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Acceleration‑Dependent Analysis of Vertical 
Ball Screw Feed System without Counterweight
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Abstract 

The distinguishing feature of a vertical ball screw feed system without counterweight is that the spindle system 
weight directly acts on the kinematic joints. Research into the dynamic characteristics under acceleration and decel-
eration is an important step in improving the structural performance of vertical milling machines. The magnitude and 
direction of the inertial force change significantly when the spindle system accelerates and decelerates. Therefore, the 
kinematic joint contact stiffness changes under the action of the inertial force and the spindle system weight. Thus, 
the system transmission stiffness also varies and affects the dynamics. In this study, a variable-coefficient lumped 
parameter dynamic model that considers the changes in the spindle system weight and the magnitude and direc-
tion of the inertial force is established for a ball screw feed system without counterweight. In addition, a calculation 
method for the system stiffness is provided. Experiments on a vertical ball screw feed system under acceleration 
and deceleration with different accelerations are also performed to verify the proposed dynamic model. Finally, the 
influence of the spindle system position, the rated dynamic load of the screw-nut joint, and the screw tension force 
on the natural frequency of the vertical ball screw feed system under acceleration and deceleration are studied. The 
results show that the vertical ball screw feed system has obviously different variable dynamics under acceleration and 
deceleration. The influence of the rated dynamic load and the spindle system position on the natural frequency under 
acceleration and deceleration is much greater than that of the screw tension force.
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parameter model, Power spectral density, Natural frequency
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1  Introduction
The ball screw is widely used in the X, Y, and Z axes of 
high-speed and high-precision machine tools; its impor-
tance is self-evident. Its dynamic characteristics directly 
affect the fatigue life of the mechanism, the bandwidth of 
the servo system [1–3], the positioning accuracy of the 
machine tool [4–7], and the machining stability [8, 9]. 
Therefore, studies on its system dynamics have received 
increasing attention.

A ball screw is used in the horizontal axis of machine 
tools and directly links the worktable and the bed. 
The position of the screw-nut joint and the speed and 

acceleration of the ball screw feed system affect the 
dynamic characteristics of the worktable. Wang et  al. 
[10] proposed a three-dimensional mechanical model 
of a twin ball screw-driven table to predict the vibra-
tion modes of the table, and found that the position of 
the nut affects the axial-yaw coupling natural frequency. 
Similarly, Zhu et  al. [11] established a finite element 
(FE) model of a ball screw feed system and analyzed the 
effects of the position of the worktable on the dynamic 
characteristics of the system. Liu et  al. [12] introduced 
a new dynamic sub-structuring condition multi-subsys-
tem connected via a wedge mechanism and analyzed the 
position-dependent dynamics of an example ball screw 
drive. Zhang et al. [13] discussed the position-dependent 
dynamics of a slender ball screw feed system using the 
hybrid element method, and studied the influences of the 
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screw tension force, pitch, and nominal diameter, and the 
length and rated dynamic load of the screw-nut joint on 
the natural frequency of a slender ball-screw feed system 
along its entire stroke. Siva et al. [14] studied the varia-
tion of the dynamics in mechatronic systems with differ-
ent operation positions and pointed out that the varying 
dynamic behavior affects the stability of the control sys-
tem and the machine performance. Furthermore, the 
position-dependent eigenfrequencies of the ball screw 
feed system have been studied and performance motion 
controllers considering these varying resonances have 
been designed [15–18]. The velocity-dependent friction 
is also a significant factor in the dynamics. Verl et  al. 
[19] experimentally studied the correlation between the 
screw-nut joint preload and feed velocities and found 
that the value of the preload changes depending on the 
velocity. They suggested that the correlation should be 
considered when estimating the operating life of a feed 
drive. Li et al. [20] proposed an output-only modal iden-
tification to predict the dynamics of the machine tool at 
different feed speeds and found that the feed speed of the 
worktable can influence the worktable vibration modes. 
Zhang et al. [21] analyzed the variation in the natural fre-
quency of a system with different feed rates and pointed 
out that the ball screw feed system exhibits speed-
dependent dynamics. Mao et al. [22] proposed a method 
for the modal decoupling of operational deflection 
shapes to investigate the dynamic behavior of machine 
tools with respect to different worktable feed rates, and 
pointed out that changing the worktable feed rate affects 
the contribution of different vibration modes to the 
machine tool vibration. In addition, they found that the 
inertial force due to acceleration also affects the charac-
teristics of the machine tool. Chen et al. [23] presented a 
mechanical model of a ball screw feed-drive system and 
found that the compliance of the mechanical elements 
can produce significant vibration and elastic deformation 
at high acceleration motions. Zhang et al. [24] analyzed 
the variation in the equivalent axial stiffness of individual 
kinematic joints, system transmission stiffness, and natu-
ral frequency with different accelerations, and found that 
the ball screw feed system exhibits acceleration-depend-
ent dynamics.

