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Abstract 

In the digital image correlation research of fatigue crack growth rate, the accuracy of the crack tip position determines 
the accuracy of the calculation of the stress intensity factor, thereby affecting the life prediction. This paper proposes 
a Gauss-Newton iteration method for solving the crack tip position. The conventional linear fitting method provides 
an iterative initial solution for this method, and the preconditioned conjugate gradient method is used to solve the 
ill-conditioned matrix. A noise-added artificial displacement field is used to verify the feasibility of the method, which 
shows that all parameters can be solved with satisfactory results. The actual stress intensity factor solution case shows 
that the stress intensity factor value obtained by the method in this paper is very close to the finite element result, 
and the relative error between the two is only − 0.621%; The Williams coefficient obtained by this method can also 
better define the contour of the plastic zone at the crack tip, and the maximum relative error with the test plastic zone 
area is − 11.29%. The relative error between the contour of the plastic zone defined by the conventional method and 
the area of the experimental plastic zone reached a maximum of 26.05%. The crack tip coordinates, stress intensity 
factors, and plastic zone contour changes in the loading and unloading phases are explored. The results show that 
the crack tip change during the loading process is faster than the change during the unloading process; the stress 
intensity factor during the unloading process under the same load condition is larger than that during the loading 
process; under the same load, the theoretical plastic zone during the unloading process is higher than that during the 
loading process.
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1  Introduction
Fracture failure of a component originates from the initi-
ation and propagation of cracks, and the arrest or growth 
of cracks during their development is governed by the 
stress field near the crack tip. The stress intensity fac-
tor (SIF) K, which characterises the stress field strength 
near the crack tip, can be used to estimate whether the 
crack will become unstable [1]. There are many ways to 

measure the SIF experimentally, such as strain-based 
techniques [2, 3] and photoelastic methods [4]. How-
ever, the photoelastic method is usually applicable only 
to transparent materials. Since digital image correlation 
(DIC) technology was introduced in the 1980s, it has 
been widely used to measure the crack tip displacement 
field because it is a highly accurate non-contact method 
that can measure the full field in the near-tip region. In 
the crack tip field function, the crack tip is used as the 
coordinate origin. When the displacement field obtained 
by DIC technology is used to measure the SIF, it is impor-
tant to accurately determine the crack tip position. 
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Avtaev et al. [5] pointed out that it is difficult to directly 
identify the position of the crack tip from digital images, 
and scholars have proposed many methods for this prob-
lem. In the area near the crack tip, the growth rate of 
elastic and plastic strain will increase, and will reach the 
maximum at the crack tip. For I model cracks, the distri-
bution law of the eyy strain value on the extension line of 
the crack can be used to identify the location of the crack 
tip, Avtaev and Yakovlev [6] use this method to deter-
mine the location of the crack tip. The displacement value 
is the first-hand information obtained by using DIC tech-
nology, and it is a common method to obtain the posi-
tion of the crack tip by using the displacement field data. 
One method to achieve this is to observe whether the 
vertical displacement field near the crack tip is continu-
ous and use the critical point at which the displacement 
suddenly changes as the crack tip position [7]. Vasco-
Olmo et al. [8–10] used the projection of the vertical dis-
placement field on the VOY coordinate plane to find the 
coordinates of the crack tip in the Y direction. The pro-
jection of the vertical displacement field on the VOX is 
combined with the displacement value corresponding to 
the coordinate of the crack tip in the Y direction to deter-
mine the coordinate value of the crack tip in the X direc-
tion. On the other hand, some scholars directly use the 
method of image recognition to obtain the position of the 
crack tip from the digital image. Gao et al. [11] locate the 
sub-image containing the crack from the crack tip image 
according to the image grayscale standard deviation 
(GSD) distribution, and then use the maximum entropy 
threshold segmentation method to extract the crack 
contour from the sub-image. Then, the crack skeleton 
image is extracted from the crack contour image by the 
morphological thinning algorithm to determine the posi-
tion of the crack tip. This method is more complicated. 
Mokhtarishirazabad et  al. [12] use a simpler method. It 
directly enlarges the digital image of the crack tip area to 
a certain multiple to determine the position of the crack 
tip. Cao et  al. [13] used a similar method to determine 
the position of the crack tip of the rock sample. When 
Yue et  al. [14] is studying the dynamic fracture param-
eters of marble, it directly uses two high-speed cameras 
to record the crack propagation process to determine the 
position of the crack tip. Tong [15] and Zhu et  al. [16] 
used an optical microscope to determine the coordinates 
of the crack tip in the x direction. After the coordinates 
of the crack tip in the x direction are determined, the 
average value of the vertical displacement field is used to 
determine the coordinates of the crack tip in the y direc-
tion. This method is simple in mathematics, but requires 
equipment other than DIC (optical microscope). The 
artificial selection of the crack tip position with the help 
of sophisticated equipment may lead to differences in the 

