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Abstract 

The remaining useful life (RUL) estimation of bearings is critical for ensuring the reliability of mechanical systems. 
Owing to the rapid development of deep learning methods, a multitude of data-driven RUL estimation approaches 
have been proposed recently. However, the following problems remain in existing methods: 1) Most network mod-
els use raw data or statistical features as input, which renders it difficult to extract complex fault-related informa-
tion hidden in signals; 2) for current observations, the dependence between current states is emphasized, but their 
complex dependence on previous states is often disregarded; 3) the output of neural networks is directly used as the 
estimated RUL in most studies, resulting in extremely volatile prediction results that lack robustness. Hence, a novel 
prognostics approach is proposed based on a time–frequency representation (TFR) subsequence, three-dimensional 
convolutional neural network (3DCNN), and Gaussian process regression (GPR). The approach primarily comprises two 
aspects: construction of a health indicator (HI) using the TFR-subsequence–3DCNN model, and RUL estimation based 
on the GPR model. The raw signals of the bearings are converted into TFR-subsequences by continuous wavelet trans-
form and a dislocated overlapping strategy. Subsequently, the 3DCNN is applied to extract the hidden spatiotemporal 
features from the TFR-subsequences and construct HIs. Finally, the RUL of the bearings is estimated using the GPR 
model, which can also define the probability distribution of the potential function and prediction confidence. Experi-
ments on the PRONOSTIA platform demonstrate the superiority of the proposed TFR-subsequence–3DCNN–GPR 
approach. The use of degradation-related spatiotemporal features in signals is proposed herein to achieve a highly 
accurate bearing RUL prediction with uncertainty quantification.
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1  Introduction
Bearings are widely used in rotating machinery, and 
their prognostic and health management (PHM) is cru-
cial to the precision and reliability of mechanical systems 
[1–3]. As a significant aspect of the prognostics method, 
remaining useful life (RUL) estimation contributes signif-
icantly to the PHM of bearings [4]. Typical bearing RUL 

estimation methods primarily include two categories: 
model-based and data-driven methods [5, 6]. Among 
them, model-based approaches describe bearing degra-
dation based on physical degradation models, e.g., crack 
propagation, corrosion, or wear [7]. However, model-
based methods are unsuitable for the prognostics of bear-
ing with coupled fault modes or in complex mechanical 
systems [8, 9]. As a bottom-to-up prognostics approach, 
data-driven methods can mine the degradation informa-
tion in the acquired data automatically and have garnered 
wide attention recently.
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In data-driven baring RUL estimation approaches, 
vibration velocity data are widely used to model the 
degradation process via statistical or machine learn-
ing methods. The primary statistical methods used are 
the Markov process [10], Kalman filter [11], Wiener 
process [12], and particle filter [13]. The rapid develop-
ment of sensing and data-acquiring technologies has 
resulted in the significant increase in information to 
be employed for condition monitoring. However, high 
interference noise and complicated mapping render it 
difficult to model the statistical distribution of the data 
obtained [14, 15]. Recently, deep learning methods have 
provided a good alternative for predicting the RUL of 
bearings without requiring much prior knowledge 
regarding their degradation process [16, 17]. Many 
successful applications have been realized in the RUL 
estimation of bearings based on the deep belief net-
work (DBN) [18], auto encoder [19], recurrent neural 
network (RNN) [20], long short-term memory (LSTM) 
[21], and convolutional neural network (CNN) [22]. 
However, some problems remain in these methods.

Most previous studies use raw data or statistical fea-
tures as model inputs only, which does not allow the 
extraction of complex information hidden in signals. 
However, signal analysis in a single domain exhibits 
limited fault-related feature representation capability 
[23, 24]. An effective prediction depends on the well-
informed input for deep-learning-based approaches. 
However, prediction performance is still limited when 
powerful data analysis methods are used. Therefore, 
the time–frequency representation (TFR) method, 
which can reveal the complex structure of signals with 
multiple components, has been widely used to ana-
lyze nonstationary signals. Many studies have proven 
the effectiveness of TFR-based bearing-fault diagnosis 
approaches. Klein [25] suggested a bearing diagnos-
tics solution that applied image-processing techniques 
to TFRs. Shi [26] demonstrated that the effectiveness 
of time–frequency analysis depends on its capabil-
ity in representing the signal energy. Recently, CNN 
models have demonstrated superiority for the analysis 
of images, and it can also be used in TFR-based RUL 
estimation. Hence, Zhu [22] performed the RUL pre-
diction of bearings under one fixed operating condition 
based on the wavelet transform and the multiscale two-
dimensional (2D) CNN (MSCNN) model. However, 
two limitations exist in TFR–2DCNN-based bearing 
RUL predictions.

(1)	 The degradation process is typically regarded as a 
nonlinear Markov process with non-Gaussian char-
acteristics in the 2DCNN-based RUL estimation of 
bearings, in which the complex temporal depend-

ence of the data under previous states is disregarded 
[27, 28].

(2)	 The output of neural networks is used directly as 
the estimated RUL in 2DCNN-based bearing RUL 
estimation approaches, which results in extremely 
volatile predictions that lack robustness. In practice, 
it is difficult to ensure the accuracy of each discrete 
predicted health indicator (HI) for the model [29].