The abovementioned studies were carried out on the 
horizontal axis. A remarkable feature of the horizontal 
axis is that the direction of the worktable weight is per-
pendicular to the feed direction; in contrast, the direction 
of the spindle system weight is parallel to the feed direc-
tion, which is in the vertical axis. Law et al. [25–27] devel-
oped an efficient position-dependent multibody dynamic 
model of a vertical column-spindle system based on a 
reduced model sub-structural synthesis. Optimal design 
modifications, structural dynamics simulations, and 

stability assessments were simultaneously carried out. 
On this basis, Zou et  al. [28] discussed the influence of 
the screw-nut joint stiffness on the position-dependent 
dynamics of a vertical ball screw feed system without 
counterweight and found that the spindle system coun-
terweight should be considered when estimating the 
dynamics of a vertical ball screw feed system without 
counterweight. Therefore, in this study, the dynamics of 
a vertical ball screw feed system without counterweight 
under acceleration and deceleration are investigated con-
sidering the spindle system weight.

A variable-coefficient lumped parameter dynamic 
model of a vertical ball screw feed system without coun-
terweight is established in Section  2 to investigate the 
natural frequency under upward acceleration and decel-
eration. The experimental verification of the model is 
described in Section 3. The influence of the spindle sys-
tem position, the rated dynamic load of the screw-nut 
joint, and the screw tension force of the nut are studied 
in Section 4.

2 � Variable‑Coefficient Lumped Parameter Model 
of Vertical Ball Screw Feed System

2.1 � Equivalent Dynamic Model
To study the variation in the dynamic characteristics of a 
vertical ball screw feed system under upward acceleration 
and deceleration, the structure of the system, as shown 
in Figure 1, is first described. The vertical ball screw feed 
system consists of a spindle system with a spindle unit, 
screw shaft, screw-nut joints, upper-end bearing joints, 
lower-end bearing joints, linear rolling guides, slider 
blocks, a nut bracket, and a servo motor. Compared 

Figure 1  Structure of the vertical ball screw feed system
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with the stiffness in the two other directions (X and Y), 
the transmission stiffness in the Z direction is the lowest 
owing to the stiffness of the screw-nut joints and bearing 
joints. The contact stiffness of the joints is affected not 
only by the inertial force, but also by the spindle system 
weight during acceleration and deceleration. In addition, 
the contact stiffness is also affected by the friction force 
between the guide and the slide. However, the friction is 
relatively small compared to the inertial force and spindle 
system weight, and can therefore be neglected.

The equivalent dynamic model of the vertical ball 
screw feed system is established and shown in Figure 2. 
In the dynamic model, the screw shaft, screw-nut joints, 
and bearing joints are simplified as lumped spring ele-
ments. kls(z), krs(z) and Cls, Crs respectively represent the 
axial stiffness and damping of the screw shaft at both 
sides of the nut. klb(a), krb(a), knut(a) and Clb, Crb, and 
Cnut represent the equivalent axial stiffness and damping 
of the upper- and lower-end bearing joints and screw-
nut joints, respectively. The components of the spindle 
system are modeled as an equivalent lumped mass m. α 
denotes the acceleration in the transmission direction, z 
the distance between the nut and the lower-end bearing 
joints, and L the distance between the upper- and lower-
end bearing joints. The influence of the servo stiffness is 
neglected.