crack tip positions selected by different researchers, and 
the use of mathematical methods combined with dis-
placement field data can avoid this difference. Yoneyama 
et  al. [17] used the Newton–Raphson iteration method 
with the crack tip position as an unknown parameter in 
the solution. Zanganeh et al. [18] suggested that the itera-
tion matrix of this method might be ill-conditioned and 
that the initial iteration value pair would greatly affect 
the convergence. In order to avoid solving the nonlinear 
problem encountered in obtaining the crack tip position, 
Zhang et al. [19] set up a number of points in the crack 
tip neighborhood, and used these points as the crack tip 
coordinates to calculate the objective function value. The 
point corresponding to the minimum value of the objec-
tive function is the final coordinate of the crack tip.

This paper proposes a crack tip location optimisation 
method based on the Gauss–Newton nonlinear iterative 
method. When this method is combined with observa-
tions of the discontinuity of the vertical displacement 
field near the crack tip, the crack tip position can be 
determined more accurately. This provides a solution for 
the iterative initial value selection of the nonlinear itera-
tive solution of the crack tip position and the parameters 
of the Williams equation. At the same time, the preproc-
essing conjugate gradient method is used to solve the 
ill-conditioned iterative matrix encountered in the itera-
tive process. This method provides more options for the 
subsequent description of the crack tip plastic zone and 
calculation of the SIF. Similar to the common use of non-
linear optimisation to solve the parameter methods such 
as crack tip position, this article assumes that the actual 
displacement field measured each time is independent, 
and the accuracy of the solution to the displacement field 
is independent each time. But Fernández [20] believes 
that this condition is not necessarily satisfied, and he sug-
gests using the generalized least squares method to solve 
the above parameters. This provides guidance for the 
next step of research.

2 � Method
2.1 � Crack Tip Field Function
In a paper published by Williams in 1957, the crack tip 
displacement field and stress field in a plane stress or 
plane strain state were expressed as an infinite series 
solution [21]. Although this solution is not a closed-
form solution, it has a broad range of applications. This 
series expansion is widely used to calculate the SIF of 
many types of samples commonly used to study fracture 
mechanics [22]. Double edge notched test (DENT) sam-
ples were used in this study and the crack can be treated 
as a mode I crack. The displacement and stress fields are 
expressed as follows [23]:
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 where a1 = KI/
√
2π , a2 = σ0x

/

4 , G is the shear modu-
lus, κ = (3− υ)

/

(1+ υ) for the plane stress condition, 
and κ = 3− 4υ for the plane strain condition, where υ is 
Poisson’s ratio. The sample is rotated and translated dur-
ing loading. The displacement field measured directly by 
DIC technology can be expressed as follows:

 where Tx , Ty , and R represent translation in the x direc-
tion, translation in the y direction, and rotation of the 
sample, respectively. Because Eq. (3) uses the crack 
tip position as the coordinate origin, the following 
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transformations must be made in order to use the results 
obtained by the DIC measurement system:

where (xi, yi) are the coordinates of a point in the DIC 
measurement system, and (xo, yo) are the coordinates of the 
crack tip in the DIC measurement coordinate system.

