSTM is
good at solving problems that in need of information
about previous events [23], which means that it is better
at addressing sequential data of various length and cap-
turing long-term dependencies. LSTM needs sufficient
data to train while in real working conditions, while there
may be no sufficient labeled data. Gated Recurrent Unit
(GRU) network performs better under such situations.
Proposed in 2014, GRU [24] is a more efficient variant of
LSTM that shares many similar properties. With compa-
rable performance to LSTM on sequence modeling, GRU
has fewer parameters and is easier to train. Here, we
introduce GRU networks to be one part of our network
architecture. As one type of neural networks, GRU is
able to extract features and learn representations without
expert or domain knowledge, but it may be not robust
because of the existence of noise in the raw sensory data.
Compared with GRU, Convolutional Neural Network
(CNN) is more robust when the data has noise interfer-
ence. The convolutional operations in the CNN are able
to extract abstract features by applying learnable filters to
the convolutional layers to convolve with sequential data.
For this reason, in Ref. [17], Zhao et al. adopted a one-
layer CNN as a local feature extractor. However, as the
information hidden in the sequential data is complicated
and diverse, this local feature extractor with only one ker-
nel size cannot extract all of the useful information. To
address this issue, filters of different sizes are adopted to
form a multi-scale convolutional layer to extract different
significant features. Here, we use this multi-scale convo-
lutional network to extract hidden but important features
and then these features will be concatenated into a single
feature map.

In this paper, we propose a model combining multi-
scale CNN and GRU named Multi-scale Convolutional
Gated Recurrent Unit Network (MCGRU) to predict
cutting tool wear. In this model, the multi-scale CNN
consists of six parallel branches, and they are independ-
ent of each other. These branches are able to extract local
features, as well as abstract ones from high level. Then
these feature maps will be merged into a single feature
map. Temporal information is encoded and representa-
tions are learnt in a two-layer GRU network, built on the
top of the merge layer. We experiment on an open source
dataset from cutters of high-speed Computer Numeri-
cal Control (CNC) milling machine, containing acoustic

emission data, accelerometer data and dynamometer
data [25]. Additionally, another experiment of CNC tool
wear is carried out, through which current and vibration
data and tool wear depth are sampled. Based on these
sequential data and their corresponding tool wear depth,
we compare the predicting ability of our model with that
of several state-of-the-art models.

This paper is organized as follows. In Section 2, we
review some related work about CNN and GRU. Based
on classic CNN and GRU, the MCGRU is designed and
its details are presented in Section 3. Two case studies on
the prediction of tool wear are conducted in Section 4.
More details about the model and future steps are dis-
cussed in Section 5. Finally, conclusions are presented in
Section 6.

2 � Review of Related Work
2.1 � Convolutional Neural Network
Convolutional Neural Network has proven very power-
ful in many recognition and classification tasks [26–28].
It has also shown the power to address sequential data
in task of natural language processing [29–31]. In the
convolutional layers, filters slide over sequential data to
extract features and filters in the pooling layers will focus
on the most salient ones. Additionally, the training pro-
cess can be sped up and the model’s performance can
be improved by adding batch normalization layers [32].
The capability of CNN can be further improved by stack-
ing the above layers to build a “deep” CNN. Besides, the
width of CNN can also influence its performance. In
the inception module [33], parallel branches consisting
of convolutional and pooling layers with different ker-
nels are designed. This architecture allows the model to
recover both local features via kernels of smaller sizes
and high abstract features via that of larger sizes.

In our MCGRU network, an architecture of six paral-
lel branches of CNN is designed to process the input
sequential data before it is fed to GRU units. Kernels with
different sizes are adopted in different branches to extract
local and abstract features at the same time. The model
itself is going to determine which features are significant
to be chosen.

2.2 � RNN, LSTM and GRU​
Recurrent Neural Network (RNN) is mainly proposed
to handle long term dependencies while processing
sequential data in task of natural language processing.
The hidden states in RNN use the outputs of the previ-
ous states as the inputs of the next states, which means
that the sequential information is preserved. As weights
are shared across time, RNN is able to process sequen-
tial input of any length. However, the problem of gradient
exploding and vanishing emerged as the major obstacle

Page 4 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53

to traditional RNN’s performance. To avoid this problem,
Long Short-Term Memory Network was proposed by
Sepp and Jürgen [34] in 1997 and was improved by Felix
Gers’ team [35] in 2000. It is able to prevent backpropa-
gated error from vanishing [36] and memorize a state
for different time periods with the help of the input gate,
forget gate and output gate, which manage the flow of
information in the network. As another variant of RNN,
Gated Recurrent Unit (GRU) was introduced to solve the
vanishing problem. With only a reset gate and an update
gate, GRU has comparable performance to LSTM. How-
ever, there are fewer parameters in GRU because it lacks
an output gate and has less complex structure, which
means that it is more efficient and can be used under sit-
uations where there is no sufficient data. Considering the
effectiveness of GRU, it has been more and more widely
used to learn significant representations in time series
data.

In the proposed MCGRU network, two-layer GRUs are
adopted to process the output of the multi-scale convolu-
tional layers. Effective representations will be learnt here
and to be used in the prediction of tool wear.

2.3 � Neural Networks and Tool Wear Prediction
Neural networks have been successfully used in tasks of
machine condition monitoring like tool wear prediction
because of their excellent features extraction and repre-
sentations learning capabilities [37–42]. Artificial Neural
Networks (ANN) were firstly adopted and were proved to
have good performance in the machine condition moni-
toring tasks. However, with more and more interference
and as the working conditions become more and more
complex, ANN is no longer good at solving these prob-
lems. As a result, Convolutional Neural Networks (CNN)
was introduced in this field. The depth of the networks
and their learning ability enable themselves to learn what
they need in these tasks. However, most of these models
make use of the features manually extracted and designed
from raw data, while ignoring the representations and the
relations of different time steps hidden in the sequential
data. For tool wear prediction, the information about
the condition of cutting tools remains to be discovered.
Our proposed MCGRU combines multi-scale CNN
with GRU to learn features and representations without
the intervention of human designed features, which the
information behind the raw sensory data can be explored
as much as possible and the prediction accuracy will be
improved.

3 � Model
What we desire is an arm exoskeleton which is capable
of following motions of the human upper-limb accurately
and supplying the human upper-limb with proper force

feedback if needed. In order to achieve an ideal control-
ling performance, we have to examine the structure of
the human upper-limb.

