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Abstract 

The peak identification scheme based method (three-point definition) and the spectral moments based method 
(spectral moment approach) are both widely used for asperity peak modeling in tribology. To discover the differences 
between the two methods, a great number of rough surface profile samples with various statistical distributions are 
first randomly generated using FFT. Then the distribution parameters of asperity peaks are calculated for the gener-
ated samples with both methods. The obtained results are compared and verified by experiment. The variation rules 
of the differences between the two methods with statistical characteristics of rough surfaces are investigated. To 
explain for the discovered differences, the assumptions by spectral moment approach that the joint distribution of 
surface height, slope and curvature is normal and that the height distribution of asperities is Gaussian, are examined. 
The results show that it is unreasonable to assume a joint normal distribution without inspecting the correlation pat-
tern of [z], [z′] and [z′′], and that the height distribution of asperities is not exactly Gaussian before correlation length 
of rough surface increases to a certain extent, 20 for instance.
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1  Introduction
Surface micro-topography has great influence on contact 
performances, e.g., friction and wear [1], contact fatigue 
[2], heat and electric conduction [3]. To evaluate such 
effects, the well known GW model [4] and its modified 
versions [5, 6] have been developed based on Hertz con-
tact mechanics, where rough surface contact is regarded 
as asperity contacts. Therefore, the modeling of asperity 
is of great importance.

Although surface micro-topographies from vari-
ous machining methods [7] are somewhat different, 
they are usually characterized and modeled by random 
process theory due to their statistical characteristics. 
Longuet-Higgins [8] and Nayak [9] treated surface micro-
topography as a random process, and used height distri-
bution and auto-correlation function (ACF) to analyze 

the sequences of sampled points. For the convenience 
of research and based on practical cognition, Gaussian 
height distribution and exponential ACF are commonly 
used to characterize rough surfaces, with which Nayak 
[9] and McCool [10] modeled asperity distribution by 
spectral moment approach. In this way, the mathematic 
formulae of distribution parameters were deduced for 
asperity peak and asperity summit. Recently, the uncer-
tainty in the calculation of asperity distribution param-
eters by spectral moment approach was discovered by 
Pawar et al. [11]. It was noted that the calculated asperity 
distribution parameters of samples with the same height 
distribution and ACF could vary within a certain range, 
and that such a variation decreased with increasing cor-
relation length. Subsequently, the research by Zhou et al. 
[12] indicated that the assumption that the joint distri-
bution of surface height, slope and curvature was nor-
mal could bring modeling deviation to spectral moment 
approach in comparison with another commonly used 
method, namely, the asperity identification scheme based 
method, i.e., three-point definition. The effect of asperity 
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peak definition on its properties with different numbers 
of neighboring points was reported by Pogačnik and 
Kalin [13]. Kalin et al. [14], however, believed the fact that 
not only asperity peaks but also asperity shoulders were 
considered accounted for the modeling error of spectral 
moment approach. In addition, the characterization of 
rough surfaces using spectral moment was reported by 
Panda et al. [15].

Besides the assumption on the joint distribution of 
surface height, slope and curvature, the distribution of 
asperity heights is assumed to be Gaussian. With such an 
assumption, the mean of asperity heights, the root mean 
square (RMS) of asperity height distribution and the 
average curvature radius of asperities were derived using 
spectral moments [16]. The discussion about the effect of 
bi-Gaussian rough surface on asperity contact was car-
ried out by Hu et al. [17]. In case of surface with fractal 
characteristic, fractal theory is utilized to develop the 
asperity model [18].

In consideration of the extensive application of both 
three-point definition and spectral moment approach, 
to examine their validity and to discover their differences 
are beneficial to effective modeling for asperity peak. To 
this end, a great number of rough surface profile samples 
with various statistical distributions are first randomly 
generated using FFT. Then the distribution parameters 
of asperity peaks are calculated for the generated sam-
ples with both methods. The obtained results are com-
pared and verified by experiment. The effects of standard 

deviation, correlation length and high pass filtering con-
stant of rough surface on the differences between the two 
methods are investigated. Finally, discussions are made to 
explain for the discovered differences.

