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Abstract 

Under the influence of crosswinds, the running safety of trains will decrease sharply, so it is necessary to optimize 
the suspension parameters of trains. This paper studies the dynamic performance of high-speed trains under cross-
wind conditions, and optimizes the running safety of train. A computational fluid dynamics simulation was used to 
determine the aerodynamic loads and moments experienced by a train. A series of dynamic models of a train, with 
different dynamic parameters were constructed, and analyzed, with safety metrics for these being determined. Finally, 
a surrogate model was built and an optimization algorithm was used upon this surrogate model, to find the mini-
mum possible values for: derailment coefficient, vertical wheel-rail contact force, wheel load reduction ratio, wheel 
lateral force and overturning coefficient. There were 9 design variables, all associated with the dynamic parameters of 
the bogie. When the train was running with the speed of 350 km/h, under a crosswind speed of 15 m/s, the bench-
mark dynamic model performed poorly. The derailment coefficient was 1.31. The vertical wheel-rail contact force was 
133.30 kN. The wheel load reduction rate was 0.643. The wheel lateral force was 85.67 kN, and the overturning coef-
ficient was 0.425. After optimization, under the same running conditions, the metrics of the train were 0.268, 100.44 
kN, 0.474, 34.36 kN, and 0.421, respectively. This paper show that by combining train aerodynamics, vehicle system 
dynamics and many-objective optimization theory, a train’s stability can be more comprehensively analyzed, with 
more safety metrics being considered.
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1  Introduction
The advantage of high-speed trains over conventional 
trains is their high speed [1]. Therefore, the existence and 
potential problem of crosswinds questions the advan-
tage of high-speed trains [2]. It is necessary to study the 
crosswind stability of high-speed trains. In fact, vehicle 
dynamics and optimization have always been the sub-
ject of scholars’ research. In terms of dynamics, Baker 
et  al. [3] added wind load to the train dynamic model, 
and studied the relationship between a train’s derailment 
coefficient, wheel load reduction coefficient and wind 
speed. Deng et al. [4] studied the dynamic performance 
of high-speed trains when passing through wind barriers, 

and focused on the effects of crosswind based on the two 
metrics of wheel load reduction and derailment coef-
ficient. Yan et  al. [5] used a spectral analysis method to 
study the overturning risk of high-speed trains subject to 
strong winds. Olmos et al. [6] used the derailment coef-
ficient and wheel load reduction ratio as metrics to study 
the safety of trains under the vehicle-bridge-wind cou-
pling model. Wei et al. [7] used an indirect test method to 
obtain the wheel-rail contact force of a high-speed train 
in a crosswind environment from an experimental point 
of view, and then analyzed the safety. Niu et al. [8] stud-
ied the influence of coupling regions on the aerodynamic 
performance of trains under different operating condi-
tions. Yu et  al. [9] studied the operational stability of 
high-speed trains under different wind models. They paid 
close attention to the differences in wheel load reduction 
of high-speed trains. In terms of optimization, Li et  al. 
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[10] optimized the active suspension system of electric 
vehicles with the three objectives of reducing the verti-
cal component of the unbalanced electrode, eliminating 
the negative impact of electromechanical coupling on 
the vehicle system, and retaining the dynamic advantages 
of the vehicle’s active suspension. Fossati et al. [11] used 
driver’s seat vertical acceleration, root mean square of 
the wheels’ dynamic amplification factor, and maximum 
relative displacement between each wheel and car body 
as metrics to optimize the passive suspension vehicle’s 
parameters and obtained good results. By optimizing the 
shape of aircraft or trains to reduce the negative impact 
of aerodynamic loads on them, great progress has been 
made [12–17]. One of the most important methods is the 
surrogate model method.