Because the defect expansion of bearings is a gradu-
ally evolving process, the Markov property is unsuitable 
for RUL estimation tasks to some extent. Wang [30] con-
structed a degradation indicator for wear using the Monte 
Carlo method. For a specified time series, it is assumed 
that the generation of each observation result depends on 
an implicit variable that cannot be directly observed. Fur-
thermore, Zhu and Liu [31] proposed a non-Markovian 
hidden semi-Markov model method to provide prognos-
tics that offered more powerful modeling capabilities for 
practical problems. These studies indicate the importance 
of temporal correlation for RUL prediction, which is dis-
regarded in the 2DCNN-based bearing RUL estimation 
approach. In the gradual process of bearing degradation 
from normal to failure, each observation must be cor-
related significantly to several previous observations. 
Therefore, establishing a correlation between different 
degradation states is crucial for accurate RUL predictions. 
In addition, the overall degradation trend of the bearing 
obtained based on predicted HIs should be considered 
in the RUL estimation of bearings to compensate for the 
high volatility and poor robustness of the model.

In this regard, a novel bearing RUL estimation method 
is proposed based on the continuous wavelet transform 
(CWT) method, a three-dimensional convolutional neural 
network (3DCNN) model, and a Gaussian process regres-
sion (GPR) model. It primarily comprises two aspects: 1) 
construction of HIs using the proposed TFR-subsequence–
3DCNN model, and 2) bearing RUL estimation based on the 
GPR algorithm. A flowchart of the proposed TFR–3DCNN–
GPR framework is presented in Figure 1. In practice, vibra-
tion signals in both the horizontal and vertical directions 
were monitored. It is meaningful to analyze signals in both 
directions because they can reflect the bearing status more 
comprehensively. The CWT method was used to convert the 
raw bearing signal into a TFR, and a set of TFR subsequences 
was created using an overlapping strategy. The 3DCNN 
model was applied to extract the hidden features from the 
TFR-subsequences and construct HIs. The GPR algorithm 
was adopted to model the distribution of HIs and calculate 
the confidence interval of the RUL prediction. The perfor-
mance of the proposed approach was evaluated using vibra-
tion signals acquired from the PRONOSTIA platform.
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The primary contributions of the proposed approach 
can be summarized as follows:

(1)	 A novel TFR-subsequence–3DCNN framework is 
proposed for bearing degradation modeling. By effec-
tively extracting the spatial features and temporal cor-
relations of the TFR-subsequences generated from the 
measured vibration signals, the proposed method can 
support more accurate RUL estimation of bearings.

(2)	 The GPR algorithm was adopted to model the 
distribution of HIs and calculate the confidence 
interval of the RUL prediction. Unlike most deep-
learning-based bearing RUL estimation approaches, 
the proposed method can effectively mitigate pre-
diction volatility and facilitate the quantification of 
estimation uncertainty.

The remainder of this paper is organized as follows. 
Section  2 presents the proposed TFR-subsequence–
3DCNN model for HI construction comprehensively. 
In Section  3, the proposed GPR-based bearing RUL 
estimation approach is described. The validation 
experiments are presented in Section  4, in which a 
comparison of related studies is provided as well. The 
conclusions are presented in Section 5.

2 � TFR‑Subsequence–3DCNN Model
The 3DCNN model was applied to extract the spatiotem-
poral features of the TFR-subsequences by performing 
a three-dimensional (3D) convolution kernel [32] and 

constructing HIs that indicate bearing degradation. Com-
pared with one-dimensional time signal analysis or 2D 
time–frequency analysis, more hidden characteristic infor-
mation of the bearing vibration signals can be extracted 
using the 3DCNN, and a more accurate RUL prediction 
effect is expected from using the proposed method.

2.1 � Three‑Dimensional Convolution Kernel 
for Spatiotemporal Feature Extraction

Figure 2 shows a comparison between 2D and 3D convolu-
tions. The feature maps in each convolutional layer are con-
nected with multiple consecutive TFRs in the upper layers 
in the 3D convolution kernel to capture more temporal 
information of the bearing TFRs. The 2D convolutional lay-
ers were connected to the local receptive field of the feature 
maps, where the weights were passed through activation 
functions. If we denote vxyij  as a unit at (x, y) of the jth fea-
ture map and the ith layer, then

where f refers to the activation function, bij the bias of 
the corresponding feature map, m the index number, and 
ω
pq
ijm the value of the kernel at position (p, q); height Pi and 

width Qi correspond to the ith convolution kernel. The 
Markov property indicates that the state of the model at t 
> t0 is independent of that before t0.

(1)

v
xy
ij = tanh



bij +
�

m

Pi−1
�

p=0

Qi−1
�

q=0

ω
pq
ijmv

(x+p)(y+q)
(i−1)m



,

Figure 1  Flowchart of proposed TFR-3DCNN-GPR framework for bearing RUL estimation
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The 3D convolution kernel adds a temporal scale 
hyperparameter R to the 2D convolution kernel to 
extract the information at different temporal scales. 
The value at 

(

x, y, z
)

 corresponding to the jth feature 
map of the ith layer is expressed as

where Ri refers to the temporal scale of the ith layer 3D 
kernel, and ωpqr

ijm  is the value at (p, q, r) of the kernel cor-
responding to the mth feature map. A cube with fixed 
consecutive TFRs will be formed in the 3D convolution, 
and it contains both the spatial information of each single 
TFR and the temporal information along adjacent TFRs.