2 � Methodology
2.1 � Generation of Rough Surface Profile Samples
Rough surfaces with Gaussian height distribution and 
exponential ACF are expressed as

where z is surface height; μ, σ and φ are the mean, the 
standard deviation and the probability density function 
(PDF) of [z], respectively; R is auto-correlation, τ is lag 
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length, and β is correlation length. It should be noted 
that [z] is actually Gaussian white noise when β = 0. ϑ is 
high pass filtering constant, representing high pass filter-
ing with different cut-off lengths. Obviously, correlation 
decays faster with a larger absolute value of ϑ. White-
house and Archard [19] defined correlation length as 
the distance where R decayed to 1/10 of the origin value. 
This corresponds to ϑ = − 2.3. Besides, ϑ = − 0.844 and 
ϑ = − 1 were used by Hirst and Hollander [20] and Ara-
maki et al. [21] respectively. These definitions will all be 
chosen for investigating the effect of ϑ.

In order for the generation of [z] with given statisti-
cal distributions, a pseudorandom number generator is 
used to generate Gaussian white noise sequence [ε] with 
a specified standard deviation σ. To go further, a convolu-
tion operation is performed on the white noise sequence 
and on the filter coefficient [h] decided by ACF. That is

where T is ACF truncation length and the filter coeffi-
cient h(k) is

To determine the frequency response H, the Fourier 
transform of ACF is first calculated:

where S(ω) is the power spectral density.
According to the definition of ACF and Eq. (2), it gives

where C is a constant, the Fourier transform of the 
sequence [ε]. Thereupon, any desired height sequence [z] 
with prescribed σ and β can be generated.

The detailed theory and methodology for rough surface 
simulation based on FFT can be found in Ref. [22]. It was 
suggested by He et al. [23] that the ratio of ACF trunca-
tion length T to correlation length β should be greater 
than 6 so that the asperity distribution parameters could 
converge to their true values.
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2.2 � Modeling of Asperity Peak Distribution
According to three-point definition of asperity peak, any 
point zi from [z] becomes a peak when

All the heights of z satisfying Eq. (6) form the height 
distribution of asperity peaks [ξ]. The mean ξavg, the root 
mean square (RMS) σξ, the skewness ξsk and the kurto-
sis ξku of asperity height distribution can be calculated 
according to their definitions, i.e.,

where np is the number of asperity peaks.
The curvature of asperity peak is

where d is sampling interval. The curvature radius of 
asperity peak is

The density of asperity peak is

where L is sampling length and N is the number of sam-
pling points. Unit sampling interval will be used to cal-
culate rp and η in the following, and non-dimensional 
results will be obtained.

In addition to the peak identification scheme based 
method, a mathematical model of asperity peak dis-
tribution was established by Nayak [9] based on cen-
tral moments of surface power spectral density (PSD) 
using random process theory, namely spectral moment 
approach. The assumption that the joint distribution of 
surface height, slope and curvature was normal was made 
during the derivation. From the deduced model, the height 
distribution of asperity peaks is

(6)zi > zi−1 & zi > zi+1.
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and the central moments of order zero to order four of 
PSD are

where m2 and m4 are RMS slope and RMS curvature of 
rough surface profile, respectively.

The curvature distribution of asperity peaks is

Substituting the mean height of asperity peaks into Eq. 
(13), the average curvature radius of asperity peaks can 
be calculated approximately as

The density of asperity peak is

On the basis of the work by Nayak, and on the assump-
tion that the height distribution of asperities was Gauss-
ian, the mean and the RMS of asperity height distribution 
were further obtained by McCool [10] as follows:

3 � Methodology
3.1 � Simulation Analysis
To find out the differences between three-point defini-
tion and spectral moment approach, rough surface pro-
file samples for the calculation of distribution parameters 
of asperity peaks are first randomly generated using FFT 
for comparison. In order to reduce the influence of ran-
dom error, 100 samples are generated for the same (σ, β). 
The mean values of all the samples are taken as the final 
results. The influences of sampling length and sampling 
interval are not considered in this paper [24]. The ACFs 
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of generated samples and those of theory are plotted in 
Figure  1. The simulation shows good accordance with 
theory either under β = 0 or under β = 100. Recalling that 
[z] is Gaussian white noise when β = 0, the corresponding 
simulation error of [z] is totally determined by the gen-
eration precision of Gaussian white noise by computer. 

