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ML‑ANet: A Transfer Learning Approach 
Using Adaptation Network for Multi‑label Image 
Classification in Autonomous Driving
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Abstract 

To reduce the discrepancy between the source and target domains, a new multi-label adaptation network (ML-ANet) 
based on multiple kernel variants with maximum mean discrepancies is proposed in this paper. The hidden represen-
tations of the task-specific layers in ML-ANet are embedded in the reproducing kernel Hilbert space (RKHS) so that 
the mean-embeddings of specific features in different domains could be precisely matched. Multiple kernel functions 
are used to improve feature distribution efficiency for explicit mean embedding matching, which can further reduce 
domain discrepancy. Adverse weather and cross-camera adaptation examinations are conducted to verify the effec-
tiveness of our proposed ML-ANet. The results show that our proposed ML-ANet achieves higher accuracies than the 
compared state-of-the-art methods for multi-label image classification in both the adverse weather adaptation and 
cross-camera adaptation experiments. These results indicate that ML-ANet can alleviate the reliance on fully labeled 
training data and improve the accuracy of multi-label image classification in various domain shift scenarios.
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1  Introduction
Benefitting from the rapid development of deep learn-
ing technologies in recent years, applications based on 
convolutional neural network (CNN) have been exten-
sively developed for advanced driver assistance systems 
(ADASs) and autonomous vehicles (AVs) [1–4]. These 
applications mainly focused on object detection [5, 
6], object tracking [7], and semantic segmentation [8]. 
Among these applications, image classification is the 
fundamental technology to divide images into different 
classes for better detection, tracking, and semantic seg-
mentation performances.

1.1 � Image Classification
The methods for image classification can generally be cat-
egorized into two categories including single-label image 
classification (SLIC) [9] and multi-label image classifica-
tion (MLIC) [10]. SLIC assumes that there is only one 
category of objects in each image. However, naturalisti-
cally collected images often contain multiple categories 
of objects (e.g., vehicles, cyclists, and pedestrians in a sin-
gle image) in real world. Therefore, MLIC is needed for 
safety enhancement of ADASs and AVs, and has attracted 
more attention in real applications.

Early MLIC algorithms mainly include multi-label 
k-nearest neighbors (ML-KNN) [11], rank support vec-
tor machine (rank-SVM) [8], and multi-label decision 
tree (ML-DT) [13]. ML-KNN [11] uses the maximum 
of a posteriori estimation (MAP) to determine the set 
of labels for test samples based on the traditional KNN 
algorithm. Rank-SVM [12] uses a rank loss function and 
the corresponding marginal function as constraints for 
multi-label learning based on SVM. ML-DT [13] uses the 
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information gain criterion based on multi-label entropy 
to construct decision trees recursively. These traditional 
algorithms were extensively applied in MLIC tasks for 
object detection in the late 1990s to early 2000s. How-
ever, since these methods have high computational com-
plexity and low accuracy in predicting rare categories 
when the samples numbers are imbalanced, their perfor-
mances were generally unsatisfactory in terms of classifi-
cation accuracy.

More recently, deep learning technologies have been 
proposed in MLIC tasks, and significant classification 
improvements have been achieved. The powerful non-
linear representation capabilities of deep neural net-
works can learn more effective features from large-scale 
datasets for better performance. A hypotheses-CNN-
pooling (HCP) algorithm was proposed in Ref. [14] 
based on binarized normed gradients (BING) that used 
cross-hypothesis and max-pooling to fuse the classifi-
cation results of all candidate regions to obtain images 
with complete label information. The results showed that 
better performance was achieved by fusing all candidate 
regions. Wang et  al. [15] used CNN to extract features 
of the input images and used recurrent neural networks 
(RNNs) to reduce the label dependency. The results con-
cluded that the combined CNN-RNN method could 
effectively identify image classes by modeling the label 
co-occurrence dependency in a joint image/label embed-
ding space. Besides, Zhang et  al. [16] combined CNN 
to predict small object classes in images, and Song et al. 
[17] used a deep multi-modal CNN for multi-instance 
multi-label image classification. Results from both stud-
ies supported the effectiveness of their algorithms in the 
examined MLIC tasks.