2.2 � Constructed TFR‑Subsequence–3DCNN Model for HI 
Construction

The CWT enables a multiscale refinement analysis of 
signals through expansion and translation functions, 

(2)

v
xyz
ij = tanh
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bij +
�

m

Pi−1
�
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�

q=0

Ri−1
�

r=0

ω
pqr
ijm v

(x+p)(y+q)(z+r)
(i−1)m



,

thereby effectively extracting time–frequency domain 
information from signals. Compared with other time–
frequency analysis methods, such as short-time Fourier 
transform, Wigner-Ville distribution (WVD), pseudo 
WVD (PWVD), and smooth pseudo WVD, the CWT 
offers advantages of low computational complexity and 
tight support [33]. Considering the basic wavelet func-
tion ψ(t) , it can be scaled or expanded k times and trans-
lated into l steps as follows:

For a signal s(t) , the CWT can be expressed as

where ψ∗(t) is the conjugate function of the basic ψ(t).
The proposed TFR-subsequence–3DCNN model is 

illustrated in Figure  3. Combining TFRs in two direc-
tions, i.e., the horizontal and vertical directions, into 

(3)ψk ,l(t) =
1

k
ψ

(

t − l

k

)

.

(4)CWTs(k , l) =
1√
k

∫ +∞

0
s(t)ψ∗

(

t − l

k

)

dt,

Figure 2  Comparison between 2D and 3D convolutions
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one subsequence with height H, width W, and channel 
number C=2, the TFR-subsequence for the current time 
can be obtained. The corresponding HI for the training 
dataset is defined as the degradation percentage at time t, 
i.e., HI values of 0 and 1 correspond to perfectly healthy 
and failure, respectively. Hence, a higher health indica-
tor value indicates the worse health and lower RUL of the 
bearings. Using the run-to-failure time T for the training 
data, the corresponding HI is expressed as

Details of the overall network architecture are listed in 
Table  1. The labeled TFR-subsequence was used as the 
3D convolution input, which should be a five-dimen-
sional tensor in the form of (N, H, W, L, C), where H and 
W represent the height and width, respectively; C refers 
to the channel number of the current TFR-subsequence; 
L is the overlapping number of the TFR-subsequences (L 
= 1 in 2D convolution); N refers to the number of sam-
ples. The outputs of the model, i.e. the HIs, can effectively 
reflect the degradation of the bearings. Two fully con-
nected layers exist in the network after the three con-
volution layers. The sizes of the three 3D convolution 
kernels were 7×7×2, 3×3×2, and 3×3×2, separately. 
The stride of each convolution layer was set to 2×2×1. In 
addition, one dropout layer was added after the last con-
volution layer to prevent overfitting in the training. The 
sigmoid function was used as the activation function in 
the last layer of the network to fit the established HI. The 
rectified linear unit (ReLU) function was used as the acti-
vation function for the other layers to overcome gradi-
ent disappearance. For a variate v, the sigmoid and ReLU 
functions are expressed as follows [34]:

(5)HI(t) = t

T
.

(6)Sigmoid(v) = 1

1+ e−v
,

3 � GPR for Prediction
GPR is an important tool for inferring the relation-
ship between inputs and outputs and determining the 
conditional distribution of the target output. As a non-
parametric, statistical, and Bayesian method, GPR was 
adopted in this study to model the evolution of uncer-
tainty in time-stream data over time to support the fail-
ure time prediction of the bearings. For a training set 
D = [(ti, HIi| i=1, 2, …, n)], where ti and HIi denote the 
time number and target outputs, respectively. The prior 
distribution of the multivariate variance normal function 
f(t) can be specified through the mean function μ(x) and 
covariance matrix K.

Subsequently, the problem is converted to the predic-
tion of the output in D* using the observed training set. 

(7)ReLU(v) = max(0, v).

(8)f (ti) ∼ MVN(µ(ti),K ), i = 1, 2, · · · , n

Figure 3  TFR-subsequence–3DCNN architecture for RUL estimation

Table 1  Details of proposed model architecture by layer

Layer Details

Input Size: N × L × W × H × C; channel: L × C

Convolution 3D kernel: 7 × 7 × 2; channel: 32;  stride: 2 × 2 
× 1

Convolution 3D kernel: 3 × 3 × 2; channel: 64;  stride: 2 × 2 
× 1

Convolution 3D kernel: 3 × 3 × 2; channel: 128; stride: 2 × 2 
× 1

Dropout Rate: 0.25

Pooling Average_3Dpooling: 12×12×L

Fully-connected Channel: 128

Fully-connected Channel: 50

Output Channel: 1
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The covariance function must satisfy the Mercer condi-
tion, i.e., every semi-positive definite symmetric function 
should be a kernel [35, 36]. Therefore, the optimal solu-
tion of the hyperparameters φ can be adaptively obtained 
via the maximum likelihood method. Using the estab-
lished regression model, the output can be obtained by 
substituting the input value ti into the model. The GPR 
process in the experiment can be summarized as follows:

(1)	 Establishment of the training dataset: The HIs pre-
dicted by the TFR-subsequence–3DCNN model 
and the corresponding time information were used 
to construct the training dataset. The GPR model is 
expected to achieve an accurate and stochastic RUL 
prediction.