Consequently, the program used for the generation of 
rough surface profile samples in this paper is proved to 
be reliable.

The PDFs of the height distribution of asperity peaks 
calculated from three-point definition and spectral 
moment approach are shown in Figure  2. It is evident 

Figure 1  Comparison on ACF between simulation and theory (σ = 1, ϑ = − 2.3): (a) β = 0, (b) β = 100

Figure 2  Comparison on PDF of [ξ] under different correlation lengths (σ = 1, ϑ = − 2.3): (a) β = 0, (b) β = 100

Table 1  Comparison of [ξ] for σ=1, ϑ = − 2.3

Correlation length Method ξavg Percent variation σξ Percent variation

0 Three-point definition 0.8445 0 1.0005 0

Spectral moment approach 1.8411 118.01%↑ 0.6352 − 36.51%↓
50 Three-point definition 0.2366 0 0.9980 0

Spectral moment approach 0.4619 95.22%↑ 0.9833 − 1.47%↓
100 Three-point definition 0.1890 0 1.0035 0

Spectral moment approach 0.2274 20.32%↑ 0.9909 − 1.26%↓
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that, compared with three-point definition, spectral 
moment approach overestimates the mean ξavg and 
underestimates the RMS σξ of asperity peak height dis-
tribution [ξ] at small correlation lengths (β = 0). As cor-
relation length increases to a certain extent (β = 100), 
the PDFs obtained from the two methods almost over-
lap with each other. Table 1 lists the quantitative differ-
ences between the two methods.

The variations of the differences in the calculation of 
ξavg and σξ between the two methods are shown in Fig-
ure  3, where the abscissa is scaled logarithmically. It 
is found that standard deviation of rough surface σ has 
great influence on the differences in the calculation of 
ξavg and σξ by different methods. As σ increases, the cal-
culation differences grow. The effect of high pass filter-
ing constant ϑ depends on correlation length β. While 
the calculation differences of ξavg and σξ are greater for 
smaller ϑ at small β, the situation is gradually reversed as 
β increases.

Figure  4 shows the calculated curvature distribu-
tions of asperity peaks from the two methods. As can 
be seen, nearly all the curvatures of asperity peaks are 
overestimated by spectral moment approach, except 
for |ξ/σ| > 3 which should be brought about by random-
ness. Moreover, the calculation difference of asperity 
peak curvature κ increases with the height of asper-
ity peak ξ and decreases with increasing β. The curva-
ture radius of asperity peak rp, the inverse of κ, is to be 
discussed instead in the following for its application 
in rough surface contact analysis. The variation of the 
difference in the calculation of the average curvature 
radius of asperity peaks between the two methods is 
shown in Figure 5. It can be found that the average cur-
vature radii of asperity peaks calculated from spectral 
moment approach are smaller than those of three-point 
definition. The calculation difference of rp increases 
with β and decreases with increasing σ. As ϑ becomes 
smaller, the calculation difference of rp gets greater.

Figure 3  Comparison on height distribution parameters of [ξ]: (a) ξavg under ϑ = − 2.3, (b) σξ under ϑ = − 2.3, (c) ξavg under σ = 0.05, (d) σξ under 
σ = 0.05
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The comparison on asperity peak density η is shown 
in Figure 6 and Figure 7. It can be seen from the figure 
that, although the calculated η from spectral moment 
approach shows the same change pattern with that of 
three-point definition, the former is underestimated. 
With β growing, both the calculated η values go down 
and converge to a constant. The calculation difference 
of η tends to increase with β, and it has nothing to do 
with σ. The effect of ϑ on the calculation of η is remark-
able. The results state that under ϑ = − 0.844 and 
ϑ = − 1, η still decreases with increasing β when spec-
tral moment approach is employed, whereas η shows an 
increasing tendency with β in the case of using three-
point definition.