Before presenting the MCGRU network, some nota-
tions used in this paper are clarified here. The task is to
design a model for tool wear prediction based on the
multiple in-process sensory data. A labeled time series
dataset is given as D =

{(

xi, yi
)}N

i=1
 , which contains N

tool conditions, and their corresponding labels yi , i.e.,
each tool condition corresponding to a tool wear that is
measured and recorded as yi . Assuming that in each tool
condition xi , q channels of sensory data are sampled and
the length of each channel of sensory data is L . For each
channel, the whole sequence is divided into l sections,
i.e., l time steps. The ith cutting tool condition is

where vector xti ∈ Rd is the multiple channels of sen-
sory data sampled at time step t , i.e., the tth section, and
d = q ∗ (L/l) is the dimensionality of xti , and (·)T repre-
sents the transpose. The goal is to predict the tool wear
ŷi through xi . In our proposed Multi-scale Convolutional
Gated Recurrent Unit, the Multi-scale Convolutional
Network functions as a feature extractor and the Gated
Recurrent Unit functions as a temporal encoder. Six par-
allel and independent branches of Convolutional Neural
Network consisting of different kernels are designed to
process the raw sensory data. Local and abstract features
extracted are fed into a merge layer, on the top of which is
a two-layer GRU designed to learn significant representa-
tions. Finally, the prediction is performed by a fully con-
nected layer and a regression layer. The MCGRU network
is shown in Figure 3.

3.1 � Multi‑Scale CNN
In each branch of the multi-scale CNN, a five-layer
CNN is adopted, which consists of two convolutional
layers, one max-pooling layer and two batch normali-
zation layers. In the first convolutional layer of each
branch, the kernel size equals to 1. The adoption of this
convolutional layer is not only able to help extract more
significant features, but also able to reduce the param-
eters of the model. For example, in one-dimensional
convolution, a CNN containing one convolutional
layer with kernel size equaling to 7 has more parame-
ters than that containing two convolutional layers with
kernel sizes equaling to 1 and 7, respectively. A batch
normalization layer is adopted at the top of the first
convolutional layer. Batch normalization layers in hid-
den layers help to accelerate the training and augment
the predicting accuracy. Then, the output of the batch
normalization layer is fed into the second convolutional

(1)xi =
[

x
1
i x

2
i · · · x

l
i

]T
,

Page 5 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53 	

layer. The second convolutional layers with different
kernels in different branches extract multiple time scale
features hidden in the sequential data. Small kernels
are able to extract local features, while large kernels are
able to extract abstract features. Based on these multi-
time-scale features, the model itself learns to deter-
mine which ones should be concerned about. The last
two layers are another batch normalization layer and a
max-pooling layer. The max-pooling layer compresses
the previous feature maps to further learn more sig-
nificant features. Then in a merge layer, all of the fea-
ture maps from different branches are concatenated

into a single feature map. All of the features extracted
from branches are reserved. The organization of these
two kinds of structure is shown in Figure 4. Details are
presented in the following contents respectively. Here
we take the operations in one branch as example, and
operations in other branches are the same.

3.1.1 � Convolution
In the convolutional layer of each branch in the Multi-
scale CNN, the 1-dimensional convolution opera-
tion is achieved by using a filter (kernel) v ∈ Rh×d to

Input

1st

Convolution
+

BN
+

ReLU

2nd

Convolution
+

BN
+

ReLU

Max-
Pooling

Branch 1

Branch 2

Branch 6

Multi-scale CNN

Concatenation

Dropout Dropout

Output/
Prediction

Deep GRU

Linear
Regression

FC

Figure 3  Structure of the proposed MCGRU​

Page 6 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53

slide over xi ∈ Rl×d to convolve with the subsection
x
t:t+h−1
i ∈ Rh×d from time step t to time step t + h− 1 .

The xt:t+h−1
i is given as follows:

where h is the kernel size. Additionally, a bias term b is
added to get the complete convolution operation, which
can be given as:

where j ∈ R represents the jth filter v and ◦ represents the
Hadamard product.

As the filter slides over xi and the convolution opera-
tion is done, we get a vector cj , which is given by:

where p is the amount of zero padding, s is the sliding
stride of the kernel, and (l − h+ 2p)/s + 1 is the length
of the output after convolution operation. When s and p
are set, the length of the output depends on the kernel

(2)x
t:t+h−1
i =

[

x
t
i x

t+1
i

· · · x
t+h−1
i

]T

(3)ctj = vj ◦ x
t:t+h−1
i + b

(4)cj =

[

c1j c2j · · · c
(l−h+2p)/s+1

j

]T

size h . Different kernels size results in different output
sizes. It is an important point because in each branch of
our proposed Multi-scale CNN, different kernel sizes are
chosen.

Specially, to concatenate different outputs from differ-
ent branches, it is more meaningful to get outputs with
same size. Therefore, the trick of zero padding is adopted
in the convolution operation. In different branches, dif-
ferent amounts of zero padding are adopted, which helps
the output to have the same size as the input, no matter
which kernel size is chosen. As a result, the feature map
can be given by:

3.1.2 � Batch Normalization
Instead of just normalizing the input of the CNN, we
adopt batch normalization [32] layers to normalize the
inputs within the network by using the variance and
the mean of the values in the current mini-batch. In the
batch normalization layer, the operation can be repre-
sented as follows:

As batch normalization layer does not change the fea-
ture map’s size, we therefore get:

3.1.3 � Activation Function
After the convolution and batch normalization opera-
tions, an activation function is added to bring in non-lin-
ear properties and therefore to learn non-linear complex
arbitrary functional relationships between inputs and
outputs. As a result, the convolution, batch normaliza-
tion and activation operations can be together given by:

where f (·) is an activation function. Here, we choose
Rectified Linear Units (ReLU) [43] as the activation func-
tion in our proposed model.

The above three operations result in a feature map,
which can be given by

(5)cj =

[

c1j c2j · · · clj

]T

(6)bnj = BN
(

cj

)

.

(7)bnj =

[

BN

(

c1j

)

BN

(

c2j

)

· · · BN

(

clj

)]T

.

(8)atj = f
(

BN

(

v
T
j x

t:t+s−1
i + b

))

,

(9)aj =

[

a1j a2j · · · alj

]T

.