An effective deep neural networks model requires a 
large amount of accurately labeled samples for training, 
because millions or even billions of parameters need to 
be learned from the labeled samples. However, reliable 
labels heavily rely on extensive human labor work [18, 
19]. These time-consuming and labor-intensive labeling 
work hindered the rapid and widespread applications of 
these technologies in practical applications. To alleviate 
this problem, transfer learning was developed for solu-
tions [20].

1.2 � Transfer Learning
Transfer learning is an effective technique to improve 
the performances of classifiers in the target domain 
with the availability of the annotated data in the source 
domain only. Transfer learning also refers to unsuper-
vised domain adaptation, which can adapt features from 
labeled source domains to unlabeled target domains, and 
thereby would greatly reduce the cost of human labeling 
work [20].

Pan et al. [21] proposed a transfer component analysis 
(TCA) algorithm. In the subspace of transfer component, 
the feature distribution discrepancy between the source 
domain and the target domain was significantly reduced 
and the separability of the data was retained. Long et al. 
[22] simultaneously adapted both the marginal and con-
ditional distributions in a principled dimensionality 
reduction procedure by using joint distribution adapta-
tion (JDA). Their results demonstrated the superiority of 
JDA in accuracy and efficiency over the compared deep 
learning and transfer learning methods in classifica-
tion tasks. Wang et al. [23] developed a balanced distri-
bution adaptation (BDA) and added a balance factor to 
dynamically measure the importance of edge distribu-
tion and conditional distribution to improve the classi-
fication accuracy. In Ref. [24], an easy transfer learning 
(EasyTL) approach was proposed to learn nonparametric 
transfer features by exploiting intra-domain structures to 
obtain an image classifier. It was concluded that EasyTL 
had high computational efficiency and could be directly 
applied in image classification technologies on resource-
constrained devices such as wearables.

To address the time-consuming and labor-intensive 
limitations of deep learning algorithms in MLIC applica-
tions, transfer learning has been introduced to improve 
the CNN training process and improve the accuracy 
in MLIC tasks. Yosinski et  al. [25] quantitatively ana-
lyzed the features from the CNN encoding process, and 
found that the encoded features were more effective in 
transfer learning. Based on their experimental findings, 
Tajbakhsh et  al. [26] concluded that when training a 
deep CNN model in the target domain, it was better to 
fine-tune a pre-trained source domain CNN model than 
to retrain the model in the target domain. Zhang et  al. 
[27] proposed a deep transfer network (DTF) framework 
which used deep neural networks for cross-domain fea-
ture distribution matching. The effectiveness of the algo-
rithm was validated in cross-domain multi-class object 
recognition tasks. Tzeng et  al. [28] analyzed the loss of 
domain confusion and proposed a deep domain confu-
sion (DDC) algorithm to optimize the objective function 
of maximizing consistency between the source domain 
and target domain. The experimental results showed that 
the learned representations were invariant to domain 
shifts and thus could be used for MLIC tasks.

1.3 � Contributions
Although the above-mentioned MLIC algorithms have 
achieved significant progresses, image classification 
in complex traffic environments (e.g., hazy or snow 
weather) based on camera systems is still a challenging 
task for the development of ADASs and AVs because the 
generalization capability of the algorithms in real traffic 
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still needs to be improved and the algorithms are easy to 
fail in cross-domain adaptation. To solve this problem 
and meet the requirement of high accuracy for practical 
applications, we proposed an effective deep adaptive neu-
ral network method for MLIC tasks, namely, multi-label 
adaptation network (ML-ANet). Specifically, ML-ANet 
leveraged transfer learning to transfer knowledge from 
a well-labeled domain to a similar but different domain 
with limited or no labels. To effectively use the labeled 
data in the source domain, we conducted MLIC super-
vised learning on the source domain data, and used mul-
tiple kernel variants of maximum mean discrepancies 
to distribute the feature maps of the source and target 
domains to reduce domain discrepancy. The main contri-
butions of this paper can be summarized as follows.

(1)	 We proposed a new deep adaptation network 
ML-ANet to learn transferable features for adapt-
ing models from a source domain (with labelled 
information) to a different target domain (without 
labelled information) in MLIC tasks.

(2)	 The effectiveness of our proposed ML-ANet in var-
ious traffic environments has been demonstrated 
by extensive experiments on three large-scale driv-
ing datasets. This suggests that when being applied 
in ADASs and AVs, our proposed ML-ANet could 
make the ADASs and AVs adaptable to all-around-
the-clock illuminations in various weather condi-
tions.