2.2 � Dynamic Equation Considering the Effect 
of Acceleration

To analyze the influence of the inertial force induced by 
acceleration and deceleration on the natural frequency of 
the system, a variable-coefficient dynamic equation of the 
feed system can be established based on the equivalent 
dynamic model and the D’Alembert principle, as follows:

where ke is the total stiffness coefficient, which is deter-
mined by the acceleration of a. In this study, only the 
natural frequency of the ball screw feed system is consid-
ered. Therefore, the damping coefficient, ce, is ignored.

2.3 � Calculation of Stiffness Coefficient
The total transmission stiffness in the transmission direc-
tion comprises the stiffness of the screw-nut joints, bear-
ing joints, and screw shaft. Therefore, the stiffness of 
each component and the transmission stiffness need to 
be calculated.

2.3.1 � Equivalent Axial Stiffness of the Screw‑Nut Joints
The force diagram of the gasket-type double-nut screw-
nut joints considering the spindle system weight and 
inertial force under upward acceleration and deceleration 
is shown in Figure 3. When the spindle system accelerates 

(1)mz̈ + ceż + ke(a)z = 0,

Figure 2  Equivalent dynamic model of vertical ball screw feed 
system Figure 3  Structure and force diagram of screw-nut joint
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upward, the inertial force acts on the screw-nut joints. 
The action direction of the force is downward, which is 
the same direction as that of the spindle system weight. 
When the spindle system decelerates upwards, the direc-
tion of the inertial force is upward, which is opposite to 
the direction of the spindle system weight. In addition, 
the preload produced by the gasket acting on nut A is 
downward, and it acts on nut B upward.

(1)	 Upward acceleration

	 Under acceleration, the vertical ball screw feed sys-
tem is affected by the weight of the spindle sys-
tem, the inertial force due to acceleration, and the 
preload of the screw-nut joints. The ball between 
the screw shaft and nut deforms elastically. As 
shown in Figure 3, the direction of the preload act-
ing on nut A is the same as that of the spindle sys-
tem weight and inertial force, while the direction of 
the preload acting on nut B is opposite to the direc-
tion of the spindle system weight and inertial force. 
According to the Hertz contact theory [29], the ini-
tial normal force and deformation of each ball in 
nuts A and B can be obtained using the following 
equations:

where ds0 and dsb are the diameters of the screw 
and ball, respectively. α is the contact angle between 
the ball and the raceway. φ is the pitch angle of the 
screw. i is the number of rings in a single nut. ds0 
and dsb are the diameters of the screw shaft and 
ball, respectively. N is the number of balls in a single 
nut. Pd is the rated dynamic load of the screw-nut 
joints. P is the preload of nut A and nut B. PA and PB 
are the initial normal forces in a single ball of nut A 
and nut B, respectively. cp is the rated dynamic load 
factor. δA and δB are the normal deformations of a 
ball in nuts A and B, respectively. Kh is the Hertz 
contact coefficient, which mainly depends on the 
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contact shape and the material properties of the 
screw-nut joints [30].

	 When the spindle system accelerates upward in 
the Z direction with the magnitude a, the load of each 
ball in nuts A and B will change owing to the action of 
the inertial force. The normal force, deformation, and 
contact stiffness of each ball between the screw and 
nut A can be derived as follows:

where PAG is the additional normal force on each 
ball in nut A generated by the inertial force; and 
PAT, δAT , and knA are the normal force, contact 
deformation, and contact stiffness of each ball in 
nut A, respectively.

	 Based on the force decomposition, the equivalent 
axial stiffness of each ball in nut A and the stiffness of 
nut A can be calculated as

where kaxA and KaxA↑ are the equivalent axial stiff-
ness of a single ball in nut A and the equivalent axial 
stiffness of nut A, respectively.

	 Applying the boundary conditions, the elastic 
deformation of a single rolling ball in nut B can be 
obtained using deformation compatibility theory as

	 If δBF ≥ δB, the load on each ball in nut B is equal 
to zero, and the corresponding contact stiffness will 
be abrupt. Therefore, the equivalent axial stiffness of 
nut B can be obtained as
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	 The stiffness of the screw-nut joints is mainly 
determined by KaxA↑ and KaxB↑ and can be expressed 
as

where cwn is the weight coefficient of the equivalent 
axial stiffness of the screw-nut joints and has the 
value of 0.9.