2.2 � Crack Tip Plastic Zone
When the equivalent stress is equal to the yield strength, 
metals experience plastic deformation. In addition, the 
SIF is a key parameter in linear elastic fracture mechan-
ics. Therefore, if the displacement field is used to calculate 
the SIF in a test, the plastic region must be excised from 
the data by defining an inner radius for data collection that 
excludes the plastic zone. Parnas et  al. [24] defined this 
inner radius of the fitting area as Rinner > T

/

2 , where T is 
the sample thickness. However, the range of the plastic zone 
sometimes exceeds this inner diameter and hence, in either 
plane stress or plane strain, Dehnavi et  al. [25] suggested 
using Rinner > (KI )

2/[πσ 2
y ] or Rinner > (KI )

2/[3πσ 2
y ] to 

determine the inner radius of the fitting area. However, the 
SIF range under given experimental conditions must be 
obtained before this formula can be applied, which makes 
this method not always applicable.

The displacement field measured by DIC can be used 
to obtain the strain field through numerical calculations. 
By combining the strain field with appropriate material 
parameters, the stress field and crack tip plastic region can 
be obtained. The strain field must be as accurate as possible 
and Pan et al. [26] proposed a full-field strain measurement 
method based on local least-squares fitting of the displace-
ment field; because this method has strong noise reduc-
ing capability, it is much more accurate than the difference 
method. To obtain the strain field from the displacement 
field, Vasco-Olmo et  al. [27] used the Green–Lagrange 
strain tensor, which is expressed as follows:

where
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where up and vp are the local horizontal and local verti-
cal displacement fields obtained using local least-squares 
fitting, respectively. The stress field can then be obtained 
from the strain field as follows:

To determine the extent of the plastic zone, the von 
Mises stress or Tresca stress is used in combination with 
the yield strength of the material. In this study, the von 
Mises stress is used to identify the plastic zone.

2.3 � Gauss‑Newton Iterative Method
The inner radius of the region used for the iterative 
process can be calculated according to Section  2.2. The 
outer diameter of the fitting area and the number of Wil-
liams expansion terms used during the fitting process are 
determined according to the conditions. Let the horizon-
tal and vertical displacements corresponding to the coor-
dinates (xi, yi) of the displacement field in the fitting area 
be Ui and Vi , respectively. The corresponding objective 
function is:

where Z =
(

a1, a2, · · · , al , xo, yo,Tx,Ty,R
)

 , ai is the 
Williams expansion coefficient, and the Z value at 
which ψ(Z) reaches the minimum is the optimal solu-
tion of the objective function. Both the horizontal and 
vertical displacement fields contribute to the fitting: 
fi = ui(xi, yi;Z)− Ui , gi = vi(xi, yi;Z)− Vi . This prob-
lem is expressed as follows:

The iterative form of the Gauss-Newton method is [28]:
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sion is a first-order partial derivative matrix. 
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Z =
(

z1, z2, · · · , zl+5

)T , where l is the number of expan-
sion terms in the Williams equation, and zi corresponds 
to the above parameters. DF (Z) can be written as follows 
according to the derivation rule:

Note that because of the nonlinear nature of the 
matrix components, sometimes the components are 
correlated, which causes DF (Z) to become degener-
ate or ill-conditioned, i.e., more sensitive to small 
errors, and DF (Zk )

T
DF (Zk ) is also ill-conditioned 

[28]. In addition, the DIC technique measures the 
crack tip displacement field in units of pixels, with a 
single pixel generally equating to a distance between 
several microns and several tens of microns. Thus, 
DF (Zk )