(3)	 Our proposed ML-Net alleviates the reliance on 
fully labeled training data, and therefore no exten-
sive labor work will be needed for network devel-
opment. This would promote the development effi-
ciencies of ADASs and AVs.

2 � Proposed Approach
The proposed MLIC approach (i.e., ML-ANet) mainly 
consists of two sub-networks including the multi-label 
learning network (ML-Net) and the adaptation network 
(ANet). ML-Net uses labeled samples from the source 
domain to train a multi-label classifier for simultaneous 
multiple labels prediction of an image. ANet embeds the 
features from the task-specific layer into the reproducing 
kernel Hilbert space (RKHS) and matches different dis-
tributions optimally using the multi-kernels maximum 
mean discrepancies (MK-MMD) in RKHS. See Figure 1 
for the overall framework of our proposed ML-ANet. A 
detailed description of the proposed method is given in 
the following subsections.

2.1 � ML‑Net (Multi‑label Learning Network)
Multi-label learning means that each image is associ-
ated with multiple class labels simultaneously. Assume 
that the training set images can be described as I = {xi} , 
where xi represents image i and its corresponding label 
vector is yi = {0, 1}c . yji = 1 indicates that the jth label 
exists in image xi , while yji = 0 indicates the missing of 
the jth label in image xi . The MLIC task is essentially 
about learning a mapping function f : x → y from the 
training set {(xi, yi)|1 ≤ i ≤ n} . In this paper, we consid-
ered the MLIC problem as multiple binary classification 
problems, which means that the samples with the same 
label were considered as positive samples (i.e., yi = 1 ), 
while the others were considered as negative samples 
(i.e., yi = 0).

ML-Net trains multi-label classifiers based on labeled 
data samples from the source domain. Specifically, an 
image with a size of 224×224×3 was fed into the ML-
Net, and a feature map was extracted through ResNet-50. 

Figure 1  The overall framework of our proposed ML-ANet
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As shown in Figure  1, the dimension of feature vector 
was reduced from 4096 to 2048 by the first fully con-
nected layer (FCL1), from 2048 to 256 by FCL2, and from 
256 to the number of examined labels by FCL3. The num-
ber of parameters in ML-Net is approximately 24 mil-
lion, which indicates that it is difficult to learn the large 
number of parameters directly from the source domain. 
Therefore, we transferred the pre-trained ResNet-50 
model on ImageNet dataset to the ML-Net. We trained 
the three fully connected layers and fine-tuned the other 
layers. Finally, we used the sigmoid function to calculate 
the score for each category and used the binary cross-
entropy loss as the multi-label classification loss function. 
For each minibatch, we calculated the loss using the fol-
lowing formulas:

where N is the number of training samples, hθ (xi) donates 
the probability of the ith class calculated by the sigmoid 
function, ⌢yi donates the value of the ML-Net predicted 
in the ith class, yi is the ground truth of the ith class, and 
yi ∈ {0, 1}.

2.2 � A‑Net (Adaptation Network)
In deep neural networks, the shallow layers learn general 
features so that the parameters of shallow layers are uni-
versal across different tasks, while the parameters of deep 
layers depend on specific tasks [25]. This inspired us that 
our proposed network should focus on the deep task-
specific layers. Therefore, we proposed an adaptation net-
work (A-Net) to explore the transferability of one domain 
with labeled information to another domain without 
labeled information by embedding MK-MMD loss in the 
last layers. In transfer learning, the domain with labeled 
information is treated as the source domain, and the 
domain without labeled information is considered as the 
target domain. The data from these two domains are usu-
ally under different probability distributions.

In this paper, to align different data distributions in the 
two domains, we introduced a RKHS where the domain 
discrepancy was measured by using multiple kernel vari-
ants of MMD proposed by Gretton et al. [29]. Specifically, 
A-Net learns transferable features by using MK-MMD to 
embed the deep features of FCL2 to RKHS, which can 
optimally match the source and target domain distri-
butions. Figure  2 gives an intuitive example of domain 
adaptation using multiple Gaussian kernels. For biased 
datasets (left), a classifier learned from a source domain 
cannot transfer well to a target domain. By mapping the 
samples from the source domain and the target domain 

(1)
J (θ) = −

1

N

∑N

i=1
[yi log hθ (

⌢
yi)+ (1− yi) log(1− hθ (

⌢
yi))],

(2)hθ (xi) = 1/[1+ exp(−θTxi)], to the RKHS space (right), the distinguished and domain-
invariant representations can be learned.