(2)	 Model training: The GPR-based model was trained 
using the predicted HIs of the training bearings. 
The mean value was set to 0. The covariance func-
tion was set as a combination of the square expo-
nential and periodic covariance functions.

(3)	 Prediction: The model was extrapolated in time to 
obtain the predicted HI values for RUL estimation. 
The failure time of this bearing was determined 
based on the physical meaning of the HI, and its 
RUL was calculated.

4 � Case Study
4.1 � Experimental Setting
The experimental data were obtained from the PRO-
NOSTIA platform [37], and two accelerometers were 
mounted to measure the vibration signals. Figure  4 
shows the PRONOSTIA platform. The sampling rate of 
the vibration signals was 25.6 kHz, and 0.1 s of data were 
recorded every 10 s. A total of 17 datasets under differ-
ent conditions are presented in Table  2, and each data 

group contained signals in both the horizontal and verti-
cal directions.

4.2 � Vibration Data and TFR‑Subsequence
Figure 5 shows the horizontal signal and its correspond-
ing TFRs for two samples (the first and last samples) of 
bearing 1-1. The accuracy of RUL prediction can be 
improved by correctly describing the nonlinear degra-
dation features of the bearing vibration signals with dif-
ferent faults. In CWT-based analysis, it is crucial to use 
appropriate parameters. Many studies have shown that 
reasonable parameter selection can effectively improve 
the signal parsing ability of the CWT model, effectively 
counteract the interference of background noise, and 
improve the model robustness. The complex Morlet 
wavelet was proven to be effective in analyzing bearing 
degradation. According to the criterion of maximum 
energy-to-Shannon entropy ratio, the complex Morlet 
wavelet [38] function was selected in the CWT with a 
bandwidth parameter of 3 and a center frequency of 3. 
The length of the CWT wavelet function scale was set to 
256. Figures 5a and b show the bearing operating under 
stable conditions, and the center frequency was approxi-
mately 4000 Hz. Figures 5c and d show the bearing at the 
end of the life-recession phase with severe failure. The 
impact components are shown in Figure  5c. The high 
energy concentrations of these impact components in the 
time–frequency domain are shown in Figure  5d. There-
fore, the CWT-based TFRs can effectively highlight fault-
related information in the bearing signals.

Furthermore, to improve the computational efficiency, 
the bilinear interpolation algorithm [39] was used to per-
form digital zooming on the TFRs. The dimensions of the 
original CWT TFRs, which were 256×2560, incurred a 
heavy computational burden. The inverse transform of 
the pixel in the bilinear interpolation was calculated as 
follows:

Figure 4  PRONOSTIA platform

Table 2  Bearing dataset with operational conditions

Condition 1 2 3

Speed
(r/min)

1800 1650 1500

Load (N) 4000 4200 5000

Training
dataset

Bearing 1-1
Bearing 1-2

Bearing 2-1
Bearing 2-2

Bearing 3-1
Bearing 3-2

Testing
dataset

Bearing 1-3
Bearing 1-4
Bearing 1-5
Bearing 1-6
Bearing 1-7

Bearing 2-3
Bearing 2-4
Bearing 2-5
Bearing 2-6
Bearing 2-7

Bearing 3-3
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where A = I
(

xi, yi
)

 , B = I
(

xi + 1, yi
)

 , C = I
(

xi, yi + 1
)

 , 
and D = I

(

xi + 1, yi + 1
)

 . In addition x = xi + xf  
and y = yi + yf  , with integer components xi and yi 
as well as corresponding floating-point coordinates 
xf, yf (0 < xf, yf< 1). Using the raw TFR corresponding 
to Figure  5b as an example, which was reduced with 
dimension [Rrow ,Rcolumn] , the unified value was set as 
Rrow = Rcolumn = R for convenience of calculation. Fig-
ure  6 shows the TFR visualization images for the four 
cases, where the reduced dimensionality R was set to 
500, 250, 100, and 50. As shown, aliasing occurred in the 
TFR image when the reduced dimension was extremely 
small; this shows that bilinear interpolation results in the 
loss of high-frequency components in TFRs. To maintain 
sufficient information in the reduced TFRs, R was set to 
100. Subsequently, the reduced TFRs were arranged in 
the chronological order for the network input. Figure  7 
shows the process in which the signal is converted into 
TFR-subsequences. The dislocated overlapping method 
can ensure the validity of temporal information extrac-
tion for RUL estimation.