T
DF (Zk ) is always ill-conditioned in the actual 

calculation. There are two ways to solve this problem: 
one is to optimise the Gauss–Newton method itself, 
or the more commonly used damped least-squares 
method (the Levenberg–Marquardt method) and its 
variants [28, 29]; the other is to improve the accuracy 
with which ill-conditioned equations are solved. The 
preconditioned conjugate gradient (PCG) method can 
be used to solve a system of equations whose coefficient 
matrix is an ill-conditioned sparse symmetric matrix. 
DF (Zk )

T
DF (Zk ) is a non-sparse symmetric matrix, and 

the sparsity of the matrix is not a necessary condition 
for applying the PCG method in MATLAB. The crack 
tip optimisation iterative algorithm can be written as 
shown in Figure 1.

Figure 1 can be run according to the following steps:
a) Determine the initial crack tip position (xo, yo) 

according to the discontinuity of the crack tip displace-
ment filed.

b) Using (xo, yo) as the center, select a fitting area 
radius r. Take the fitting point in the displacement filed 
after removing the plastic area.

c) Using the linear fitting method and (xo, yo) , 
Z
′ = (a1, a2, · · · , an,Tx,Ty,R) can be obtained.

(13)

DF (Z) =












∂u1
∂z1

∂u2
∂z1

· · · ∂um
∂z1

∂u1
∂z2

∂u2
∂z2

· · · ∂um
∂z2

...
...

. . .
...

∂u1
∂zl+5

∂u2
∂zl+5

· · · ∂um
∂zl+5

∂v1
∂z1

∂v2
∂z1

· · · ∂vm
∂z1

∂v1
∂z2

∂v2
∂z2

· · · ∂vm
∂z2

...
...

. . .
...

∂v1
∂zl+5

∂v2
∂zl+5

· · · ∂vm
∂zl+5













T

∂ui

∂zj
=

∂u

∂zj

∣

∣

∣

∣ x = xi
y = yi

,
∂vi

∂zj
=

∂v

∂zj

∣

∣

∣

∣ x = xi
y = yi

.



Page 5 of 12Yang et al. Chin. J. Mech. Eng.           (2021) 34:70 	

d) Combine point (xo, yo) and vector Z
′ into 

Z = (a1, a2, · · · , an, xo, yo,Tx,Ty,R) , Z as a nonlinear 
iterative initial value.

e) Solve �Zk = −
[

DF (Zk )
T
DF (Zk )

]−1
DF (Zk )

T
F (Zk ), 

and calculate ||�Z||2.
f ) Judge whether ||�Z||2 satisfies the convergence con-

dition, if so, output Z.
g) If ||�Z||2 does not meet the convergence condition, 

perform Z = Z +�Z , extract new crack tip coordinates, 
and update the fitting area.

h) Repeat steps e), f ), g) until the convergence condi-
tion is meet, and Z is output.

3 � Numerical Verification
The feasibility of the proposed crack tip optimisation 
algorithm can be confirmed using a simulated displace-
ment field that includes translational and rotational 
components, and noise, whose parameters are given in 
Table 1.

The elastic modulus E is set to 210000 MPa, Poisson’s 
ratio υ is 0.28, and the yield strength σs is 780 MPa. 
a1 to a5 are the Williams equation coefficients, Tx and 
Ty represent the lateral and vertical translational dis-
placement of the specimen, R represents the rotational 
component, and xo and yo represent the coordinates of 
the crack tip. The units of Tx and Ty are pixels, and 1 
pixel = 0.0114 mm. Figure 2 shows the size and shape of 
the plastic zone obtained by local least-squares fitting 

Figure 1  Crack tip location optimisation algorithm

Table 1  Parameters of artificial displacement field

Parameter a1 a2 a3 a4 a5

Value 30 −40 −1200 2600 −100000

Parameter xo yo Tx Ty R

Value 700 650 10 10 0.0005

Figure 2  Plastic area obtained by fitting artificial displacement field
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according to Pan et al. [26] and the effect of increasing 
noise is clearly seen in Figure 1b.