Assuming that XS = {xs1, x
s
2, ..., x

s
n} consists of n sam-

ples with the labelled information Y S = {ys1, y
s
2, ..., y

s
n} 

in the source domain, and Xt = {xt1, x
t
2, ..., x

t
n} consists 

of m samples in the target domain without labels, the 
source domain and the target domain can be described 
as Ds = {(Xs,Y s)} and Dt = {(Xt)} , respectively. The 
probability distributions of the source and target domain 
embedded in RSHS are denoted as p and q, respec-
tively. The MK-MMD dk(p, q) is defined as the distance 
between the means of probability distributions p and q in 
RKHS. Hence, the squared formula of MK-MMD can be 
described as follows:

where Hk is a RKHS with a characteristic kernel k, Ep[•] 
is the mean of p, Eq[•] is the mean of q, and φ(•) is a fea-
ture mapping function which maps the features from 
the original feature space to RKHS. In MK-MMD, we 
denoted K as a particular family of kernels. Hence,

where {ku} is the set of u positive definite functions and 
the constraints on coefficients {βu} are imposed to guar-
antee that the derived kernel k is characteristic.

Given xs and xs
′

 as independent random variables with 
distribution p, and xt and xt

′

 as independent random var-
iables with distribution q, the characteristic kernel k(•) is 
defined as k(xs, xt) =

〈

ϕ(xs),ϕ(xt)
〉

 . Hence, the distance 

(3)d2k (p, q) �
∥

∥Ep[φ(x
s)] − Eq[φ(x

t)]
∥

∥

2

Hk
,

(4)
K � {k =

∑m

u=1
βuku,

∑m

u=1
βu = 1,βu ≥ 0,

∀u = {1, ..., m},

Figure 2  An example of domain adaptation using multiple Gaussian 
kernels (The yellow triangles and pink circles represent the positive 
and negative samples in the source domain, respectively. The brown 
prisms and blue crosses represent the positive and negative samples 
in the target domain, respectively)
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between means of probability distributions p and q can 
be computed as the expectation of kernel functions:

where xs′ is an independent copy of xs with the same 
distribution, and xt ′ is an independent copy of xt with 
the same distribution, Exs ,xt [•] is the mean of k(xs, xt) . 
Exs ,xs′ [•] and Ext ,xt′ [•] are similarly defined.

The purpose of A-Net is to minimize the domain dis-
crepancy between the source and target domains. The 
domain discrepancy can be measured by the distance 
between the means of the probability distributions from 
the source and target domains. Therefore, we have:

where Ds and Dt denote the source and target domains, 
respectively. DF (•) denotes the domain discrepancy 
between the source and target domains in the last fully 
connected layer of ANet.

2.3 � ML‑ANet
The loss of ML-ANet consists of the MK-MMD loss and 
the multi-label classification loss. The objective of mini-
mizing the multi-label classification loss is to improve 
the distinguishability of features in the source domain, 
while the goal of minimizing MK-MMD loss is to reduce 
the discrepancy between the means of the probability 
distributions in the source and target domains. Thus, we 
derived the loss function of ML-ANet as:

where � is the loss weight parameter and a hyper-param-
eter, DF denotes the MK-MMD loss, J (θ) represents the 
multi-label classification loss of the source domain, and 
L is the total loss of the whole ML-ANet, which will be 
trained by the mini-batch stochastic gradient descent 
(SGD) algorithm to minimize the loss on the training 
samples.

Mini-batch SGD is important for the training effect 
of deep networks, but the calculation of pairwise simi-
larities in mini-batch SGD leads to a computational 
complexity of O(n2) . To solve this problem, we used an 
unbiased empirical estimate of MK-MMD proposed by 
Gretton et al. [29], which can be computed with a com-
plexity of O(n) . We used the unbiased empirical estimate 
to calculate the square form of MK-MMD as follows:

(5)
d2k (p, q) =

∥

∥

∥
Exs ,xs′ [k(x

s, xs
′

)]

−2Exs ,xt [k(x
s, xt)] + Ext ,xt′ [k(x

t , xt
′

)]

∥

∥

∥
,

(6)min
Ds ,Dt

DF (Ds,Dt) = min
p,q

d2k (p, q),

(7)L = J (θ)+ �DF ,

(8)d2k (p, q) =
2

ns

∑ns/2

i=1
gk(zi),

where ns  denotes the number of variables xs , zi is the 
quad-tuple which is denoted as zi � (xs2i−1, x

s
2i, x

t
2i−1, x

t
2i).