Convlutional
Layer 1

BN Layer 1

Convolutional
Layer 2

BN Layer 2

Max-Pooling
Layer

Activation function

Activation function

Input

Output

Max-Pooling
Layer

Convlutional
Layer 1

BN Layer 1

Convolutional
Layer 2

BN Layer 2

Activation function

Input

Output

(a) (b)

Activation function

Figure 4  a Structure of five of the six CNN branches, b structure of
the sixth CNN branch

Page 7 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53 	

3.1.4 � Max‑Pooling
By introducing pooling layers in the network, the previ-
ous feature maps’ size can be further reduced and more
significant and abstract features can be extracted. Here,
we adopt max-pooling operation. In one-dimensional
pooling, with the pooling length k , the max-pooling
operation uses a kernel to slide over the feature map to
get the max value over the k consecutive values. Here we
let the sliding stride equal to k , and as a result, the output
of max-pooling operation can be given by:

where mi
j = max

(

a
(i−1)s
j , a

(i−1)s+1

j , · · · , a
(i−1)s+k−1

j

)

.

3.1.5 � Concatenation
In the concatenating layer, the feature maps from differ-
ent branches will be concatenated into a single feature
map to merge all the local and abstract features. Assum-
ing that in the ith branch, the jth output of this branch is
given by:

(10)mj =

[

m1
j m2

j · · · m
(l−k+2p)/s+1

j

]T

,

Then, the output of the concatenation layer is given as:

where N is the serial number of branch, and Mi can be
represented as

where Ki is the number of output of the ith branch.
To summarize, in the Multi-scale CNN, the shape of

the input sequence is n× l × d . Here, n represents the
total number of working conditions. As descripted above,
before the concatenating layer, the output shape of the
ith branch is n× ((l − k + 2p)/s + 1)× Ki . In different
branches, kernel sizes from small to large help to extract
local and abstract features. Compared to the original
raw sequence, these multi-time-scale features can bet-
ter represent the properties of the working conditions.
As these features are merged in the concatenating layer,
the following GRU is added to learn significant represen-
tations of the working conditions. To be more specific,

(11)mij =

[

m1
ij m

2
ij · · · m

(l−k+2p)/s+1

ij

]T

.

(12)Concatenation=
[

M1 M2 · · · MN

]

(13)Mi =
[

mi1 mi2 · · · miKi

]

,

Output of
1st Convolutional
layer (with zero

padding)
+

BN + Activation

Output of
2nd Convolutional

layer
(with zero padding)

+
BN + Activation

Output of
Max-pooling

Concatenation

Dimensionality
of input

Length
of input

(time step)

Number of filters
Output
length

Branch 1

Branch 6

Branch
2

Figure 5  Framework of multi-scale CNN

Page 8 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53

the framework of the Multi-scale CNN is illustrated in
Figure 5.

3.2 � Deep GRU​
Under real industrial conditions, clean sample data is
difficult to obtain. Compared to LSTM, GRU is better at
dealing with such situations where there is no sufficient
data. Here, on the top of the Multi-scale CNN, a two-
layer GRU network is designed to excavate vital repre-
sentations from the multi-time-scale features. The deep
GRU is presented as follows.

3.2.1 � Gated Recurrent Unit
In GRU, the inputs are the hidden state ht−1 at previous
time step t − 1 and the data xt at the current time step
t , and the output is the hidden state ht . The output ht
depends on the previous hidden state ht−1 , the update
gate zt , the reset gate rt and the candidate hidden state
h̃t . The reset gate rt enables the unit to drop any infor-
mation in the hidden state that is less meaningful or
irrelevant, so as to focus on the information that is more
important. The update gate zt determines the informa-
tion from the previous and the candidate hidden state
that can be passed to the current hidden state [23]. The
relating equations can be given by:

where σ is the sigmoid activation function, W z , U z , W r ,
U r , W h and Uh are shared weight matrices which are
learned during training, bz , br , bh are learnable biases.
The basic structure of a one-layer GRU is shown in Fig. 6.

3.2.2 � Deep GRU Gated
As mentioned above, the capability of a neural network
can be improved by “going deeper” [44, 45]. In a deep
neural network, there exists more non-linear operations
and more abstract features and representations can be
learned. Inspired by this idea, we stack two GRU lay-
ers to get a deep architecture, in which each GRU layer
contains different number of units. In the deep GRU, as
shown in Figure 7, while the output of each hidden state
in one layer propagating through time, it is also the input
of the hidden state in the next layer. Features at low level
are therefore learned and passed to the next layer to learn

(14)zt = σ(W zxt +U zht−1 + bz),

(15)rt = σ(W rxt +U rht−1 + br),

(16)h̃t = tanh (W hxt +Uh(rt ◦ ht−1)+ bh),

(17)ht = (1− zt) ◦ ht−1 + zt ◦ h̃t ,

x1 x2 x3 xn

h1 h2 h3

hn

Input
sequence

GRUs

Figure 6  One-layer GRU​

x1 x2 x3 xn

h1 h2 h3 hn

Input
sequence

1st GRU layer

2nd GRU layer

Make
predictions

Figure 7  Deep GRU​

Page 9 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53 	

higher-level representations. By stacking GRU layers, the
network is able to learn essential representations at dif-
ferent time scales more effectively.

3.3 � Fully Connected and Linear Regression Layer
The output representation of GRU network is flattened as
h and then fed into a fully connected layer to be prepared
for the linear regression layer. The operation of the fully
connected layer can be given as follows:

where o is the output of the fully connected layer, W is
the transformation matrix, b is the bias, and f (·) is the
activation function. We use ReLU here as the activation
function. Finally, the fully connected layer’s output o is
fed into a regression layer and the tool wear of the ith
working condition is therefore predicted, which can be
given by

3.4 � Training and Regularization of MCGRU​
The Mean Absolute Error (MAE) is adopted as the loss in
the training process, which is given by:

where n represents the total number the samples.
The optimizer we adopt here is Root Mean Square

Propagation (RMSProp) [46]. It is a very robust optimizer
with pseudo curvature information. RMSProp is useful
for mini batch learning because the gradients are normal-
ized by the magnitude of the recent gradients, enabling
it to handle stochastic objectives properly. RMSProp is a
nice optimizer for recurrent neural networks like LSTM
and GRU.

As mentioned above, GRU rather than LSTM is cho-
sen in our proposed model because in real working con-
ditions, there is usually no sufficient labeled data. When
going deep and when there is no sufficient data, the net-
work may be too complex to train and the problem of
overfitting may appear. In order to solve this problem,
regularization methods should be added within the net-
work. Here, we adopt a Dropout [47] layer after the GRU
network, as well as after the fully connected layer. Drop-
out layer enables the network to ignore those neurons
that are randomly selected during the process of forward
propagation. Therefore, the network will not rely too
much on some local features. In our proposed model, we
only use dropout during training process, but not in test-
ing process, and the dropout ratio is set to be 0.3.