(2)	 Upward deceleration
	 As shown in Figure 3, the principle of calculating the 

stiffness of nuts A and B under upward deceleration 
is the same as that under upward acceleration. Both 
calculations are based on the combination of Hertz 
contact theory and deformation compatibility the-
ory. The only difference is that the direction of the 
inertial force acting on nuts A and B is switched. In 
this case, the equivalent axial stiffnesses of nuts A 
and B are calculated as

	 The stiffness of the screw-nut joints depends 
mainly on the values of KaxA↓ and KaxB↓ and can be 
expressed as

2.3.2 � Equivalent Axial Stiffness of the Bearing Joints
In this study, the angular contact ball bearings at both ends 
have the same specifications and protrusions. The pre-tight-
ening method is applied to eliminate the initial axial clear-
ance. However, the configurations differ at the two ends. The 
configuration of the upper-end bearing joints is back-to-back 
(DB), as shown in Figure  4(a), while that in the lower-end 
bearing joints is face-to-face(DF), as shown in Figure 4(b).
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)
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(1)	 Upward acceleration

	 Figure 5(a)–(b) show the force analysis of the upper- 
and lower-end bearing joints, respectively. As shown 
in Figure  5(a)–(b), there are three forces acting on 
the upper- and lower-end bearing joints, namely, 
the screw tension force, spindle system weight, and 
inertial force. Under the action of the screw-tension 
force, the clearance formed by the protrusion of 
bearings A and B, as well as that between bearings C 
and D, is eliminated. The other two forces act on the 
bearing joints as external forces. The direction of the 
spindle system weight is downward, and the direc-
tion of the inertial force is upward. Both forces are 
equally divided at the ends of the lead screw.

	 According to the force equilibrium in the vertical 
direction, the normal contact force of each ball in 
bearings A and D can be obtained as

(12)
TD↑ = TA↑ =

Fas +mg
/

2+ma
/

2
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=
M
/
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/

2+ma
/

2
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Figure 4  Structural schematic diagram

Figure 5  Force diagram of bearing joints under upward acceleration
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where nb is the number of balls in a single bearing, 
αb is the contact angle of each ball in the upper- 
and lower-end bearing joints, dM is the diameter of 
the pre-tension nut, and M and TC are the torque 
and torque coefficient of the pre-tension nut, 
respectively.

	 The inner and outer rings in a bearing are connected 
by spring elements distributed around the raceway, 
which provides the stiffness at both ends to sustain 
the ball screw. Based on the Hertz contact theory, 
the relationship between the contact force and the 
local deformation at the contact point is obtained. 
The normal contact stiffness of a single ball in bear-
ings A and D can then be derived as

	 Therefore, the equivalent axial stiffness of the upper-
end bearing A and lower-end bearing D can be 
derived as

where cwb is the weight coefficient of the equivalent 
axial stiffness of the bearing joints and has the value 
of 0.9.

	 Based on the principle of deformation compatibility, 
the normal contact force of each ball in bearing B at 
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be expressed as
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Figure 6  Force diagram of bearing joints under upward deceleration

	 Therefore, when the spindle system accelerates upward, 
the stiffness of the upper end bearing joints is
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	 The stiffness of the lower-end bearing joints is

(17)KU↑ = max
(

KA↑,KB↑

)

· cwb.

(18)KL↑ = max(KC↑,KD↑) · cwb.

	 According to the force equilibrium of the single bear-
ing in the vertical direction, the normal contact 
force of each ball in bearings A and D is calculated 
as

(2)	 Upward deceleration
	 Figure 6(a)–(b) show the force analysis of the upper- 

and lower-end bearing joints under upward deceler-
ation. As shown in Figure 6(a)–(b), during upward 
deceleration, except for the downward direction of 
the inertial force, the other forces are the same as 
those under upward acceleration.
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.