Considering the content introduced above, we have 
an initial impression of research progress, as shown in 
Figure 1. In the past, scholars’ research work about train 
stability can be divided into two categories. One is to com-
bine train aerodynamics and vehicle system dynamics to 
study the impact of wind on vehicle safety. Another is the 
combination of vehicle system dynamics and optimization 
theory to optimize vehicle’s safety by adjusting suspen-
sion parameters. Both types of research have made good 
progress and guided later scholars’ work, but some areas 
are still worth studying. Firstly, the deterioration of train’s 
safety mainly occurs in some extreme situations, such as 
in a crosswind environment. The primary purpose of our 
study is to improve the safety of trains running in these 
situations. Therefore, it is necessary to combine train 
aerodynamics, vehicle system dynamics and optimization 
theory. Secondly, when previous scholars researched the 
dynamic performance of trains, especially with regards 
to safety, two or three metrics were usually selected, 
such as derailment coefficient and wheel load reduction 
ratio, or derailment coefficient and overturning coeffi-
cient. But in the industry standard, the number of safety 
metrics is more than two. Code GB5599-85 [18] is one of 
the national standards of the People’s Republic of China, 

which specifies the dynamic performance evaluation met-
ric of railway vehicles. There are at least five safety metrics 
specified in code GB 5599-85, which are derailment coef-
ficient, vertical wheel-rail contact force, wheel lateral force, 
wheel load reduction rate, and overturning coefficient. 
If suspension parameters are optimized for only some of 
these metrics, the final optimization results may not be 
satisfactory. When the train is running, some metrics may 
be improved due to optimization, but other metrics may 
deteriorate due to the changes in suspension parameters. 
Therefore, the work of this paper is to combine the three 
areas mentioned above.

This paper is divided into five parts. The first part is an 
introduction, which mainly introduces the research pro-
gress of vehicle dynamics and optimization. The second 
part is the methodology, which mainly introduces the 
theories employed in this research. The third part is the 
model introduction and related verification. The fourth 
part is the research process and result analysis. The fifth 
part is the conclusions.

2 � Methodology
2.1 � Surrogate Model Method
The main idea of the surrogate model method is to fit a 
series of isolated sample points into a function, based on 
mapping relationships, as shown in Figure 2.

Consider a function with only a 1-dimensional design 
variable and a 1-dimensional objective output. The points 
in Figure  2 represent sample points, and we know the 
input and output values of the sample points. If there are 
only three sampling points, we can also fit a curve with 
a functional relationship. This is our surrogate model. 
However, the surrogate model currently is very rough. 
Its mapping accuracy is very poor, because there are too 
few sample points. With the number of sample points 
increasing, our surrogate model will become more accu-
rate until it can accurately express the real characteristics 
of input and output. It is obvious from Figure 2 that the 
minimum value of the function is in the red circle. Some-
times we don’t need the surrogate model to be sufficiently 
accurate globally, because meeting global accuracy often 
requires a large number of sample points. We can build 
a rough surrogate model with widely distributed sample 
points and find the interval where the minimum point 
may exist, as shown by the red circle. Then continuously 

Figure 1  Research ideas of this paper Figure 2  Principle of surrogate model method
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increasing the number of sample points for this interval, 
we construct the surrogate model, until the surrogate 
model is sufficiently accurate for this small interval. What 
has been described above is a case with one-dimensional 
input and one-dimensional output. The dimensions of 
the design variables and output can be generalized to m 
and n , and the principle remains the same.

It has been shown that neural networks have good 
data-fitting ability [19]. This means that even a two-layer 
neural network can fit almost any function as long as the 
parameters are appropriate. Therefore, this paper uses a 
BP neural network to build the surrogate model. A BP 
neural network uses the error back propagation method. 
It approximates real functions by continuously adjusting 
weights and offset values [20].

Suppose the input is X = [x1, x2, · · · , xn] . Then, the 
output of a neuron can be expressed as y:

where wi is the weight vector, σ is activation function and 
b is offset.

Suppose the final output of the entire neural network is 
ol, and the real output of the system is yl. Assume that the 
cost function is the mean square error function:

Finally, the weights and offsets are updated until the 
gradient is small enough and the value of the cost func-
tion no longer decreases:

where Wk and bk are the weights and offsets of the kth 
layer neural network, respectively.

Under normal circumstances, the structure of a neural 
network is as shown in Figure 3.

Then the output of the neurons in each layer of the 
neural network can be expressed as:

where σh1 , σhk and σo are the activation functions of each 
layer. o is the output of the neural network. hk is a hidden 
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layer vector. hk =
(

hk ,1,hk ,2, · · · ,hk ,n
)T . n is the number 

of neurons in the hidden layer.