(18)o = f (Wh+ b),

(19)ŷi = Woi.

(20)loss = MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣,

4 � Experiments
4.1 � Case 1: High Speed CNC Machine Tool Wear Dataset
4.1.1 � Descriptions of Datasets
The first experiment is a high speed CNC machine run-
ning under dry milling operations [48]. This dataset is
presented on the “prognostic data challenge 2010” data-
base [25]. The experimental platform and the details are
shown in Figure 8. In this experiment, six cutters are
used to cut over an identical workpiece while each cut-
ter made 315 cuts. When training and testing our model,
six channels of data including forces and vibrations are
used. A LEICA MZ12 microscope was utilized to meas-
ure the flank wear of each flute when the experiment was
finished. The values of the wear were then taken as the
target value.

In this dataset, six cutting tools are used to do the
experiment, which means six collections of data (C1, C2,
· · · , C6) can be used. To compare with the results in Ref.
[17], we adopt three cutting tools, i.e., three data collec-
tions C1, C4 and C6 as our training and testing sets here.
Each data collection contains 315 samples, correspond-
ing to 315 tool wear. To make good use of this dataset,
a three-fold strategy is adopted. Among these three data
collections, two of them are taken as the training set
and the other is the testing one. As a result, we get three
cases. For example, when C1 is testing set and C4, C6 are
training test, this case is denoted as c1. The other two
cases c4, c6 can be deduced from the above example. The
details of these three cases are shown in Table 1.

Online Data Acquisition

Charge
Amplifier

Data
Acquisition

Card

Microscope
LEICA MZ12

Tool Wear Measurement

CNC Milling Machine

Accelerometer

Force Sensor

Cutting Tool

Workpiece

Microscope

Machining
Table

Tool
Wear

Force,
Vibration
Signals

Model

Figure 8  Details of the CNC machine and the data collected system

Table 1  Details of the three dataset cases

Set Name Training Set Testing Set Number of
samples in
Training Set

Number
of samples
in Testing
Set

c1 C4 + C6 C1 630 315

c4 C1 + C6 C4

c6 C1 + C4 C6

Page 10 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53

As the sampling frequency is too high, for each chan-
nel, the sampled sequence is divided by 512 to get several
sections, and the first forty sections are used. As a result,
each original sequence is transformed into a datum with
a length of 40, and therefore at each time step, the dimen-
sionality is 3072 (6 channels). As descripted above, in
the training process, the input shape of the network is
630×40×3072 and in the testing process, that of the net-
work is 315×40×3072.

4.1.2 � Experiment Setup
The following models shown in Table 2 will be compared
with our proposed MCGRU model. Regression models
including LR, SVR and MLP, cannot process sequential

data directly, and hence we firstly extract the related
features. Here, ten features, containing statistical fea-
tures, frequency features and time-frequency features are
extracted from raw data. Details are shown in Table 3. As
there are six channels of signals, the dimensionality of the
input is 60. In LR, there is no hyper parameter. In SVR,
the regularization parameter is set as 0.1 and the kernel is
Radial Basis Function (RBF). As for the MLP, the param-
eters of three hidden layers are set as (140, 280, 900) and
we choose ReLU as the activation function.

The other compared models are able to address
sequential data directly. The input shape is therefore
40×3072. The five-layer CNN has the same structure as
one branch of our proposed MCGRU. The kernel sizes
in the two convolutional layers are 1 and 7, quantities of
kernels are 32 and 64, and the pooling size is set as 2. The
setting of the MCNN (Multi-scale Convolutional Neu-
ral Networks) is the same as that of our MCGRU. As for
the basic recurrent models, including RNN, LSTM and
GRU, the quantity of units is set as 192. And for the deep
recurrent models, including Deep RNN, Deep LSTM,
and Deep GRU, the quantity of the units in two layers is
set as (180, 240). The CBLSTM, that is Convolutional Bi-
Directional LSTMs, is proposed by Zhao et al. [17]. Here,
the same settings in [17] are adopted for this model. The
CGRU (Convolutional GRU) has a five-layer CNN with
the same settings as the previous CNN model and a two-
layer GRU with units (180, 240).

In our proposed MCGRU, from branch 1 to branch 6,
the kernel size of the convolutional layers is set as (1, 1),
(1, 3), (1, 5), (1, 7), (1, 9), (1, 11) , and the quantity of ker-
nels is set as (32, 64). The kernel size of the pooling layer
in all the branches is set as 2. Here, as the input shape
is 40×3072, and the zero padding is adopted, the output
shapes of each branch are the same, that is 40×32. Then,
these six outputs are concatenated to get an output shape
of 40×192. The quantity of units in the next two GRU
layers is set as (180, 240) and the output units of the fully
connected layer is set as 120. All of the activation func-
tions in our model are Rectified Linear Unit (ReLU).

To evaluate the capability of the previous models, the
Mean Absolute Error (MAE) and the Root Mean Squared
Error (RMSE) are adopted. The MAE focuses on the
average magnitude of the errors, without considering
their direction. As a quadratic scoring rule, the RMSE
measures the average magnitude of the error. The MAE is
given in Eq. (20), and the RMSE is given by:

where ŷi represents the predicted tool wear and yi is the
actual tool wear.

(21)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

ŷi − yi
)2
,

Table 2  Details of the compared models

Models Details Input of the model

LR Linear regression Features extracted
from raw signalsSVR Support vector regression

MLP Multi-layer perceptron

CNN Five-layer convolutional Neural
network

Raw signals

MCNN Multi-scale convolutional Network

RNN Basic RNN

Deep RNN A two-layer RNN

LSTM A one-layer LSTM

Deep LSTM A two-layer LSTM

GRU​ A one-layer GRU​

Deep GRU​ A two-layer GRU​

CBLSTM Convolutional bi-directional LSTMs
[18]

CGRU​ Convolutional GRU​

Table 3  Details of the extracted features

Index Features Expressions

Statistical Root mean square
√

1

n

∑

n

i=1
x
2
i

Variance 1

n

∑

n

i=1
(xi − x)2

Maximum max (x)

Skewness
E

[

(

x−µ
σ

)3
]

Kurtosis
E

[

(

x−µ
σ

)4
]

Peak-to-peak max (x)−min (x)

Frequency Spectral Skewness ∑

i=1
k

(

fi−f

σ

)3

S(fi)

Spectral Kurtosis ∑

i=1
k

(

fi−f

σ

)4

S(fi)

Spectral power ∑

k

i=1
(fi)

3
S(fi)

Time-frequency Wavelet energy ∑

N

i=1
ωt2φ(i)/N

Page 11 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53 	

These models are trained and tested using a Linux
Server with two NVIDIA 1080Ti GPUs and a 4.2 GHz
INTEL i7-7700K CPU.