Figure 4  Comparison on curvature distribution of asperity peaks under different correlation lengths (σ = 1, ϑ = − 2.3): (a) β = 0, (b) β = 100

Figure 5  Comparison on average curvature radius of asperity peaks: (a) under ϑ = − 2.3, (b) under σ = 0.05

Figure 6  Comparison on asperity peak density (σ = 1, ϑ = − 2.3)
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3.2 � Experiment Verification
To confirm the discovered differences between three-
point definition and spectral moment approach, the 
rough surfaces of four grinding samples (Specimen 
#1-Specimen #4) are tested by Taylor Hobson rough-
ness measuring instrument, as shown in Figure 8. The 
samples, made of 45# steel, are prepared using a sur-
face grinding machine M7130 with an alumina grinding 
wheel WA46L. The circular linear speed of the grind-
ing wheel is 26m/s while the feed speed of the work-
table is 0.069  m/s. The grinding depths for Specimen 
#1-Specimen #4 are 5  um, 10  um, 15  um and 20  um, 
respectively. The test direction is perpendicular to tex-
ture direction. To facilitate comparison with simulation 
analysis, the measured height sequences [z] are normal-
ized with a mean value of 0 and σ = 1.

Note that for a specified correlation distance in physi-
cal, correlation length β is non-dimensionalized with 
sampling interval d. The larger the sampling interval is, 

the smaller the correlation length is. To obtain more sam-
ples of diverse correlation lengths, the measured height 
sequences [z] of Specimen #1-Specimen #4 are sampled 
repeatedly by adjusting sampling interval, i.e., sampling 
[z] every few points to produce new sequences [z′]. In 
this way, a series of tested samples of different correlation 
lengths are obtained approximately. The sampled topog-
raphies of different correlation lengths from Specimen #3 
are shown in Figure 9. The height distribution PDFs and 
ACFs of rough surfaces from Specimen #3 and those of 
theory under different correlation lengths are shown in 
Figure  10. It can be seen that the hypotheses of Gauss-
ian height distribution and exponential ACF are basically 
achieved.

On the basis of three-point definition, the height dis-
tribution PDFs and curvature distributions of asperity 
peaks are calculated with the height sequences [z] sam-
pled from Specimen #3. Meanwhile, the central moments 
of PSD determined with the same [z] are used to calculate 

Figure 7  Comparison on asperity peak density: (a) under ϑ = − 2.3, (b) under σ = 0.05

Figure 8  Roughness measuring instrument and tested sample (obtained by scanning with white-light interferometer Veeco Wyko NT9100): (a) 
Taylor Hobson roughness measuring instrument, (b) surface topography of Specimen #3
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asperity peak distribution parameters based on spectral 
moment approach. The results obtained from the two 
methods are shown in Figure  11 and Figure  12. Table  2 
clearly shows that the average height and the curvatures 
of asperity peaks predicted by spectral moment approach 
are generally larger than those from experiment. In a few 
cases, the calculated curvatures of asperity peaks from 
experiment are larger in comparison with those of spec-
tral moment approach. This is probably due to the fact 
that the tested samples do not satisfy the assumed ideal 
statistical distributions exactly. The comparison also con-
firms the discovery that the RMS of asperity peak height 
distribution [ξ] is underestimated by spectral moment 
approach.

4 � Discussions
Since three-point definition is the most reliable method 
[13, 25] and is more trustworthy than spectral moment 
approach [11], the deviation of the latter from the former 
is believed to be the modeling error of asperity peak for 
spectral moment approach. To account for the differ-
ences between the two methods, two assumptions based 
on which spectral moment approach was developed are 
to be examined next.

To start with, [z], [z′] and [z′′] were all expected to be 
normal distributions. Without inspecting their correla-
tion pattern, their joint probability density was arbitrarily 
taken as [9]:

Figure 9  Sampled topographies from Specimen #3 (ϑ = − 2.3): (a) β = 1298, (b) β = 100, (c) β = 50, (d) β = 4
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Figure 10  Comparison on statistical distributions for Specimen #3 (ϑ = − 2.3): (a) PDF (β = 10), (b) ACF (β = 10), (c) PDF (β = 100), (d) ACF (β = 100)

Figure 11  Comparison on PDF of [ξ] for Specimen #3: (a) β = 10, (b) β = 100
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Figure 12  Comparison on curvature distribution of asperity peaks for Specimen #3: (a) β = 10, (b) β = 100

Table 2  Comparison of ξavg and κ  for Specimen #3 (σ = 1, ϑ = − 2.3)