When we train a deep CNN by mini-batch SGD, we 
only need to consider the gradient of Eq. (8) with respect 
to each data point xi . To perform a mini-batch update, we 
computed the gradient of Eq. (7) with respect to the lth 
layer parameters θ l as:

Given that a kernel k is a linear combination of mul-
tiple Gaussian kernels {k(xi, xj) = exp(−

∥

∥xi − xj
∥

∥

2
/γu)} , 

the gradient ∂gk(zli )/∂θ
l can be easily calculated by using 

the chain rule. For instance, the gradient of k(xsl2i−1, x
tl
2i) 

in gk(zli ) can be calculated as:

where xli = Wlxl−1
i + bl . Wl and bl represent the coeffi-

cient matrix and the bias term from the (l-1)th layer to 
the lth layer, respectively. In summary, the training pro-
cess of the entire ML-ANet approach can be described in 
Algorithm 1.

Algorithm 1 The training process of ML-ANet. 

Input: The training datasets {( , )} {( )}
s s t

D X Y D X=s t  , batch 

size N

Output: The network parameters mW   and aW   for ML-Net and A-

Net, respectively. 

1: Initialization: Initialize ,m aW W  with ResNet-50; 

2: while not converge do
3: for each training sample sx Di s  and 

t
x Di t do

4: Forward pass to obtain the feature representations of xi ; 

5: 
Back propagate to update the network parameters mW  and 

aW  via Eq. (10); 

6: end for
7: end while 

=

3 � Datasets and Experiment
Two adaptation examinations were conducted to ver-
ify the effectiveness of our proposed ML-ANet, i.e., 
adverse weather adaptation and cross-camera adaptation. 
Whether a detection system can operate faithfully in 

(9)
gk(zi) = k(xs2i−1, x

s
2i)+ k(xt2i−1, x

t
2i)−

k(xs2i−1, x
t
2i)− k(xs2i, x

t
2i−1),

(10)∇θ l =
∂J (zli )

∂θ l
+ �

∂gk(z
l
i )

∂θ l
.

(11)
∂k(xsl2i−1, x

tl
2i)

∂wl
= −

∑m

u−1

2βu

γu
ku(x

sl
2i−1, x

tl
2i)×

(xsl2i−1 − xtl2i)× (x
s(l−1)
2i−1 − x

t(l−1)
2i )T,
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different weather conditions is essential for a safe autono-
mous driving system [30]. This paper mainly addressed 
the domain shift caused by the conversion between clear 
weather and hazy weather in the adverse weather adapta-
tion experiment. In the cross-camera adaptation experi-
ment, we examined the effects on alleviating the data bias 
caused by different resolution and contrast of color cam-
eras under similar weather conditions. The datasets used 
in our experiment are described in Section  3.1, and the 
experimental setup is described in Section 3.2.

3.1 � Datasets
Naturalistic driving dataset is very important for the 
development of autonomous driving technologies [31–
33]. Three naturalistic driving datasets were used to 
train and evaluate our proposed ML-ANet, including 
Cityscapes [34], Foggy Cityscapes [30], and KITTI [35]. 
Cityscapes dataset is an urban scene dataset for driving 
scenarios. Foggy Cityscapes dataset is a synthetic foggy 
dataset from Cityscapes for semantic foggy scene under-
standing analysis. KITTI dataset is constructed by images 
collected from real driving in mid-size cities. Though 
these three datasets cover various urban scenes, the 
images vary in style, resolution, and illumination between 
datasets. The main domain divergence between Foggy 
Cityscapes and Cityscapes is the synthetic fog effect in 
Foggy Cityscapes, and KITTI has obvious changes in 
image resolution, illumination, and urban scenes that are 
not the case in Cityscapes. Figure 3 illustrates the visual 
differences between Cityscapes, Foggy Cityscapes, and 
KITTI. In this paper, we used C to represent Cityscapes, 
F to represent Foggy Cityscapes, and K to represent 
KITTI. Therefore, the transfer from Cityscapes to Foggy 
Cityscapes can be denoted as C→F, and similar expres-
sions can be obtained for the other transfers patterns. 
In our experiments, we conducted four transfer tasks 
including C→F, F→C, C→K, and K→C.