4.2 � Case 2: Experiment of the Reliability of CNC Machine
Tool

4.2.1 � Descriptions of Datasets
The second experiment is of the reliability test of CNC
machine tool. It is carried out on a CNC machine, as
showed in Figure 9. The cutting tool, as showed in Fig-
ure 10, is utilized to process a 45# steel bar, and the relat-
ing parameters are shown in Table 4.

As shown in Table 4, three channels of data are sam-
pled, including the vibration signal, the AE-RMS signal
and the current signal of the spindle motor. The tool wear
corresponding to each working condition is also meas-
ured and recorded to be the label. Here, we did the exper-
iment with 9 cutting tools and got 840 samples in total.
All of the cutting tools have the same initial tool wear.
Each sample corresponds to a working condition. To be
different from the first experimental case, in this case, we
randomly chose samples from all of the cutting tools as
the testing set and the training set. Both the training set
and the testing set contain samples from the nine cutting
tools. As a result, the training set include 735 of the 840
samples, and the rest are used as the testing set. Similarly,
as the sampling frequency is too high, for each signal, the
sequence is divided by 256 to get several sections, and the
first 20 sections are selected. Hence, each data sample is
transformed into a sequential datum with a length of 20,
and at each time step, the dimensionality is 768 (3 chan-
nels). As descripted above, in the training process, the
input shape of the network is 735 × 20 × 768 and in the
testing process, that of the network is 105 × 20 × 768.

Figure 9  CNC machine system for tool wear testing. a CNC machine
and data acquisition system, b tool wear monitoring system

Figure 10  Tool wear: a Tool used for processing, b wear in tool

Table 4  Details of the second experimental case

Parameters Values

CNC machine FEELER FTC-20 CNC machine

Cutting tool Korea KORLOY, CNMG120408-HM

Cutting speed 200 m/min

Feed rate 0.15 mm/r

Cutting depth 2 mm

Workpiece Material: GB 45# steel

Diameter: 100 mm

Length: 300 mm

Vibration signal Sampling frequency: 32768 Hz

Sampling time: 2 s

Acoustic emission signal (AE-RMS) Sampling frequency: 25000 Hz

Sampling time: 2 s

Current signal of spindle motor Sampling frequency: 32768 Hz

Sampling time: 2 s

Surface roughness measuring instru-
ment

Mitutoyo SJ-201P

Tool wear measuring instrument MTO MZDH0670 microscope

Table 5  MAE of all the models in the first experimental case

Bold face indicates the best performance

Models Datasets

c1 c4 c6

LR 20.02 39.00 47.19

SVR 21.41 30.84 28.32

MLP 16.50 23.95 16.82

CNN 15.29 17.15 11.72

MCNN 14.34 16.51 11.07

RNN 14.37 14.85 15.78

Deep RNN 12.93 13.86 13.43

LSTM 13.86 14.52 13.64

Deep LSTM 12.59 13.30 11.46

GRU​ 13.36 14.29 12.12

Deep GRU​ 11.41 13.09 10.55

CBLSTM [18] 7.50 6.10 8.10

CGRU​ 9.65 10.98 10.06

MCGRU​ 6.87 6.04 7.42

Page 12 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53

4.2.2 � Experiment Setup
The setup of this second experiment is almost the same
as the first one. Same compared models and same set-
tings for these models are adopted. The two indexes used
to evaluate the performance of the models are the MAE
and the RMSE. The models are trained and tested using
a Linux Server with two NVIDIA 1080Ti GPUs and a 4.2
GHz INTEL i7-7700K CPU.

4.3 � Results
In this section, the comparison based on the MAE and
RMSE of the above models are shown. Table 5 shows the
MAE of each model in the first experimental case, while
Table 6 shows the RMSE. The MAE and RMSE of each
model in the second experiment are shown in Table 7.

As shown in the tables, the regression models LR, SVR
and MLP have shown their capability to make predic-
tion of tool wear based on the features extracted from
raw data, while they are not as good as the convolu-
tional models and recurrent models. Linear Regression
performs worst in this task because it is a linear model
in nature, which cannot make full use of the extracted
features to make predictions. The SVR and the MLP
perform better because the nonlinearity is introduced
into the models so that the relationships among differ-
ent features can be better explored. In SVR, by adopting
different kernels, the samples can be mapped to a high
dimensional space. The RBF kernel we chose here shows
its power to address regression tasks. The MLP is able to
search an efficient mapping mode actively, which is effec-
tive and different from SVR.

However, compared to the above regression mod-
els, the convolutional models and recurrent models can
address raw data to learn significant features and rep-
resentations, which enables them to have better perfor-
mance. By choosing different kernels, CNN is able to
extract local or abstract features. In this task, MCNN
performs better than CNN because it contains kernels
of different sizes to extract local and abstract features in
the same time. The depth and width we introduced here
in these two models also help in predicting tool wear.
Long-term dependencies in sequential data cannot be
discovered by convolution operation, but it can be cap-
tured by recurrent models. As shown in the tables, in
this task of addressing time series data, recurrent mod-
els perform slightly better than convolutional models.
Here, LSTM and GRU are better than basic RNN because
their gates enable them to be more powerful to cap-
ture long-term dependencies. What’s more, in this task,
the amount of data is not large, which shows the GRU’s
advantages under the situation where there is no suffi-
cient data. Here, the GRU performs better than LSTM.
And as expected, the three deep recurrent models per-
form better than the three normal ones. In Ref. [17], the
proposed Convolutional Bi-Directional LSTMs combines
a local feature extractor CNN with a temporal encoder
deep Bi-Directional LSTMs, which is able to excavate
useful features hidden in the raw sensory data in both
forward and backward ways. The CBLSTMs performs
better than most of the above convolutional and recur-
rent models. As for the CGRU, it performs well, as the
GRU is also able to learn significant representations on