4.3 � RUL Estimation
The key factors pertaining to the proposed model 
were investigated comprehensively, including the 

(9)

I∗
(

x, y
)

=
(1− xf )(1− yf )A+ xf (1− yf )B+ yf (1− xf )C + xf yf D,

parameter optimization method selected and the effect 
of the overlapping number. The superiority of the GPR-
based RUL prediction was analyzed.

4.3.1 � Parameter Optimization Method
The proposed TFR-subsequence–3DCNN model was 
built using the Keras framework and implemented in 
an NVIDIA Tesla K80 GPU with a mini-batch of 128 
and an epoch of 100. To avoid overfitting in the training 
process, 20% of the training data were randomly shuf-
fled as the validation dataset to determine the network 
parameters. Finally, the mean square error (MSE) was 
applied as the loss function in the 3DCNN model. By 
setting y ∈ R

1×n as the true label and ŷ ∈ R
1×n as the 

predicted label, the MSE loss is expressed as

For a training set Tr =
[(

xi, yi
)

|i = 1, 2, · · · , n
]

 , where 
xi is the TFR subsequence and yi is the predicted value, 
the structural risk minimization rule is used as the 
objective function, as follows:

(10)MSE(y, ŷ) = 1

n

n
∑

i=1

(

yi − ŷi
)2
.

(11)arg min
θ

O(Tr; θ) =
n

∑

i=1

L(yi, f (xi); θ),
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Figure 5  Horizontal vibration signals and corresponding TFRs of bearing 1-1: (a) Raw signal of first sampling interval; (b) CWT TFR of first sampling 
interval; (c) raw signal of last sampling interval; (d) CWT TFR of last sampling interval

(a) (b) (c) (d)
Figure 6  Visualization images of TFRs with four different reduced dimensionalities: (a) R = 500; (b) R = 250; (c) R = 100; (d) R = 50
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where θ is the whole model parameter, f (xi) the model 
output, and L (yi, f (xi); θ) the MSE loss function. To 
adaptively minimize loss during model training, the 
root mean square prop (RMSProp) [40] method was 
applied to the model. RMSProp uses differential squared 
weighted averages for the gradients of weights W and bias 
b to overcome significant swings in the update of the loss 
function, as well as to accelerate the convergence. During 
the jth iteration, the RMSProp is solved as follows:

The gradient momenta, Sdw and Sdb , were accumu-
lated by the loss function during the previous (j-1)th 
round of iteration. β is the index of gradient accumula-
tion. When dw or db is a significant value, it is divided 
by the square root of the gradient accumulated during 
update to obtain a smaller update amplitude.

(12)Sdw = βSdw + (1− β)dw2,

(13)Sdw = βSdw + (1− β)dw2,

(14)w = w − α
dw√

sdw + ε
,

(15)b = b− α
db√

sdb+ ε
.

4.3.2 � Effect of Overlapping Number L
The overlapped TFR-subsequences contain more useful 
degradation information and may be more advantageous 
than TFRs in improving the prediction performance 
when used as inputs of the 3DCNN model. In theory, the 
higher the value of L, the more time-related information 
is contained in the constructed TFR-subsequences, and 
the more conducive is the model in modeling the time 
dependence of the sample. However, if L is extremely 
high, then the effect of a single sample will be weak-
ened, and the distinguishability of the samples at differ-
ent times will be weakened, which is not conducive to the 
capturing of fault-related transient information in the sig-
nal. Owing to the effect of the overlapping number L on 
the prediction, experiments were performed on bearings 
1-3 and 3-3 with different kernels (3DCNN and 2DCNN) 
and overlapping numbers (L was set as 1, 2, 3, 4, 5, and 6). 
As the interval time for each TFR-generating signal was 
0.1 s, the contrast signal time was set to 0.1, 0.2, 0.3, 0.4, 
0.5, and 0.6 s in the 2DCNN for comparison, respectively. 
It is noteworthy that when L = 1, the 3DCNN was the 
same as the 2DCNN. However, when L ≥ 2 , they were 
different. For the 2DCNN, inputting TFRs corresponding 
to multiple times can increase the amount of informa-
tion that can be obtained; however, the change informa-
tion between adjacent TFRs at consecutive times cannot 
be extracted. The 3DCNN model can simultaneously 
extract the variation in consecutive TFRs. As criteria, the 
Spearman rank correlation coefficient, sign trend factor, 

Figure 7  Schematic illustration of TFR-subsequence conversion
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and root mean squared error (RMSE) were compared 
to investigate the prediction performance, as shown in 
Figure 8.

For the predicted HIs ŷ ∈ R
1×n of the CNN model and 

true HIs y ∈ R
1×n , the RMSEs of y and ŷ are

where yi represents the measurement vector of a fea-
ture on the ith system, and y refers to the mean of y. The 
Spearman rank correlation coefficient [41] and sign trend 
factor [42] of the predicted HIs are calculated as follows:

where t ∈ R
1×n in Eq. (17) represents the measured fea-

ture on the ith system, rank
(

ŷi
)

 is equal to the average 
of their positions in the ascending order of value ŷi , and 
corr( · ) refers to the correlation coefficient. In Eq. (18), 
sgn( · ) refers to the Sgn function.