3.2 � Experiment
The experimental training data consist of source train-
ing data with images and their category annotations, 
and target training data with only images. We extracted 
three classes (i.e., pedestrians, vehicles, and two-wheel-
ers) from the three datasets for experiments. Table 1 lists 
the number of sample images for each class in the three 
employed datasets.

Due to the insufficient number of images in the data-
sets for reliable training, we randomly used five image 
augmentation skills to expand the dataset including rota-
tion, shift, contrast, scaling and horizontal flipping [36, 
37]. The size of all images in the experiment was resized 
to 224 × 224 × 3 and we initialized the model with pre-
trained weights on ImageNet. Each batch included 32 
images from the source and target domains, respectively. 
We used an optimizer with a momentum of 0.9 and a 
weight decay of 0.001 in the experiment [38]. Table 2 lists 
the hyper-parameters used for the training of our ML-
ANet. All the experiments were processed on an Intel-
i5 9600KF (3.70 GHz) with NVIDIA GeForce RTX 2070 
GPU.

To validate the effectiveness of our proposed ML-ANet, 
ML-KNN [11] and five state-of-the-art transfer learning 
methods (i.e., TCA [21], JDA [22], BDA [23], DDC [24] 
and DAN [39]) were selected for comparison. All these 
comparison methods were selected because they have 
achieved promising MLIC performances with detailed 
recommended parameters in Refs. [11, 21–24, 28, 39]. 
In the experiment, we utilized the classification accuracy 
by following these papers [22, 23, 28, 39] to evaluate the 

Figure 3  Illustrated images for each dataset (top: KITTI, bottom-left: 
Cityscapes, bottom-right: Foggy Cityscapes)

Table 1  Number of images for each class in the three datasets

The last line indicates the number of images in each dataset

Classes Dataset

Cityscapes Foggy Cityscapes KITTI

Pedestrian 2343 2343 1779

Vehicle 2832 2832 1689

Two-wheeler 1646 1646 1141

Total 2966 2966 2486

Table 2  Hyper-parameters for the training of our ML-ANet

Parameter Value

Total epochs 200

Batch size 64

Initial learning rate 1×10−3

Activation function ReLU

Optimizer SGD
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effectiveness of our method to reduce the divergency 
between source and target domains. The results when 
using different methods are shown in the following 
section.

4 � Results and Discussion
4.1 � Adverse Weather Adaptation
Figure  4(a) and Figure  4(b) show the intuitive examples 
of ML-ANet for MLIC tasks in hazy and clear weather, 
respectively. The experimental results of domain shift 
between clear weather and hazy weather are presented 
in Table  3. The presented results show that our ML-
ANet achieves an average accuracy of 94.83% and 96.85% 
in transfer tasks of C→F and F→C, respectively, better 
than the compared transfer learning methods. The clas-
sification performance of each object class is also supe-
rior to the other compared methods. The results indicate 
that our proposed ML-ANet could effectively transfer 
knowledge from a clearly labeled domain to a similar but 

different domain with limited or no labels. The advantage 
of our ML-ANet is probably because it can effectively 
reduce the distribution discrepancy between the source 
and target domains caused by weather changes through 
the adaptation network.

To better quantify the performance of our proposed 
ML-ANet, the average accuracies of TCA, JDA, BDA, 
DDC, DAN, and our ML-ANet for transfer tasks C→F 
and F→C with respect to epoch numbers are respec-
tively shown in Figure 5(a) and Figure 5(b). Where C→F 
denotes the transfer task from Cityscapes to Foggy City-
scapes, and F→C denotes the transfer task from Foggy 
Cityscapes to Cityscapes. The illustrated results show 
that: a) TCA has the lowest accuracy because it only 
adapts to the marginal distribution and does not need 
iteration. b) The convergence speed and accuracy of ML-
ANet is substantially higher than DDC, indicating that 
single-kernel MMD cannot sufficiently align the prob-
ability distribution of the source and target domains. 
c) The overall change of the ML-ANet curve is higher 
than DAN, which demonstrates that ML-ANet has bet-
ter MLIC performance and can further reduce the diver-
gency between the source domain and the target domain. 
d) ML-ANet can achieve a promising accuracy with a low 
epoch number.