Table 6  RMSE of all the models in the first experimental case

Bold face indicates the best performance

Models Datasets

c1 c4 c6

LR 27.89 40.98 48.86

SVR 25.89 35.95 33.72

MLP 21.71 26.04 20.56

CNN 20.15 18.82 13.35

MCNN 21.09 18.26 12.69

RNN 17.48 18.38 19.56

Deep RNN 15.65 18.19 16.63

LSTM 16.76 17.64 16.26

Deep LSTM 16.32 17.27 13.79

GRU​ 16.57 17.48 13.93

Deep GRU​ 14.41 16.88 12.59

CBLSTM [18] 10.80 7.10 9.80

CGRU​ 14.38 13.95 12.27

MCGRU​ 8.27 6.81 9.08

Table 7  MAE and RMSE of all the models in the second
experimental case

Bold face indicates the best performance

Models MAE RMSE

LR 8.28 9.32

SVR 8.27 8.78

MLP 7.76 8.54

CNN 6.53 8.27

MCNN 6.42 8.13

RNN 6.41 8.01

Deep RNN 6.37 7.93

LSTM 6.26 7.84

Deep LSTM 5.75 7.61

GRU​ 5.87 7.42

Deep GRU​ 5.02 6.37

CBLSTM[18] 5.17 7.02

CGRU​ 4.79 6.10

MCGRU​ 3.71 4.96

Page 13 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53 	

basis of the features extracted by the CNN. Specially, in
the second experimental case, the deep GRU and CGRU
perform even better than the CBLSTMs, which shows
the power of the GRU in dealing with small amount of
data. Our proposed model, the MCGRU, performs best
among these compared models.

The result reveals that there is much information hid-
den behind raw sensory data that cannot be discovered
by human designed features, while Multi-scale CNN is
able to filter the noise from real working environment
and explore the information as much as possible. The
deep GRU is able to excavate the temporal informa-
tion to find a more accurate relationship between the
input and output, namely the raw sensory data and the

predicted tool wear. As the network goes wider, more
meaningful features of different time scales can be dis-
covered, and as it goes deeper, the abstract and signifi-
cant representations can be learnt. The combination of
the multi-scale features extractor Multi-scale CNN and
the temporal encoder deep GRU is therefore proven to
perform well in the task of tool wear prediction.

To be more specific, the prediction of the tool wear,
the corresponding actual tool wear, and the error
between these two values are illustrated in Figures 11,
12, 13, 14. It is shown that in the first three figures, i.e.,
in the results of the first experimental case, the trend of
the degradation of the cutting tool is robustly captured
and error is acceptable. Specially, in Figure 14, nine
ascending curves can be found in the curve of actual
tool wear, that’s because in the second experimental

Figure 11  Results of the first experimental case, when c1 is the
testing set: the prediction of the tool wear, the corresponding actual
tool wear, and the error between these two values

Figure 12  Results of the first experimental case, when c4 is the
testing set: the prediction of the tool wear, the corresponding actual
tool wear, and the error between these two values

Figure 13  Results of the first experimental case, when c6 is the
testing set: the prediction of the tool wear, the corresponding actual
tool wear, and the error between these two values

Figure 14  Results of the second experimental case: the predicted
tool wear, the actual tool wear and the error

Page 14 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53

case, we have sampled data from all of the nine cut-
ting tools to be the testing set and each ascending curve
represents the data from a cutting tool. In this case, the
results are also satisfying. Moreover, for each epoch, it
consumes about 1 s to train. When testing, it consumes
only 0.8 s to predict the tool wear of about 300 sam-
ples, which means that our proposed model is efficient
enough to be used in real-time prediction.

5 � Discussion
In this section, we discuss the impact of the number of
the branches in the Multi-scale CNN and the influence
of the depth of the GRU. Some insights and motivation
for the future steps are also discussed.

1)	 As we go wider by using multi branches to extract
more features, it is important to point out that this
operation increases the model’s parameters, which
results in the difficulty in training and the risk of
over fitting. Here, based on dataset c1 we compare six
numbers of branches (2, 4, 6, 8, 10, 20) in a MCGRU
and the MAE and RMSE results are illustrated in
Table 8. It shows that as the number of branches
increases, the performance of the model gets better
and then remains almost the same, and when there
are 10 or 20 branches, the performance gets worse,

which means that blindly increasing the number
of branches does harm to the model and cannot
improve its performance. Here we finally adopt 6
branches of CNN in our MCGRU.

2)	 The depth of the model also affects the performance
of the model. We change the layers of GRU in the
MCGRU to explore the impact of the depth. The
number of layers of GRU is set as (2, 4, 6, 8) and the
results are shown in Table 9. It is clear that the per-
formance of these four models is almost the same.
A reasonable explanation is that in our two experi-
ments, there is no sufficient labeled data and there-
fore a shallow depth of GRU is powerful enough to
discover the information behind the data. When
there is a large amount of data, a GRU of more layers
can be tried to further improve the capability of the
model.

3)	 The robustness of a model is important to evaluate
the performance of a model. In real working environ-
ment, the quality of the samples signals may be influ-
enced by the noise. It is important and interesting
to build a model that is robust when there is a large
amount of noise. And in our settings, different signals
are combined directly, it is meaningful to design a
better way of fusing the data from different sensors.

6 � Conclusions

(1)	 In this paper, we proposed a Multi-scale Convolu-
tional Gated Recurrent Unit Network (MCGRU)
to address tool wear prediction task. We interpret
the structure of this model by introducing the fea-
ture extractor: Multi-scale CNN and the encoder:
Deep GRU. The Multi-scale CNN is able to extract
both local and abstract features by kernels of differ-
ent sizes, and the Deep GRU is capable of capturing
long-term dependencies and learning significant
representations based on the features extracted in
Multi-scale CNN.

(2)	 Moreover, the GRU performs better when there
is no sufficient labeled data in real working condi-
tions. Profiting from these advantages, the MCGRU
is able to make accurate and effective tool wear pre-
diction based on raw sensory data, without expert
knowledge and feature engineering. Its satisfactory
performance is further verified by two experimental
cases and the comparisons with other models.

Acknowledgements
The authors sincerely thanks to Mr. Tianfu Li for his critical discussion and read-
ing during manuscript preparation.

Table 8  Comparison of different numbers of branches in the
MCGRU​

The bold value means the best results

Dataset c1

Number of branches MAE RMSE

2 9.25 14.50

4 7.61 11.97

6 6.87 8.27
8 7.04 8.95

10 9.38 12.74

20 9.71 13.49

Table 9  Comparison of different numbers of GRU layers in the
MCGRU model

The bold value means the best results

Dataset c1

Number of GRU layers MAE RMSE

2 6.87 8.27
4 7.02 8.92

6 7.13 9.45

8 6.97 8.67

Page 15 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53 	

Authors’ Contributions
WX: Writing, review and editing; HM: review and discussion; ZZ: review; JL:
review; CS: Revision, editing and supervision; RY: Review and supervision. All
authors read and approved the final manuscript.