As shown in Table 2, the proposed algorithm can cal-
culate the parameters of an artificial displacement field 
with noise.

4 � Test Verification
4.1 � Materials and Testing
The experimental work was performed on U71MnG rail 
steel. Its mechanical properties and chemical compo-
sition are given in Tables  3 and 4, respectively. DENT 
samples were used with thickness of 1 mm and the 
geometry shown in Figure 3. Fatigue crack growth test-
ing was performed on an ElectroPuls E3000 dynamic 
testing machine. The test parameters are summarized 
in Table  5. During the experiment, the crack tip dis-
placement field was captured using a Dantec Q-400 3D 
DIC system. As an example, Figure 4 shows cloud dia-
grams of the displacement fields of the sample under 
the maximum load for a crack size of 18 mm. Both the 
horizontal and vertical displacement fields are symmet-
ric with respect to the crack surface as a whole, but the 
symmetry is accompanied by translation and rotation 
which is considered in Eq. (3) by adding translation and 
rotation terms.

4.2 � Description of Displacement Fields and Plastic Regions
The calculation of the SIF from the displacement field 
also requires knowledge of the values of two important 
parameters: the outer radius of the fitting region and 
the number of expansion terms used in the Williams 
equation. The outer radius of the fitting area is usually 
a function of the number of fitting terms. For a larger 
fitting region, more terms are required and the calcu-
lation effort increases [23]. Mokhtarishirazabad et  al. 

Table 2  Calculation results and relative errors of numerical 
experiments

Parameter Actual value Calculated value Error (%)

a1 30 30.0470 0.1566

a2 − 40 − 40.6012 1.503

a3 − 1200 − 1188.60 − 0.95003

a4 2600 2693.92 3.6123

a5 − 100,000 − 105,286 5.2863

xo 700 700.169 0.024163

yo 650 649.959 − 0.0006329

Tx 10 9.99780 − 0.02206

Ty 10 10.0035 0.03511

R 0.0005 0.000503511 0.7021

Table 3  Performance parameters of test material

E(MPa) UTS(MPa) σs(MPa) εf (%) υ

210000 ≥ 880 780 ≥ 10 0.28

Table 4  Chemical composition of test material

C Si Mn P S Cr V Al

0.65–0.76 0.15–0.58 0.70–1.20 < 0.03 < 0.025 – – <0.01

Figure 3  Sample dimensions
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[23] used 20 mm×20 mm squares as the fitting regions 
and noted that when the number of expansion terms is 
five, a stable SIF solution can be obtained. Ju et al. [30] 
determined the length of the crack as the outer radius 
of the fitting area. In this case, a stable solution can be 
obtained when the number of fitting terms is eight. A 
circular fitting region was used in the work described in 
this paper with an outer radius of Router = 2.5 mm, and a 

stable convergence solution was also obtained when the 
number of fitting terms was five.

The relative error of each point in the fitting area is 
defined as η = (ω′

i − ωi)/ωi where ω′
i is u′i or v′i and refers 

to the 
(

xi, yi
)

 displacement of the point obtained using 
the Williams equation; ωi is ui or vi and refers to the dis-
placement of the point 

(

xi, yi
)

 measured using the DIC 
technique. To simplify the comparison, in the present 
paper, the method of using the discontinuity of the dis-
placement field to determine the crack tip position is 
called the conventional method. Now, this paper uses 
the crack length of 18 mm and the DENT sample loaded 
to 2400 N as a typical working condition. Table 6 shows 
the results of statistical analysis of the fitting results for 
the conventional and proposed methods, specifically, 
the relative errors at corresponding points in the respec-
tive fitting regions. The mean and variance of the relative 
errors both indicate that the proposed method results in 
a better fit than the conventional method, and that the 
resulting displacement field is closer to the true values 
measured by the DIC technique.