As shown in Figure  8, the calculation error of the 
3DCNN-based approach was less than that of the 
2DCNN-based approach. The RMSE decreased first and 
then increased as L increased. Within a certain range, 
increasing L enables more information to be extracted. 
However, when L is extremely large, the difference in 
data at different times will be reduced. The TFRs dur-
ing the stable operation of the bearing did not differ 

(16)RMSE(y, ŷ) =

√

√

√

√

1

n

n
∑

i=1

(

yi − ŷi
)2
,

(17)ρ(ŷ, t) = 1

n

n
∑

i=1

∣

∣corr
(

rank(ŷi), rank(t i)
)∣

∣,

(18)tf (ŷ, t) = 1

n− 1

n−1
∑

i=1

sgn
(

ŷi+1 − ŷi
)

,

significantly, rendering it difficult to extract subtle fault-
related changes in the signal. Spearman’s rank correlation 
coefficient can be used as an indicator of the dependency 
between two variables, e.g., the HI and runtime. It uses a 
monotone equation to evaluate the correlation between 
two statistical variables. For bearings 1-3, the coefficient 
value obtained by the 3DCNN was significantly higher 
than that by the 2DCNN, and the maximum value was 
achieved when L was 3, 4, or 5. For bearing 3-3, the 
coefficient value obtained by the 3DCNN was higher 
than that by the 2DCNN, and the maximum value was 
achieved when L was 3 or 4. The sign trend factor repre-
sents the monotonicity of the data, whose trend was the 
same as that of the Spearman coefficient.

Furthermore, Figure 9 shows the HIs of bearing 1-3 cal-
culated using the 3DCNN model with different overlap-
ping numbers. As shown, when t ≥ 10000 s , the linearity 
of the HIs in the six states was extremely high; however, 
when t < 10000 s , the HIs fluctuated significantly. When 
L ≤ 4 , the fluctuation weakened. However, when L = 6, 
the prediction effect worsened. It was discovered that 
an increase in the overlapping number within a cer-
tain range resulted in a more accurate HI prediction. 
However, a high overlapping number resulted in more 
memory storage and calculation burden for the model. 
Therefore, the overlapping number L was set to 4.

4.3.3 � Effect of TFR Generation Method Selection
An effective TFR generation method should be able to 
fully reflect the degradation information of the bearing; 
in fact, this is a prerequisite for the established model to 
fully utilize the temporal and spatial features in the bear-
ing vibration signal. The CWT method has been proven 
to be effective for the time–frequency analysis of bearing 

Figure 8  RMSE, Spearman rank correlation coefficient and sign trend factor of bearings 1-3 and 3-3 with different overlapping numbers and 
convolutional kernels
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vibration signals, and its parameter determination and 
use methods are relatively mature; therefore, we selected 
it as the TFR generation method in this study. An experi-
ment was performed to compare and analyze the effects 
of typical time–frequency analysis methods, i.e., WVD 
and PWVD, on the model performance when used in 
the established model. Table 3 presents the RUL predic-
tion performance of bearings 1-3 based on different TFR 
generation methods Among them, the Hamming window 
function with a window length of 25 was selected for the 
WVD and PWVD methods. Overall, the TFRs gener-
ated by the CWT method yielded the smallest prediction 
error when used for HI construction, which is condu-
cive to obtaining higher-precision RUL estimation per-
formance. The prediction performance obtained by the 
PWVD-based TFRs indicated a clear advantage in terms 
of the monotony of the constructed HIs. The model per-
formance corresponding to the TFRs generated by the 

WVD method was not comparable to that of the PWVD 
method, as it demonstrated a certain inhibition effect 
on the cross-interference terms. The high-quality TFR 
method is beneficial for accurately reflecting the degra-
dation state of bearings and improving RUL prediction 
accuracy.

Table 4 shows the time consumption of different TFR 
generation methods based on the initial, middle, and ter-
minus intervals of the time–frequency analysis for bear-
ing 1-1. As shown, the CWT method is advantageous 
in terms of computational efficiency compared with the 
other methods. For RUL prediction tasks with a large 
sample size, high computational efficiency is extremely 
important. Considering the results show in Tables 3 and 
4, we used the CWT method for the time–frequency 
analysis of bearing vibration signals.

Figure 9  Estimated HI of bearing 1-3 with different overlapping numbers. Blue dots represent output HIs of 3DCNN model; solid green line 
represents smoothed HIs by moving-average filter with window width of 100; dotted yellow line represents true HI

Table 3  RUL prediction performance of bearing 1-3 based on 
different TFR generation methods

TFR method RMSE Spearman
coefficient

Sign trend
factor

CWT​ 0.0523 0.8732 0.9980

WVD 0.1913 0.6596 0.9552

PWVD 0.1355 0.9422 1.0000

Table 4  Time consumption of different TFR generation methods

TFR method Initial Middle Terminus Mean

CWT​ 0.071 0.076 0.091 0.079

WVD 0.257 0.269 0.286 0.271

PWVD 0.158 0.160 0.170 0.163
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4.3.4 � Superiority of GPR‑Based RUL Prediction
Figure 10 shows the estimated HIs of the training bear-
ings. The solid lines and dots correspond to the actual 
and estimated HIs, respectively. The Y and X-axes cor-
respond to the HI and time, respectively. The HIs esti-
mated using the proposed model can be used to track the 
actual degradation trends of the four training bearings. 
The test data used in the experiment were obtained from 
the terminate-before-failure bearings. The trained model 
was used to predict the HIs corresponding to the testing 
datasets.