	 Similarly, according to the Hertz contact theory, 
when the spindle system decelerates upwards with 
the acceleration magnitude of a, the equivalent axial 
stiffness for a single ball in bearings A and D can be 
derived as

	 Therefore, the equivalent axial stiffness for bearings 
A and D can be derived using

(20)kD↓ = kA↓ =
3

2
K

2/3
h T

1/3
A .

(21)

KD↓(a) = KA↓(a)

=














































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














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
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




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�
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−
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�m · a

2
<

m · g

2

�

,

3

2
K

2/3
h





�

2

�

M

Tc · d
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−

�

M
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+

m · a

2
−

m · g

2
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.
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	 Similarly, according to the theory of deformation 
compatibility, the normal contact force of a single 
ball in bearing C and bearing B is

	 The axial contact stiffness of bearing B and bearing C 
is expressed as

	 Therefore, when the spindle system decelerates 
upwards, the stiffness of the upper-end bearing 
joints is

	 The stiffness of the lower-end bearing joints is

2.3.3 � Calculation of Axial Stiffness of the Ball Screw
In the axial fixed-fixed support mode, the lead screw is 
divided into two sections by screw-nut joints. The servo 
motor drives the rotation of the screw shaft, causing the 
upper section of the screw shaft to rotate. In addition, the 
upper and lower sections of the screw shaft are axially 
restrained by the bearings. However, the lengths of the 
upper and lower sections of the screw shaft change as the 
spindle system moves up and down. As a result, the axial 
tensile/compressive stiffness of the upper and lower sec-
tions and the axial torsional stiffness of the upper section 
of the screw shaft change. The expressions for the stiff-
ness of the upper and lower sections of the screw shaft 
can be obtained as

(22)

TC↓ = TB↓

=











�

2(M/(Tc ·d))
2/3−(M/(Tc ·d)+(m·g)/2−(m·a)/2)

2/3
�3/2

nb sin αb
,
�

ma
2

<
mg
2

�

,

M/(Tc ·d)+(m·a)/2−(m·g)
�

2

nb sin αb
,

�

ma
2

≥
mg
2

�

.

(23)

KC↓(a) = KB↓(a)

=




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












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






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
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






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K
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h




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M
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−
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−
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
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· sin5/3 αb · (Nb · nb)
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<
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2

�

,

3

2
K

2/3
h

�
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�1/3
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�ma
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≥
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�
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(24)KU↓ = max(KA↓,KB↓) · cwb.

(25)KL↓ = max
(

KC↓,KD↓

)

· cwb.

(26)Kus1(z) =
4GEπ3d4

1

16Gπ
2d2

1(L− z)+ 32p2E(L− z)
,

(27)Kds1(z) =
πd2

1
E

4z
,

where Kus1 is the axial stiffness of the upper section of the 
screw shaft, Kds1 is the axial stiffness of the lower section 
of the screw shaft, d1 is the bottom diameter of the screw 
shaft, E is the elastic modulus, G is the shear modulus, 
and p is the screw pitch.

2.3.4 � Calculation of Transmission Stiffness
The transmission stiffness in the transmission direction 
consists of the axial stiffness of both the upper and lower 
sections of the screw shaft and the equivalent axial stiff-
ness of the screw-nut joints and bearing joints, as shown 
in Figure 2.

Therefore, the transmission stiffness under upward 
acceleration in the transmission direction can be calcu-
lated as

Similarly, the transmission stiffness under upward 
deceleration in the transmission direction can be calcu-
lated as

(28)

ke↑(a, z) =
(

Kus(z)·KU↑(a)
Kus(z)+KU↑(a)

+
Kds(z)·KL↑(a)
Kds(z)+KL↑(a)

)

· Knut↑(a)
(

Kus(z)·KU↑(a)
Kus(z)+KU↑(a)

+
Kds(z)·KL↑(a)
Kds(z)+KL↑(a)

)