A finite element technique was combined with dis-
placement extrapolation method and used to solve 
the numerical solution for the SIF. The finite element 
model was loaded using a coupled loading method that 
reduced the relative error and achieved a lower calcu-
lation cost [31]. Now, we use the above conditions as a 
case to compare the results of SIF. Table 7 shows that the 
SIF obtained after the crack tip position was optimised is 
closer to the finite element solution with an relative error 
of only −0.621% than that obtained using the conven-
tional method which gives an relative error of 7.21%. This 
further demonstrates that crack tip optimisation is neces-
sary and effective.

From the Williams coefficients and crack tip posi-
tion parameters obtained by the proposed and conven-
tional methods, the contour lines of the plastic zone can 
be drawn and compared with that of the plastic zone 

Table 5  Test parameters

Maximum load 
(N)

Stress ratio Loading 
frequency (Hz)

Load waveform

2400 0.1 10 Sine

Figure 4  Cloud diagrams of displacement fields

Table 6  Relative errors of proposed and conventional methods

Parameter Conventional method Proposed method

Tip coordinates (pixel) (820, 660) (805, 648)

Mean E(η) 7.129 × 10−6 −2.474 × 10−6

Variance D(η) 1.102 × 10−5 1.538 × 10−6

Table 7  Comparison of solutions obtained by different methods

Solution FEM Proposed method Conventional method

SIF (MPa⋅m0.5) 58.82 58.46 63.06
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calculated directly using the displacement field (Figure 5). 
The crack lengths corresponding to the three working 
conditions shown in Figure 5 are all 18 mm. Table 8 lists 
the relative error values of the plastic zone area obtained 
by the two methods and the experimentally calculated 
plastic zone area. Obviously, during loading, at the peak 
load, and during unloading, the contour line of the Wil-
liams equation obtained by the proposed method repro-
duces the crack tip plastic area and its changes during the 
test better than the conventional method does.

It can be seen from Figure 5 and Table 8 that under the 
three working conditions, the area of the plastic zone cal-
culated by the method proposed in this paper is smaller 
than the experimental result, while the result of the plas-
tic zone obtained by the conventional method is larger 
than the experimental result. Table  9 lists the Williams 
parameters and the crack tip coordinates for the three 
working conditions. The x0 coordinate value obtained by 
the proposed method in this paper is smaller than the x0 
value of the conventional method. In fact, the value of 
x0 can directly reflect the length of the crack. As far as 
this article is concerned, the smaller the value of x0 corre-
sponds to the longer the crack. Among all the coefficients 
of Williams equation, |a1| and |a2| significantly affect the 
size of the theoretical plastic zone, and the two corre-
spond to K and T respectively. From the data in Table 9, 
it can be found that under the same working conditions, 
the |a1| and |a2| obtained by the proposed method are 
significantly larger than the |a1| and |a2| obtained by the 
conventional method. Under the same displacement field 
data, the longer the crack corresponds to the smaller K 
and T, so in this paper, the smaller the value of x0, the 
smaller |a1| and |a2|. The conventional method cannot 
consider the influence of crack tip dullness when select-
ing the crack tip coordinates. At this time, the crack 
length calculated using the selected crack tip coordinates 
will be too small. According to the above analysis, it can 
be seen that at this time |a1| and |a2| will be too large, 
resulting in a larger theoretical plastic zone. Due to crack 
tip dullness and stress relaxation, the crack tip coordi-
nates obtained by the method proposed in this paper are 
used to calculate the crack length will be long. Accord-
ing to the above analysis, the smaller |a1| and |a2| will be 
obtained at this time, so the plastic zone is also smaller.

4.3 � Application
The analysis presented in Section 4.2 shows that the pro-
posed method outperforms the conventional methods of 
calculating important parameters, such as the crack tip 
position, Williams coefficients, and the translational and 
rotational components of the actual displacement field. 
The proposed method was used to calculate the crack 
tip position and corresponding SIF during loading and Figure 5  Crack tip plastic zone
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unloading of a DENT sample of U71MnG rail steel for 
a certain load cycle and to characterize the crack prop-
agation during this cycle. To obtain clear results, a load 
cycle with a long crack (18 mm) near the end of the test 
is selected. The loads are shown in Table  10, where the 
coordinates of the crack tip under a 1320 N load are used 
as the origin. Figure 6 shows the crack propagation path, 
while Figure 7 shows the SIF during loading and unload-
ing in the chosen load cycle.