The RUL can be obtained directly based on the defi-
nition of the HI. In Eq. (5), t refers to the current time, 
and T the run-to-failure time of the bearings. For the 
testing datasets, the unknown T can be calculated using 
the known HI. This is the same as using the RUL as the 
model output directly, which has been reported pre-
viously. However, the predicted HI at every moment 
should be nearly accurate. When the model was built, it 
was regarded as a regression problem rather than a clas-
sification problem, and the overall objective was the min-
imum MSE of the entire MSE. The RUL estimation result 

will be extremely volatile if calculated directly using 
the discrete HI output value. As shown in Figure  9, the 
smoothed HI was easily affected by the individual points. 
Therefore, the GPR algorithm was used in this study for 
the RUL prediction of bearings. The algorithm consid-
ers not only a single HI, but also the mixed distribution 
form of all existing HIs and calculates the distribution 
function corresponding to an individual bearing. For the 
independent variable time t, we assume that HI = f (t) as 
an unknown distribution form. For a specified value, the 
HI was modeled as a normal distribution. The mean vec-
tor of this joint normal distribution was assumed to be 
zero. The covariance matrix was defined as the similarity 
measure of each element corresponding to two HIs and 
was determined based on the squared exponential ker-
nel. In addition, using the Bayesian method, not only the 
distribution of each point can be obtained via the GPR 
method, but also the unknown function is inferred.

Using bearings 1-3 and 3-3 as examples, Figure  11 
shows the estimation result and the corresponding 
confidence interval. The Gaussian maximum likeli-
hood estimation function was used as the optimal solu-
tion method, the superposition of a linear mean value 
and a constant mean value was used as the mean value 
function, and the Materniso function was used as the 
covariance function. The convergence of the model was 
achieved in 50 iterations. The prediction of the GPR 
model showed a 95% confidence interval. The mean of 
the confidence interval bound, namely the red line in the 
figure, represents the predicted HI value at an unknown 
time. Using HI = 1 as the failure threshold, the intersec-
tion points of the middle line of the GPR prediction, and 
the failure threshold as the failure point, the bearing RUL 
can be further calculated.

Figure 10  Estimated HI of training datasets

Figure 11  RUL estimation results of bearings 1-3 and 3-3 (Solid black line refers to failure threshold; blue dots represent output data of 3DCNN 
model; gray interval shows 95% confidence interval predicted by GPR, and solid red line shows mean of this confidence interval. Intersection of 
black and red lines represents failed node. Dotted yellow line represents true HI)
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The GPR method is a Bayesian approach that can be 
used to model streaming data. Because of the advan-
tages of the GPR method in uncertainty prediction, it 
was selected as a regression method for RUL estima-
tion in this study. The difference between GPR and other 
regression algorithms is that in the latter, only the output 
value corresponding to the input data is expected to be 
obtained in general regression algorithms, such as lin-
ear, logistic, multiple, and Lasso regressions. By contrast, 
the GPR model obtains the distribution of the function 
based on the input data. The estimated distribution is 
advantageous when it is used to predict the RUL estima-
tion uncertainty, which is difficult to realize using general 
regression methods.

As shown in Figure  11, the estimation ability of GPR 
for model errors is well demonstrated. The GPR method 
is beneficial for the RUL estimation of bearings in terms 
of two aspects: 1) It offers better anti-interference abil-
ity for the mutation points in HIs. Because GPR obtains 
a 95% confidence interval by calculating the probability 
distribution of existing data, abnormal mutation points 
are naturally excluded from the confidence interval, 
thereby reducing the effect of mutation points on the 
prediction result; 2) compared with point estimation, 
the result obtained is more stable. Using the mean of 
the confidence interval as the predicted value reduces 
the effect of data fluctuation on the results. Using bear-
ing 3-3 as an example, a significant fluctuation remained 
in the HIs near the end of the test data, thereby increas-
ing the prediction error significantly. The predicted value 
represented by the red line was similar to the true value 
represented by the yellow line. In the future, HIs can be 
predicted based on the distribution form of the existing 
data, and the result be consistent with the true value. The 
experimental results indicate that effectiveness of using 
the GPR model to predict the RUL of bearings based on 
the HIs constructed using the 3DCNN model.

4.4 � Comparison with Other Related Studies
The proposed method was compared with four recent 
state-of-the-art methods: 1) the LSTM model proposed 
in Ref. [21], 2) the MSCNN model proposed in Ref. [22], 
3) the DBN–DP model proposed in Ref. [18] based on 
the DBN and diffusion process; 4) the RNN–AM model 
proposed in Ref. [20] based on the RNN and attention 
mechanism; 5) the hybrid prognostics method based 
on systematically combining relevance support vec-
tor regressions, exponential degradation models, and 
the Fréchet distance proposed in Ref. [29]; and 6) an 
enhanced encoder–decoder method proposed in Ref. 
[17].