+ Knut↑(a)
.
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3 � Experimental Verification
3.1 � Experimental Configuration
The vertical ball screw feed system in a miniature verti-
cal machining center without counterweight was used 
for dynamic testing, as shown in Figure 7. Its parameter 
values are shown in Table  1. The spindle system was 
mounted on the bed with a pair of linear guides (grooves 
with four semicircular arcs) and driven by a screw with 
a 45 mm diameter and 16 mm pitch. The rated dynamic 
load Pd was 31.15 kN. The initial preload of the screw-nut 
joint was set to 0.1Pd, and both ends of the screw shaft 
were supported by angular contact ball bearings (30 TAC 
62 B, NSK). The displacement of the spindle system in 
the Z direction under upward acceleration and decelera-
tion was measured using a laser interferometer (XL-80, 

(29)

ke↓(a, z) =
(

Kus(z)·KU↓(a)
Kus(z)+KU↓(a)

+
Kds(z)·KL↓(a)
Kds(z)+KL↓(a)

)

· Knut↓(a)
(

Kus(z)·KU↓(a)
Kus(z)+KU↓(a)

+
Kds(z)·KL↓(a)
Kds(z)+KL↓(a)

)

+ Knut↓(a)
.

Renishaw), as shown in Figure 1. The measuring mirror 
was mounted on the downside in front of the spindle box, 
and the reflector was mounted on the worktable parallel 
to the lower plane of the spindle box. The sampling fre-
quency was 50  kHz. During testing, the spindle system 
moved up and down along the Z-axis around the bottom 
end of the screw (z/L = 0.9) under different accelerations 
and decelerations. A maximum feed rate of 0.1333  m/s 
was set because it was large enough to generate a seg-
ment of constant acceleration. The acceleration values in 
the constant acceleration segment were changed by mod-
ifying the time constant and the agility time constant.

Owing to the limitations of the machine tool, the maxi-
mum acceleration could not exceed 1g. The time constant 

Figure 7  Experimental setup for characterizing the vibrations of the 
vertical feed system

Table 1  Simulation parameters

Parameter Value Parameter Value

dsb (mm) 6.35 d1 (mm) 39 mm

ds0 (mm) 45 Tc 0.35

L (m) 1.2 M (N⋅m) 50

m (kg) 385 E (N/m2) 2.1 × 1011

p (mm) 16 G (N/m2) 0.8 × 1011

d (mm) 30 Nb 2

ab (°) 60 φ (°) 17

P (kN) 28.8 nb 21

i 2.5 α (°) 45

Figure 8  S type acceleration and deceleration process

Figure 9  Frequency response of spindle system under different 
accelerations and decelerations
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and agility time constant could only be integers deter-
mined by the settings of the CNC system. Simultaneously, 
the functional relationship between the acceleration and 
the two parameters should be satisfied. Only the accelera-
tion values of 0.1g, 0.2g, 0.28g, 0.42g, 0.55g, and 0.8g sat-
isfy the above relationship. The vibration characteristics 
under these acceleration values were obtained. In this 
work, the three representative acceleration values selected 
for analysis were 0.2g, 0.55g, and 0.8g. The corresponding 
constant acceleration durations were 0.064, 0.018, and 
0.008 s, respectively. Figure 8 shows the acceleration and 
deceleration curves output by the feed system when the 
constant acceleration in the segment of constant accelera-
tion was 0.2g. Similar acceleration and deceleration curves 
were obtained at the other constant acceleration values.

3.2 � Experimental Vibration Characteristics
From Figure 8, it can be seen that the two segments t1t2 
and t3t4 were upward acceleration and deceleration sec-
tions, respectively. The upward acceleration and decel-
eration are transient variables. To obtain the vibration 
frequency under a certain acceleration, the power spectral 

density (PSD) can be used. The PSD method is similar to 
the frequency response function, both of which can be 
used to represent the vibration spectrum in the transmis-
sion direction. In this study, the maximum entropy spec-
tral estimation, which is a parameterized model spectral 
estimation method also known as Burg’s method [31], was 
used, and the PSD of the system, which was on the order 
of 500, was obtained. The number of execution points was 
131072. The vibration frequencies in the transmission 
direction were mainly found within the first-order fre-
quency range. The results are shown in Figure 9. It can be 
seen that the vibration frequencies varied under different 
accelerations.