In Figure 6, the calculated crack tip position appears to 
move forward during the loading and unloading, and the 
crack tip moves forward in a zigzag manner. During the 
loading phase, from 1320 N to 2400 N, the crack tip moved 
11.82 pixels forward. During the unloading stage from 2400 
N to 1320 N, the crack tip moved 5.3 pixels forward. Gen-
erally speaking, the growth rate of fatigue cracks is much 
lower than the rate calculated in this paper. When the load 
increases, the plastic zone will increase, leading to more 
pronounced stress relaxation. The result is that the crack 
tip position is calculated from the displacement field, and 
it is estimated that the change of the crack length will show 

an increase in the crack length. This is the reason why the 
crack growth rate calculated in this paper is higher than the 
conventional fatigue crack growth rate. Due to the stress 
relaxation of the crack tip and the actual expansion of the 
crack, the SIF when unloaded under the same load level is 
slightly larger than the SIF during the loading process.

Figure  8 shows the evolution of the theoretical plastic 
zone based on the Williams equation for the above load 
cycle. As the load increases in each loading cycle, the 
plastic area gradually increases, reaching its maximum 
value at the maximum load of 2400 N and then gradually 
decreasing with decreasing load. In addition, owing to the 
increases in the crack size and SIF during loading at these 
high crack growth rates, the plastic area during unloading 
becomes slightly larger than that found during loading at 
the same load level.

The characteristic horizontal size of the plastic region 
can be defined as the intersection of the maximum con-
tour line with the x axis [22] and the maximum extent of 
the plastic region is then given by rx = (KI/σs)

2/(2π) . The 
vertical extent is defined as the maximum vertical distance 
of the contour line of the plastic area from the x axis. When 
the Williams series expansion uses only the first term, the 
contour line of the plastic zone is expressed as follows [22]:

In this case, the lateral feature size is rx = (KI/σs
2(2π) . 

When the expression:

(14)r1 =
1

2π

(

KI

σs

)2[

cos2
θ

2

(

1+ 3sin2
θ

2

)]

.

(15)f (θ) = sin θ cos2
θ

2

(

1+ 3 sin2
θ

2

)

Table 8  Area of crack tip plastic zone obtained by using 
different methods and corresponding error

Stage Exp. Con. Pro.

Area 
(mm2)

Area 
(mm2)

Error (%) Area 
(mm2)

Error (%)

Peak load
(2400 N)

2.375 2.907 22.40 2.142 − 9.811

Loading
(2084 N)

1.320 1.570 18.94 1.171 − 11.29

Unloading
(2084 N)

1.355 1.708 26.05 1.262 − 6.863

Table 9  Williams equation parameters and crack tip coordinates

a1 a2 a3 a4 a5 xo yo

(a) Con. 25.16 − 38.12 − 260.11 2156 − 107767 820 660

Pro. 23.22 − 21.17 − 548.67 136.84 − 17506 805.59 648.22

(b) Con. 21.32 − 27.66 − 243.38 1669 − 81534 820 660

Pro. 19.97 − 15.29 −443.89 34.65 − 13742 808.45 650.59

(c) Con. 21.72 − 33.79 − 254.12 1004 − 76756 815 655

Pro. 20.34 − 20.94 − 468.72 − 572.90 − 9278 803.79 649.22

Table 10  Relative coordinates of crack tip

Loading (N) 1320 1600 1860 2084 2363 2400

Crack tip (pixel) (0, 0) (2.36, 0.80) (4.67, 0.55) (8.92, 2.99) (11.23, 0.33) (11.82, 0.62)