Authors’ Information
Weixin Xu, born in 1994, received the M.S. degree in mechanical engineering
from Xi’an Jiaotong University, China, in 2020. His current research is focused
on signal processing and deep learning algorithms for machinery health
monitoring.

Huihui Miao, born in 1989, is currently a PhD candidate at Xi’an Jiaotong
University, China. She received his bachelor degree from Xi’an Jiaotong Univer-
sity, China, in 2011. Her current research interest lies in machine learning for
machinery modeling, monitoring, and diagnosis.

Jinxin Liu, born in 1988, is currently an associate professor at Xi’an Jiaotong
University, China. He received the PhD degree from Xi’an Jiaotong University,
China, in 2016. His current research interests include active noise and vibration
control, adaptive filter and control theory, precision engineering and control,
condition monitoring, and system development.

Zhibin Zhao, born in 1993, is currently a lecturer at Xi’an Jiaotong University,
China. He received the PhD degree from Xi’an Jiaotong University, China, in
2020. His current research is focused on sparse signal processing and machine
learning algorithms for machinery health monitoring and healthcare.

Chuang Sun, born in 1986, is currently an associate professor at Xi’an Jiaotong
University, China. He received the PhD degree from Xi’an Jiaotong University,
China, in 2014. His research interests include manifold learning, deep learning,
sparse representation, mechanical fault diagnosis and prognosis, and remain-
ing useful life prediction.

Ruqiang Yan, born in 1975, is currently a Professor at Xi’an Jiaotong University,
China. He received the PhD degree from University of Massachusetts Amherst,
USA, in 2007. His research interests include nonlinear time-series analysis,
multidomain signal processing, and energy-efficient sensing and sensor
networks for the condition monitoring and health diagnosis of largescale,
complex, dynamical systems.

Funding
Supported in part by Natural Science Foundation of China (Grant Nos.
51835009, 51705398), Shaanxi Province 2020 Natural Science Basic Research
Plan (Grant No. 2020JQ-042), and Aeronautical Science Foundation (Grant No.
2019ZB070001).

Competing Interests
The authors declare no competing financial interests.

Author Details
1 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049,
China. 2 State Key Laboratory for Manufacturing Systems Engineering, Xi’an
Jiaotong University, Xi’an 710049, China.

Received: 28 August 2020 Accepted: 7 May 2021

References
	[1]	 T Li, Z Zhao, C Sun, et al. Multi-receptive field graph convolutional net-

works for machine fault diagnosis. IEEE Transactions on Industrial Electron-
ics, 2020, DOI: https://​doi.​org/​10.​1109/​TIE.​2020.​30406​69.

	[2]	 Z Mo, J Wang, H Zhang, et al. Weighted cyclic harmonic-to-noise ratio for
rolling element bearing fault diagnosis. IEEE Transactions on Instrumenta-
tion and Measurement, 2020, 69(2): 432-442.

	[3]	 L L Cui, X Wang, Y G Xu, et al. A novel switching unscented Kalman filter
method for remaining useful life prediction of rolling bearing, Measure-
ment, 2019, 135: 678-684.

	[4]	 Huaqing Wang, Shi Li, Liuyang Song, et al. A novel convolutional neural
network based fault recognition method via image fusion of multi-vibra-
tion-signals, Computers in Industry, 2019, 105: 182-190.

	[5]	 N Ghosh, Y B Ravi, A Patra, et al. Estimation of tool wear during CNC
milling using neural network-based sensor fusion. Mechanical Systems &
Signal Processing, 2007, 21: 466-479.

	[6]	 D E Dimla. Sensor signals for tool-wear monitoring in metal cutting
operations—A review of methods. International Journal of Machine Tools
and Manufacture, 2000, 40(8): 1073-1098.

	[7]	 Y C Yen, J Söhner, B Lilly, et al. Estimation of tool wear in orthogonal
cutting using the finite element analysis. Journal of Materials Processing
Technology, 2004, 146(1): 82-91.

	[8]	 J S Strenkowski, J T Carroll. A finite element model of orthogonal metal
cutting. Journal of Engineering for Industry, 1985, 107(4): 349-354.

	[9]	 E Ceretti, P Fallböhmer, W T Wu, et al. Application of 2D FEM to chip for-
mation in orthogonal cutting. Journal of Materials Processing Technology,
1996, 59(1-2): 169-180.

	[10]	 I S Jawahir, O W Dillonjr, A K Balajj, et al. Predictive modeling of machining
performance in turning operations. Machining Science and Technology,
1998, 2: 253-276.

	[11]	 T Ozel, M Lucchi, C A Rodríguez, et al. Prediction of chip formation and
cutting forces in flat end milling: comparison of process simulations with
experiments. Technical Paper-Society of Manufacturing Engineers, 1998,
98(250): 1–6.

	[12]	 M Shatla, Y C Yen, T Altan. Tool-workpiece interface in orthogonal cutting-
application of FEM modeling. Transactions-North American Manufacturing
Research Institution of SME, 2000: 173–178.

	[13]	 T J Ko, W C Dong. Cutting state monitoring in milling by a neural
network. International Journal of Machine Tools & Manufacture, 1994, 34:
659-676.

	[14]	 ÖZEL Tugrul, K Yigit. Predictive modeling of surface roughness and tool
wear in hard turning using regression and neural networks. International
Journal of Machine Tools & Manufacture, 2005, 45: 467-479.

	[15]	 V S Sharma, S K Sharma, A K Sharma. Cutting tool wear estimation for
turning. Journal of Intelligent Manufacturing, 2008, 19: 99-108.

	[16]	 K V Rao, B S N Murthy, N M Rao. Prediction of cutting tool wear, surface
roughness and vibration of work piece in boring of AISI 316 steel with
artificial neural network. Measurement, 2014, 51: 63-70.

	[17]	 R Zhao, R Yan, J Wang, et al. Learning to monitor machine health with
convolutional bi-directional LSTM networks. Sensors, 2017, 17(2): 273.

	[18]	 J Wang, W Peng, R X Gao. Enhanced particle filter for tool wear prediction.
Journal of Manufacturing Systems, 2015, 36: 35-45.

	[19]	 Z Rui, D Wang, R Yan, et al. Machine health monitoring using local
feature-based gated recurrent unit networks. IEEE Transactions on Indus-
trial Electronics, 2017, 99: 1-1.