4.2 � Cross‑Camera Adaptation
The camera mechanisms and underlying settings can 
also lead to domain-shift, such as substantial differences 
in visual appearance and image quality. Therefore, cross-
camera adaptation is also an important and effective 
indicator for measuring the quality of transfer learning. 
Intuitive examples of ML-ANet for MLIC incross-camera 
adaptation can be found in Figure  4(b) and Figure  4(c). 
The quantitative experimental results of cross-camera 
adaptation are shown in Table  4. Specifically, the aver-
age MLIC accuracies of ML-ANet are 78.67% and 
70.10% in transfer tasks of C→K and K→C, respectively. 
The numbers are 2.2% and 1.03% higher than the best Figure 4  Examples of MLIC results when using ML-ANet (The 

underline indicates that the prediction is correct)

Table 3  Comparison of classification accuracies (%) on Cityscapes and Foggy Cityscapes datasets

Method C⟶F F⟶C

Pedestrian Vehicle 2-wheeler Avg. Pedestrian Vehicle 2-wheeler Avg.

ML-KNN [7] 84.2 95.8 60.6 80.21 89.5 97.6 73.2 86.75

TCA [16] 75.5 94.1 51.9 73.85 76.6 93.0 55.5 74.94

JDA [17] 76.7 93.9 58.3 76.29 77.1 93.4 59.7 76.74

BDA [18] 77.9 93.9 60.3 77.35 78.3 94.0 61.6 77.97

DDC [23] 87.7 97.7 76.6 87.33 87.6 98.1 77.6 87.77

DAN [31] 90.3 99.1 86.2 91.85 95.5 99.3 92.6 95.83

Ours (ML-ANet) 93.1 99.5 91.9 94.83 96.8 99.3 94.5 96.85
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comparison method DAN in the same two transfer tasks. 
The presented results indicate that ML-ANet is superior 
to the other comparison methods, showing more power-
ful adaptability.

Besides, the pedestrian and vehicle classification 
accuracies of ML-ANet in task K→C are substan-
tially lower than the numbers in task C→K, which 

is reasonable as the number of K samples is relatively 
smaller compared to C, especially the number of vehi-
cles. However, the classification performance of our 
ML-ANet on two-wheelers in K→C does not show a 
similar trend, and the classification accuracies of two-
wheelers are all lower than the accuracies of pedestri-
ans or vehicles in either C→K or K→C. That’s probably 
because two-wheelers are always with bikes or motor-
cycles which increase the noise in feature learning, and 
the adaptability of different transfer tasks is different. 
The classification accuracies of the examined methods 
with respect to the number of epochs in transfer tasks 
of C→K and K→C show similar trends to the illus-
trated results in Figure  5, indicating the superiority of 
ML-ANet in cross-camera adaptation. In summary, the 
results show that ML-ANet is effective for domain-shift 
caused by cross-cameras.

The loss weight parameter λ may also influence the 
performance of ML-ANet. Figure  6 shows the effect of 
parameter λ on ML-ANet and DDC performance in 
C→K and F→C tasks. The other three methods do not 
include parameter λ, thus only DDC and ML-ANet are 
compared in Figure  6. Where F→C and C→K denote 
the transfer from Foggy Cityscapes to Cityscapes and 
from Cityscapes to KITTI, respectively. The experimental 
results show that the classification accuracy of ML-ANet 
is obviously outperforming DDC for any λ in any of the 
tasks, supporting the advantage of our proposed ML-
ANet. The curves of ML-ANet are bell-shaped with ini-
tial rises and following decreases when λ increases. This 
trend is reasonable because the network focuses more on 
MK-MMD loss when λ initially increases, resulting in the 
transferability improvement and increasing accuracy of 
ML-ANet. However, when λ is too large, the training of 
the network ignores the classification loss, which causes 
the accuracy of the network to decrease. The illustrated 
results in Figure 6 show that the best performance of ML-
ANet is achieved when λ = 1.0 which is the best trade-off 
for transferability enhancement in ML-ANet.