Unloading (N) 1320 1600 ‒ 2084 2363 ‒
Crack tip (pixel) (17.12, 1.48) (14.44, 0.42) ‒ (13.97, 1.63) (13.04, 0.25) ‒
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has a maximum value, the vertical feature size ry can be 
obtained; the value of this function is near the maximum 
value at θ = 1.3984 and, ry = 0.20598(KI/σs)2. The char-
acteristic size of the plastic region in this case clearly 
depends only on the SIF; that is, it depends only on the 
first coefficient of the Williams series. The characteris-
tic size of the plastic zone is called the first-order feature 
size. When the number of terms n is expanded (n > 1), 
the characteristic size of the plastic region is called the 
nth order feature size. Generally, numerical solutions can 
only be obtained for the nth order feature size. Figure 9 
shows the lateral feature size for loading and unloading 
under the above loads. During loading and unloading, 
the fifth-order lateral feature size has a quadratic rela-
tionship with the load. In addition, the fifth-order lateral 
feature size is smaller than the first-order lateral feature 
size, and the difference between the two increases with 

increasing load. Take loading process for example, the 
fifth-order lateral feature size is 9.018% smaller than that 
of the first-order lateral feature size at 1320 N, while the 

Figure 6  Crack tip position during loading and unloading

Figure 7  SIF during loading and unloading of various loads

Figure 8  Theoretical evolution of plastic area during loading and 
unloading
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difference reaches 18.75% at 2400 N. Figure  10 shows 
the corresponding vertical feature sizes for loading and 
unloading. Different from the lateral feature size, the 
difference between the first-order and fifth-order verti-
cal feature sizes is rather small. Both the first-order and 
fifth-order vertical feature size have a quadratic rela-
tionship with the load. In general, the higher-order Wil-
liams coefficient strongly affects the lateral feature size, 
and this effect increases with increasing load. However, 
the higher-order coefficient has a weaker effect on the 
vertical feature size, which is essentially independent of 
the load. For present study, the SIF calculated at 2400 N 
using the first-order Williams equation is 56.71 MPa·m0.5. 
As described in Section  4.2, when using the expanded 

fifth-order Williams equation to calculate SIF, the value 
is 58.46 MPa·m0.5. Obviously, the SIF value obtained by 
using the first-order Williams equation is slightly smaller.

5 � Conclusions
(1) This paper proposes an optimisation method for crack 
tip position based on Gauss-Newton iterative method. 
The linear fitting method is used to provide the initial 
value of the nonlinear iteration, and the preconditioning 
conjugate gradient method is used to solve the ill-condi-
tioned equations.

(2) The relative error between the SIF value obtained 
by the proposed method and that by the finite element 
method is only ‒ 0.612%, which is much smaller than 
the error, 7.21%, generated between the conventional 
method and the finite element method. Moreover, the 
difference between the crack tip plastic zone obtained by 
the method proposed in this paper and the experimen-
tal plastic zone is even smaller, and the maximum is only 
‒ 11.29%, which proves that the method proposed in this 
paper is effective.

(3) The crack propagation path, SIF, and plastic zone 
evolution during loading and unloading in a load cycle 
have been determined using this method. The results 
show that the crack propagates faster during loading than 
during unloading, and the crack tip moves forward in a 
zigzag pattern. The calculated crack growth rate includes 
the result of crack tip blunt and stress relaxation. As the 
crack continues to grow, during the un-loading process 
with the same load as the loading process, the SIF and 
plastic zone at the crack tip become larger, which pro-
vides a basis for further understanding of crack propaga-
tion behavior.

(4) The higher-order coefficients of the Williams equa-
tion strongly affect the lateral feature size of the plastic 
zone, and this effect increases with increasing load. How-
ever, the higher-order coefficients have a weaker effect 
on the vertical feature size. These characteristics are one 
of the reasons why different Williams equation orders 
are used to obtain different SIF values when solving the 
stress intensity factor using the least square method.
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