Correlation length Method ξavg Percent variation κ Percent variation

10 Three-point definition 0.5589 0 1.2285 0

Spectral moment approach 1.0816 93.52%↑ 1.3519 10.04%↑
100 Three-point definition 0.1977 0 1.1205 0

Spectral moment approach 0.3493 76.68%↑ 1.2617 12.60%↑

Figure 13  Variations of ξsk with correlation length: (a) ϑ = − 2.3, (b) σ = 1
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where ξ1 = z , ξ2 = dz
/

dx , ξ3 = d2z
/

dx2,

ε is an independent random variable upon which ξ 
depends.

The question is that even if [z], [z′] and [z′′] are all 
Gaussian, their joint distribution is not necessarily 
a normal distribution as assumed. According to the 

(18)
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research of Sklar [26], any multivariate joint distribu-
tion can be written in terms of univariate marginal dis-
tribution functions and a copula which describes the 
dependence structure between quantities. There are 

many parametric copula families available to obtain 
the best fitted empirical copula functions [27]. Hence, 
the mathematic formulae of asperity peak distribution 
parameters deduced from Eq. (18) may be theoretically 
inaccurate to a certain extent.

Figure 14  Variations of ξku with correlation length: (a) ϑ = − 2.3, (b) σ = 1

Figure 15  Comparison of peak height distribution parameters between theory and experiment (ϑ = − 2.3): (a) ξsk, (b) ξku
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In the meantime, another assumption that the height 
distribution of asperities is Gaussian is made to cal-
culate the mean and the RMS of [ξ]. In this case, the 
skewness ξsk and the kurtosis ξku of [ξ] should be 0 
and 3 respectively. To examine the rationality of this 
assumption, ξsk and ξku of the generated samples are 
calculated. The variations of the two parameters with 
correlation length β are shown in Figure  13 and Fig-
ure  14 respectively. As can be seen, with the increase 
of β, ξsk and ξku decrease gradually and finally tend to 
be 0 and 3 respectively. This indicates that the assump-
tion of [ξ] being Gaussian is exactly correct only with 
β increasing to a certain extent, e.g., greater than 20. 
This is consistent with the experiment results shown 
in Figure 15.

In the work of Nayak [9], band width coefficient α 
was used to depict the extent to which [ξ] was close to 
Gaussian distribution. When Lim α→1, there follows

It is clear that [ξ] is obviously not Gaussian. When 
Limα→∞, [ξ] becomes

At this moment, [ξ] follows Gaussian distribution.
Figure 16 shows that α depends on β and is irrelevant 

to σ. When the effect of high pass filtering is not consid-
ered, whether [ξ] is Gaussian is completely determined 
by β. Since α increases with β, [ξ] is closer to Gaussian 
distribution under a larger β. This is in accordance with 
the modeling difference variation of [ξ] shown in Fig-
ure 2. Thus, increasing β by reducing sampling interval d 

(19)φpeak
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/
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, ξ∗ > 0,
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helps to obtain rough surfaces with [ξ] of Gaussian height 
distribution. Compared with α→∞ by spectral moment 
approach, [ξ] of satisfactory Gaussian distribution will 
be achieved for β > 20 according to three-point definition 
as demonstrated in Figure  13 and Figure  14. Moreover, 
although Figure 3, Figure 5 and Figure 7 state that high 
pass filtering has great effect on [ξ], the gaussianity of [ξ] 
seems not to be influenced by ϑ as illustrated in Figure 14 
and Figure 15.

As pointed out by Whitehouse and Archard [19] that 
the statistical properties of a surface are not its intrin-
sic properties but vary with sampling interval. Reducing 
sampling interval d leads to more points sampled in the 
same sampling length L, which results in the increase-
ment of non-dimensionalized correlation length β. As 
a result, the mean ξavg and the RMS σξ of [ξ] decreases 
and grows respectively. In the meantime, more asperity 

Figure 16  Variations of α: (a) ϑ = − 2.3, (b) σ = 1

Figure 17  Comparison on asperity peak density between theory 
and experiment
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peaks are obtained, yet the asperity peak density η tends 
to decrease. The curvature κ of [ξ] are decided by the 
combination effects of increasing β and reducing d. To 
diminish the scale dependence, a small enough sampling 
interval along with a fitting strategy is recommended [6].