For comparison, the natural frequencies under differ-
ent upward accelerations and decelerations are summa-
rized in Table 2. As the acceleration of the spindle system 
in the upwards direction increased from 0.2g to 0.8g, the 
natural frequency decreased by 3%. As the spindle sys-
tem deceleration in the upward direction increased from 
0.2g to 0.8g, the natural frequency decreased by 5.6%. 
When the acceleration value reached 0.8 g, the difference 
between the natural frequencies for upward acceleration 
and deceleration was 14.9%. The results clearly show that 
the direction and magnitude of the acceleration can cause 
the spindle system to exhibit varying degrees of vibration 
in the transmission direction.

Table 2  Comparison of the experimental and theoretical natural frequency values of the system

Mode Acceleration (g) Simulation (Hz) Experiment (Hz) Error (%)

Acceleration 0.2 144.2 156.4 7.8

0.55 146.9 160.9 8.7

0.8 148.6 164.2 9.5

Deceleration 0.2 140.6 152.2 7.6

0.55 136.7 147.5 7.3

0.8 133.2 142.9 6.8

Figure 10  Comparison of natural frequency under acceleration and 
deceleration as a function of Pd, Fas, z/L 

Table 3  Symbols for the eight combinations of parameter 
values and states

No. Parameter State Symbol

1 Fas = 35 kN, Pd = 31.15 kN, z/L = 0.9 Acceleration A1

Deceleration D1

2 Fas = 75 kN, Pd = 31.15 kN, z/L = 0.9 Acceleration A2

Deceleration D2

3 Fas = 35 kN, Pd = 67 kN, z/L = 0.5 Acceleration A3

Deceleration D3

4 Pd = 31.15 kN, Fas = 35 kN, z/L = 0.5 Acceleration A4

Deceleration D4
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4 � Results and Discussion
4.1 � Comparison of Theoretical and Experimental Results
To verify the theoretical model, the simulation curves 
under the conditions of z/L = 0.9, Fas = 35  kN, and 
Pd = 31.15  kN were compared with the experimental 
results for the acceleration magnitudes of 2 m/s2, 5.5 m/
s2 and 8 m/s2. The results are shown in Table 2.

As can be clearly seen in Table 2, the predictions of the 
variable-coefficient lumped parameter model are consist-
ent with the experimental vibration results. Regardless of 
the direction and magnitude of the acceleration, the differ-
ences between the predicted and experimental frequency 
values are less than 10%. Therefore, the analytical model 
presented in this study can accurately reflect the dynamic 
characteristics of the vertical ball screw feed system.

4.2 � Simulation Results
Simulation analysis was performed to investigate the 
variation of the natural frequency. The spindle system 
was first located at the position z/L = 0.9. The rated 
dynamic load was set to 31.15 kN and screw tension force 
to 35 kN. The other parameters were kept constant and 
one of the above three parameters was varied to deter-
mine its effects on the natural frequency of the system. 
The results for the influence of these parameters on the 
natural frequency under acceleration and deceleration 
are shown in Figure 10. The figure shows the influence of 
eight combinations of the three parameters and accelera-
tion direction on the variation of the natural frequency 
with the acceleration magnitude. The symbols in the leg-
end in Figure 10 correspond to the eight combinations of 
parameter values and states listed in Table 3.

From Figure 10, it can be seen that varying the spindle 
system position, screw-tension force, and rated dynamic 
load of the screw-nut joints does not change the trends of 
the natural frequency under acceleration and deceleration. 
Consequently, the natural frequencies under acceleration 
and deceleration are always different. This is because when 
the spindle system accelerates upward, the direction of the 
inertial force is downward. However, when the spindle sys-
tem decelerates upward, the direction of the inertial force 
is upward. In addition, the inertial force increases with an 
increase in the acceleration. As a result, the forces acting 
on the joints are different under acceleration and decelera-
tion, which leads to a difference in the transmission stiff-
ness and ultimately, a difference in the natural frequency.