	[20]	 T Juri, S Emilia, P Eduardo, et al. Validation of inter-subject training for
hidden Markov models applied to gait phase detection in children with
cerebral palsy. Sensors, 2015, 15: 24514-24529.

	[21]	 K Wei, W Lenan. Mobile location with NLOS identification and mitigation
based on modified Kalman filtering. Sensors, 2011, 11: 1641-1656.

	[22]	 H D Yang. Sign language recognition with the kinect sensor based on
conditional random fields. Sensors, 2015, 15: 135-147.

	[23]	 J Schmidhuber. Deep learning in neural networks: An overview to Neural
Netw., 2015, 61: 85-117.

	[24]	 K Cho, B V Merrienboer, C Gulcehre, et al. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. Computer
Science, 2014.

	[25]	 P.d.c. PHM Society, https://​www.​phmso​ciety.​org/​compe​tition/​phm/​10,
2010.1.

	[26]	 Y L Cun, B Boser, J S Denker, et al. Handwritten digit recognition with a
back-propagation network. Advances in Neural Information Processing
Systems, 1990, 2(2): 396-404.

	[27]	 T Li, Z Zhao, C Sun, et al. WaveletKernelNet: An interpretable deep neural
network for industrial intelligent diagnosis. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 2021, DOI:https://​doi.​org/​10.​1109/​TSMC.​
2020.​30489​50.

	[28]	 T Li, Z Zhao, C Sun, et al. Adaptive channel weighted CNN with multisen-
sor fusion for condition monitoring of helicopter transmission system.
IEEE Sensors Journal, 2020, 20(15): 8364-8373.

https://doi.org/10.1109/TIE.2020.3040669
https://www.phmsociety.org/competition/phm/10
https://doi.org/10.1109/TSMC.2020.3048950
https://doi.org/10.1109/TSMC.2020.3048950

Page 16 of 16Xu et al. Chin. J. Mech. Eng. (2021) 34:53

	[29]	 O Abdel-Hamid, A R Mohamed, J Hui, et al. Applying convolutional neural
networks concepts to hybrid NN-HMM model for speech recognition.
IEEE International Conference on Acoustics, 2012: 4277–4280.

	[30]	 Y Kim to Convolutional Neural Networks for Sentence Classification,
Eprint Arxiv, (2014). arXiv:​1408.​5882

	[31]	 Z Rui, K Mao. Topic-aware deep compositional models for sentence clas-
sification. IEEE/ACM Transactions on Audio Speech & Language Processing,
2017, 25: 248-260.

	[32]	 S Ioffe, C Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. JMLR.org, 2015: 448–456.

	[33]	 C Szegedy, W Liu, Y Jia, et al. Going deeper with convolutions. 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1-9,
doi: https://​doi.​org/​10.​1109/​CVPR.​2015.​72985​94.

	[34]	 S Hochreiter, J Schmidhuber. Long short-term memory. Neural Computa-
tion, 1997, 9: 1735-1780.

	[35]	 F A Gers, J Schmidhuber, F Cummins. Learning to forget: continual pre-
diction with LSTM. International Conference on Artificial Neural Networks,
1999: 850–855.

	[36]	 S Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen,
Diploma. Technische Universität München, 1991.

	[37]	 R Huang, Y Liao, S Zhang, et al. Deep decoupling convolutional neural
network for intelligent compound fault diagnosis. IEEE Access, 2019, 7:
1848-1858.

	[38]	 C Sun, M Ma, Z Zhao, et al. Deep transfer learning based on sparse auto-
encoder for remaining useful life prediction of tool in manufacturing. IEEE
Transactions on Industrial Informatics, 2018, PP(4): 1-1.

	[39]	 F Jia, Y Lei, J Lin, et al. Deep neural networks: A promising tool for fault
characteristic mining and intelligent diagnosis of rotating machinery

with massive data. Mechanical Systems and Signal Processing, 2016, 72:
303-315.

	[40]	 H Shao, H Jiang, H Zhang. Electric locomotive bearing fault diagnosis
using a novel convolutional deep belief network. IEEE Transactions on
Industrial Electronics, 2018, 65(3): 2727-2736.

	[41]	 C Sun, M Ma, Z Zhao, et al. Sparse deep stacking network for fault
diagnosis of motor. IEEE Transactions on Industrial Informatics, 2018, 14:
3261-3270.

	[42]	 E O Ezugwu, S J Arthur, E L Hines. Tool-wear prediction using artificial
neural networks. Journal of Materials Processing Technology, 1995, 49:
255-264.

	[43]	 V Nair, G E Hinton. Rectified linear units improve restricted Boltzmann
machines. International Conference on International Conference on Machine
Learning, 2010.

	[44]	 G E Hinton. Learning multiple layers of representation. Trends in Cognitive
Sciences, 2007, 11: 428-434.

	[45]	 Y Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2009.

	[46]	 T Tieleman, G Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 2012, 4: 26-31.

	[47]	 N Srivastava, G Hinton, A Krizhevsky, et al. Dropout: A simple way to
prevent neural networks from overfitting. Journal of Machine Learning
Research, 2014, 15: 1929-1958.

	[48]	 X Li, B Lim, J Zhou, et al. Fuzzy neural network modelling for tool wear
estimation in dry milling operation. Annual Conference of the Prognostics
and Health Management Society, 2009, 1(1): 1–11.

https://arxiv.org/abs/1408.5882
https://doi.org/10.1109/CVPR.2015.7298594

	Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing
	Abstract
	1 Introduction
	2 Review of Related Work
	2.1 Convolutional Neural Network
	2.2 RNN, LSTM and GRU​
	2.3 Neural Networks and Tool Wear Prediction

	3 Model
	3.1 Multi-Scale CNN
	3.1.1 Convolution
	3.1.2 Batch Normalization
	3.1.3 Activation Function
	3.1.4 Max-Pooling
	3.1.5 Concatenation

	3.2 Deep GRU​
	3.2.1 Gated Recurrent Unit
	3.2.2 Deep GRU Gated

	3.3 Fully Connected and Linear Regression Layer
	3.4 Training and Regularization of MCGRU​

	4 Experiments
	4.1 Case 1: High Speed CNC Machine Tool Wear Dataset
	4.1.1 Descriptions of Datasets
	4.1.2 Experiment Setup

	4.2 Case 2: Experiment of the Reliability of CNC Machine Tool
	4.2.1 Descriptions of Datasets
	4.2.2 Experiment Setup

	4.3 Results

	5 Discussion
	6 Conclusions
	Acknowledgements
	References