Figure 5  a and b are the classification accuracy comparison of 
TCA, JDA, BDA, DDC and ML-ANet on transfer task C→F and F→C, 
respectively

Table 4  Comparison of classification accuracies (%) on Cityscapes and KITTI datasets

Method C⟶K K⟶C

Pedestrian Vehicle 2-wheeler Avg. Pedestrian Vehicle 2-wheeler Avg.

ML-KNN [7] 62.9 94.7 54.2 70.58 56.2 74.7 56.2 62.38

TCA [16] 59.5 89.6 50.7 66.61 69.5 71.8 43.4 61.57

JDA [17] 65.7 87.1 52.7 68.49 67.3 74.5 44.2 62.03

BDA [18] 71.3 92.0 48.6 70.61 70.0 74.3 45.6 63.27

DDC [23] 77.1 93.4 55.5 75.30 73.5 80.4 52.1 68.67

DAN [31] 77.4 93.6 58.4 76.47 74.4 81.2 51.6 69.07

Ours (ML-ANet) 81.7 94.9 59.4 78.67 75.2 83.8 51.3 70.10
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4.3 � Discussion on the Novelties of Our Proposed Method
Different from all the previous methods, the novel-
ties of our proposed method include: (1) The structure 
of our proposed network is different from the previous 
ones. Compared with other methods such as DAN, the 
combination of identity blocks (i.e., the Id_B module in 
Figure  2), convolutional blocks (i.e., the Conv_B mod-
ule in Figure  2), and MK-MMD is newly developed to 
help accelerate the convergence rate of the model and to 
improve the image classification accuracy and adaptation 
capability of the network. (2) MK-MMD is innovatively 
used to simultaneously align the data distribution of mul-
tiple labels to enhance the generalization of multi-label 
image classifiers for ADASs and AVs, which extends the 
previous work concerning MK-MMD from single-label 
image classification to multi-label image classification. 
The results presented above show that our method out-
performs the others, both qualitatively and quantitatively 
on the different urban cross-scenes, which demonstrates 
that ML-ANet has a better adaptive ability to effectively 
alleviate domain gap.

Other reasons why our method can utilize unlabeled 
auxiliary data to improve the generalization of the net-
work comes from: (1) the generated feature maps are 
mapped to RKHS, and (2) the distribution of data in the 
source and target domains are aligned during network 
training. Therefore, our well-trained model can effec-
tively perform MLIC in the source and target domains, 
which indicates that our ML-ANet has a strong gener-
alization capability for multi-label image classification in 
different urban scenes.

This paper mainly focuses on the moving objects 
including pedestrians, vehicles, and two-wheelers. The 
static objects like traffic sign and traffic light are usually 

much smaller than the mentioned moving objects in 
images [40, 41], therefore challenging the performance of 
the related methods in the literature. In our future stud-
ies, we will focus on developing innovative methods to 
classify the other objects in various scenarios for traffic 
safety improvement [42]. Meanwhile, the adaptive object 
detection and tracking in various weather and illumina-
tion scenarios based on the transferred knowledge from 
daytime dry weather scenarios will also be considered.

5 � Conclusions

(1)	 To obtain a robust multi-label classifier, a novel and 
effective method (ML-ANet) is proposed for cross-
domain MLIC. The proposed ML-ANet consists of 
two different sub-networks, ML-Net and A-Net, for 
multi-label learning and transfer learning, respec-
tively.

(2)	 In adverse weather adaptation, ML-ANet achieves 
an average accuracy of 94.83% and 96.85% in the 
transfer tasks of C→F and F→C, respectively. The 
accuracy of ML-ANet could even be better than the 
compared methods with a low epoch number.

(3)	 In cross-camera adaptation, the average accuracy 
of ML-ANet is 2.2% and 1.03% higher than the best 
comparison method in the C→K and K→C trans-
fer tasks, respectively, showing its better adaptabil-
ity.

(4)	 The sensitivity analysis of the loss weight param-
eter λ show that a good trade-off between the MK-
MMD loss and the multi-label classification loss 
can enhance the feature transferability, and the best 
performance of ML-ANet is achieved when λ = 1.0.

(5)	 The results from this study demonstrate that our 
ML-ANet can make ADASs and AVs adaptable 
to all-around-the-clock illuminations in various 
weather conditions, and promote the development 
efficiencies of ADASs and AVs.

(6)	 Our future work will focus on the MLIC of other 
objects and the adaptive object detection and track-
ing.
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