Meanwhile, regardless of how the parameters change, 
the maximum percentage difference between the natural 
frequencies under acceleration and deceleration always 
occurs at 1g. This is closely related to the stiffness of the 
screw-nut joints. The stiffness of nut A is greater than 
that of nut B before the value of 1g. At this time, the stiff-
ness of the screw-nut joints is determined by the stiffness 

of nut A. However, the stiffness of nut B is greater than 
that of nut A after the value of 1g. The stiffness of the 
screw-nut joints is determined by the stiffness of nut B. 
When the acceleration value is 1g, the stiffness of nut 
A is equal to the stiffness of nut B. The stiffness of the 
screw-nut joints is then equal to both stiffnesses and has 

Figure 11  Variation and difference of the natural frequency under 
the effect of different parameters



Page 12 of 13Zou et al. Chin. J. Mech. Eng.           (2021) 34:65 

the smallest value at this time. However, the stiffness 
of the screw-nut joints changes the overall variation in 
the natural frequency as well as the maximum percent-
age discrepancy of the natural frequency under upward 
acceleration and deceleration.

It is of interest to study the differences in the impact 
of the rated dynamic load (Fa), screw-tension force (Fas), 
and the spindle system position (z/L) on the overall vari-
ation and the maximum percentage discrepancy of the 
natural frequency. The overall variation (δ) and the maxi-
mum percentage discrepancy (β) in the predicted natural 
frequencies were calculated as

where wie and wje are the maximum and minimum natu-
ral frequency. The subscripts e = 1 and e = 2 represent 
upward acceleration and downward acceleration respec-
tively, while wka and wla represents the natural frequency 
at 1g under acceleration and deceleration, respectively.

Figure  11 shows the overall variation of the natural fre-
quency and the maximum percentage difference as functions 
of the rated dynamic load, screw-tension force, and spindle 
system position. The rated dynamic load of the screw-nut 
joint was set to 32 kN, 42 kN, 52 kN, 62 kN, 72 kN, 82 kN, 
and 92 kN; the screw-tension force was set to 35 kN, 45 kN, 
55 kN, 65 kN, and 75 kN; and the spindle system position 
(z/L) was set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The 
values for the other important parameters of the ball screw 
feed system remained unchanged in the simulation.

From Figure 11(a), it can be observed that as the rated 
dynamic load increases, the overall variation and the 
maximum percentage difference of the natural frequency 
increase. Conversely, as shown in Figure  11(b), as the 
screw tension force increases, the overall variation and 
the maximum percentage difference decrease. However, 
as shown in Figure 11(c), as the position of the spindle 
system changes from the top to the bottom, the overall 
variation and the maximum percentage difference first 
decrease and then increase. Combining Figure 11(a)–(c) 
and Table 4, it can be seen that the rated dynamic load 

(30)δe =

(

ωie − ωje

)

ωie
× 100%,

(31)β =
(ωka − ωla)

ωla
× 100%,

has the greatest impact, the spindle system position has 
a relatively light impact, and the impact of the screw-
tension force is not as clear.

5 � Conclusions
A variable-coefficient lumped parameter dynamic model 
of a vertical ball screw feed system without counterweight 
that considers the influence of the spindle system weight 
and the inertial force under acceleration and deceleration 
on the kinematic joint stiffness was presented. Simulations 
and experiments were performed on a ball screw feed sys-
tem without counterweight to study the differences in the 
natural frequency of the system under acceleration and 
deceleration. The influence of the screw tension force, the 
rated dynamic load of the screw-nut joints, and the posi-
tion of the spindle system on its natural frequency was also 
analyzed. The main conclusions are as follows.

(1)	 The natural frequency of the feed system increases 
when the spindle system accelerates upwards. The 
natural frequency first decreases and then increases 
when the spindle system decelerates upwards. The 
maximum difference of the natural frequencies 
between upward acceleration and deceleration is 
significant and can reach as high as 15.4%.

(2)	 Compared with the screw-tension force, the rated 
dynamic load of screw-nut joints and the spin-
dle system position play a major role in determin-
ing the natural frequency of the feed system under 
upward acceleration and deceleration.

(3)	 When designing a vertical ball screw feed system 
without counterweight and optimizing the sys-
tem vibration control algorithms for high-quality 
machining, the variation in the natural frequency 
under acceleration and deceleration needs to be 
considered. To obtain relatively stable dynamic 
characteristics for a system with a fixed support 
mode at both ends, the machine tool should ideally 
be run in the middle position in the entire stroke 
during high-quality machining.
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