By defining RÛLi and ActRULi as the ith estimated 
and actual RULs, respectively, the prediction error is 
expressed as

The RUL estimation score of the ith experiment is

The score of the entire model is expressed as

Table  5 shows the prediction performance of the five 
methods. The current time, actual RUL, predicted RUL, 
estimation error, standard deviation (SD) of the errors, 
and mean score are presented in the table. As shown, the 
prediction SD of the prediction model based on LSTM 
and the RNN was high, indicating the low robustness of 
the model. Both models use raw vibration signals as the 
input data of the network for analysis. As mentioned 

(19)Eri = 100× ActRULi − RÛLi

ActRULi
.

(20)Ai =
{

exp (− ln (0.5) · (Eri/5)), Eri ≤ 0,
exp (ln (0.5) · (Eri/20)), Eri > 0.

(21)Score =
1

6

6
∑

i=1

Ai.

Table 5  RUL prediction performance

Testing
bearing

Actual
RUL (s)

RUL (s) / (Er (%))

LSTM
(2019)

MSCNN
(2019)

DBN-DP
(2019)

RNN-AM
(2020)

Hybrid
(2020)

Encoder–decoder
(2021)

Proposed
method

1–3 5730 400/(93.02) 4731/(17.43) 5600/(2.27) 5294/(7.61) 5440/(5.06) 3650/(36.30) 5630/(1.75)

1–4 339 −310/(191.18) 259/(10.67) 260/(23.53) 874/(−157.81) 260/(23.30) 2500/(−637.46) 350/(−2.94)

1–5 1610 −6490/(503.11) 3996/(−148.19) 2950/(−83.23) 2778/(−72.55) 1540/(4.35) 1570/(2.48) 1660/
(−3.11)

1–6 1460 −6460/(542.47) 1744/(−19.45) 1163/(20.34) 1446/(0.96) 1450/(0.68) 1640/(−12.33) 1530/
(−4.79)

1–7 7570 7310/(3.43) 6090/(19.55) 5834/(22.93) 1061/(85.98) 10790/(−42.53) 3210/(57.60) 7510/(0.79)

3–3 820 990/(−20.73) 1060/(−29.27) 544/(33.66) 803/(2.07) 850/(−3.66) 770/(6.10) 790/(3.66)

SD of Er/% 247.36 52.97 43.58 83.24 21.83 268.80 3.31

Score 0.16 0.30 0.44 0.45 0.62 0.39 0.77
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above, it is difficult to extract complex fault-related 
information using raw signals. The CNN-based method 
uses TFRs as the network input and is more stable than 
LSTM and RNN models in prediction, as reflected by its 
lower SD of the error. However, the prediction accuracy 
of the CNN-based model is not ideal. Furthermore, the 
DBN–DP model considers the instability of the predic-
tion results. After the DBN network, the DP method was 
added to model the HIs to improve the prediction stabil-
ity. Therefore, the DBN–DP model yielded a lower SD of 
the prediction error compared with the three abovemen-
tioned models. The TFR-subsequence–3DCNN–GPR 
method achieved a significantly higher score of 0.77 than 
the other methods. In both operating conditions 1 and 
3, the RUL estimation error was within 5%, which was 
significantly lower than those of the other methods. The 
results fully demonstrate the feasibility and superiority 
of the proposed prognostics approach. The highest pre-
diction accuracy was due to the simultaneous considera-
tion of the spatial characteristic information of the TFR 
and the temporal correlation of the temporal correlation 
of adjacent TFRs. The lowest SD of the prediction error 
was attributed to the GPR method since it can effectively 
model the HIs. The experimental results demonstrated 
the effectiveness of the proposed method.

5 � Conclusions
To address the three challenges in existing data-driven 
bearing RUL estimation methods, namely, the manage-
ment of TFRs, temporal dependency of degradation 
states, and prediction volatility and uncertainty, a novel 
TFR-subsequence–3DCNN–GPR prognostics approach 
was proposed herein. The proposed model uses novel 
TFR-subsequences as inputs for end-to-end estimation, 
i.e., a new attempt to provide more spatiotemporal infor-
mation for a more accurate RUL estimation of bearings. 
Subsequently, the 3DCNN was leveraged to model the 
HIs of different adjacent TFR subsequences as the first 
attempt for the RUL estimation of bearings. The pro-
posed model demonstrated superiority in the state track-
ing of bearings by extracting spatial TFR information and 
temporal interrelated information of data synchronously. 
Furthermore, the GPR model was applied to estimate the 
failure time and uncertainty bounds. By deriving the HI 
value of the unknown point, it can be directly used to 
estimate the RUL of bearings. Using the mean value of 
the distribution as the predicted HI value, the proposed 
model was more resistant to abnormal and fluctuating 
points than other prediction methods. This study pro-
vides insights into the comprehensive use of bearing 
vibration signals, particularly degradation-related spa-
tiotemporal information in the data, to achieve a highly 

accurate RUL prediction with uncertainty quantification. 
A comparison with other state-of-the-art methods dem-
onstrated the superiority of the proposed approach.
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