Furthermore, since the standard deviation σ of [z] var-
ies approximately as L1/2, rough surfaces are usually 
treated as stationary stochastic processes, and the influ-
ences of sampling length can be ignored.

As a note, the average curvature radius of asper-
ity peaks rp is calculated with the mean ξavg of [ξ] based 
on Eq. (14), instead of being weighted averaged with [ξ] 
for spectral moment approach. Nevertheless, such an 
approximate treatment does not violate the truth that 
spectral moment approach overestimates the asperity 
peak curvature as shown in Figure  4, and hence it does 
not affect the conclusion that the average curvature 
radius of asperity peaks is underestimated by spectral 
moment approach.

The comparison of the two methods certainly can be 
extended to three dimensional surface where asper-
ity summit instead of asperity peak is concerned. In 
this paper, asperity peak density is found to be under-
estimated by spectral moment approach. However, 
Pawar et  al. [11] arrived at a conclusion that spectral 
moment approach overestimated asperity summit den-
sity, which was also reported by Kalin et  al. [14]. The 
conflict may result from the fact that not only asper-
ity peaks but also asperity shoulders were considered 
when asperity summits were modeled. The ACFs of 
the specimens prepared by Kalin could deviate from 
ACFs in theory as depicted in Figure 10. For this rea-
son, the calculated asperity peak/summit density of 
specimens can be different from those of theory, as 
shown in Figure 17.

As surfaces with negative skewness are common, it is 
meaningful to find out whether the aforementioned dif-
ferences between the two methods change for such sur-
faces. Table 3 gives the comparison results using simulated 
rough surface profile samples of negative skewness. The 
result shows that the differences between the two methods 
almost have similar variations whatever skewness is.

Finally, it should be emphasized that geometry modeling 
of asperity is focused in this paper. The coalescing of asper-
ities during contact is not considered [28, 29]. In this sense, 
the peak identification scheme based method, i.e., three-
point definition, and a small enough sampling interval 
along with a fitting strategy should be adopted to accurately 
model asperity peak distribution for tribological problems.

5 � Conclusions

(1)	 For rough surfaces of Gaussian height distribu-
tion and exponential ACF common in engineering, 
spectral moment approach overestimates the aver-
age height and the average curvature of asperity 
peaks and underestimates the RMS of asperity peak 
height distribution, the average curvature radius of 
asperity peaks and asperity peak density, as com-
pared with three-point definition.

(2)	 The asperity modeling differences between spectral 
moment approach and three-point definition are 
validated by experiment and are found to mainly 
depend upon standard deviation and correlation 
length. High pass filtering constant has little influ-
ence on the differences between the two methods.

(3)	 The fact that the joint distribution of surface height, 
slope and curvature is probably not normal accord-
ing to their correlation pattern and that the height 
distribution of asperities is not exactly Gaussian 

Table 3  Comparison of [ξ] for surfaces with negative skewness (σ = 1, ϑ = − 2.3)

Skewness Correlation length Method ξavg σ κ η

−0.25 0 Three-point definition 0.8281 0.9931 1.1637 0.3330

Spectral moment approach 1.8214 0.6360 1.2382 0.2093

50 Three-point definition 0.2639 1.0830 1.2095 0.1971

Spectral moment approach 0.5281 1.0492 1.2715 0.1751

100 Three-point definition 0.2477 1.0463 1.2027 0.1998

Spectral moment approach 0.4235 1.1686 1.2940 0.1749

−0.5 0 Three-point definition 0.8268 0.9953 1.0846 0.3353

Spectral moment approach 1.8412 0.6351 1.2884 0.2094

50 Three-point definition 0.2151 1.0449 1.1001 0.2041

Spectral moment approach 0.5093 1.0311 1.2142 0.1752

100 Three-point definition 0.2102 1.0928 1.1747 0.1927

Spectral moment approach 0.3691 1.0696 1.2243 0.1742



Page 14 of 14Zhou et al. Chin. J. Mech. Eng.           (2021) 34:61 

at small correlation lengths, may account for the 
discovered differences between spectral moment 
approach and three-point definition.
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