2.2 � Many‑Objective Optimization
Consider a maximization problem with two decision vec-
tors a, b ∈ X . Then, a is said to dominate b (also written as 
a≻b) if: ∀i ∈ {1, 2, · · · , n} : fi(a) ≥ fi(b) ∧ ∃i{1, 2, · · · , n} :

Additionally, in this study a is said to cover b if a≻b or 
f(a)=f(b). The decision vectors that are non-dominated 
within the entire search space are denoted as pareto-opti-
mal and are called the pareto-optimal front [21].

When the number of objectives is 2 ≤ n ≤ 3, the opti-
mization is called multi-objective optimization, and 
when n > 3, it is called many-objective optimization. Deb 
et  al. [22, 23] proposed the NSGA-III algorithm based 
on NSGA-II, which can be used to solve many-objective 
problems (n ≥ 3). Traditional algorithms, such as par-
ticle swarm multi-objective algorithms and NSGA-II 
algorithms often fail, when the number of optimization 
objectives exceeds 3. This problem forces us to use a bet-
ter performing algorithm. Most of the operations of the 
NSGA-III algorithm are the same as NSGA-II, except 
that the necessary improvements are made to retained 
childhood. Assuming the number of the objectives is n 
and the population to be processed is St. The highest rank 
of elite level in St is Fl (the last level). Childhood is s. The 
objectives value of s is fi (s), 1 ≤ i ≤ n.

First, we need to compute the ideal point.

(6)fi(a) > fi(b).

Figure 3  Structure of the neural network
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Second, transform objectives.

Third, calculate the extreme values of St.
Fourth, normalize objectives (fn) by

Fifth, specify or evenly arrange reference points Zr.
Sixth, for each reference point z ∈ Zr , we compute 

reference line w = z . Also, we calculate the distance 
between s and w by

Seventh, assign π(s) = w : arg minw∈Zr d and 
d(s) = d(s,π(s)) respectively.

Finally, select the remaining new individuals from Fl 
according to the distance and distribution.

3 � Model Introduction and Related Verification
3.1 � CFD Model
The 1:8 scale train model is used as the research object, 
as is common in the field of train aerodynamics research. 
The model is divided into a head car, a middle car and a 
tail car, as shown in Figure 4.

The characteristic height of the train h = 0.52 m, the 
length of the head and tail cars l1 = 3.45 m, and the length 
of the middle car l2 = 3.125 m. The cross-section area of 
train is 0.1687 m2.

Li et al. [24] used this model as to study the influence of 
inter-car gap length on aerodynamics, based on experi-
ments in a windless environment. If you want to simulate 
a crosswind environment, you must make correspond-
ing improvements to the calculation domain. Code TB/T 
3503.4 [25] is one of the railway industry standards of the 
People’s Republic of China. It is a standard for numeri-
cal simulation of train aerodynamics. When a train is 
running in windless environments, it stipulates that the 
ratio of the cross-sectional area of the train to the cross-
sectional area of the calculated domain should be less 
than 0.01. The calculation domain height L should not be 
less than 8 times the characteristic height h, the length 
of upstream LF should be not less than 8 times the char-
acteristic height h, and the length of the downstream 
LB should be not less than 16 times the characteristic 
height h. When the train is running in windy conditions, 
the requirements for the size of the domain are similar 
to those in windless environments, but two additional 
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conditions are added. The length of the upstream WU 
should not be less than 8 times the characteristic height 
h, and the length of the downstream WD should not be 
less than 16 times the characteristic height h. Therefore, 
to obtain the accurate aerodynamic load of the model 
under crosswind conditions, the calculation domain 
must meet both the windless requirements and the cross-
wind requirements. If the simulation results are not sig-
nificantly different from the experimental results under 
windless conditions, we must continue to study the aero-
dynamic performance of the train under crosswind con-
dition. In this paper the relative position of the train in 
the calculation domain is shown in the Figure 4(c).

The LF, LB, WU, WD and L meet the requirements of 
windless and crosswind conditions. In addition, in order 
to ensure the accuracy of aerodynamic calculations, three 
refine zones are set around the train, as shown by the 
dotted lines.

3.2 � Related Settings of Aerodynamic Simulation
Aerodynamic simulations, presented here are based on 
the commercial software Fluent. The simulation mode 
is steady-state. Li et  al. [26] studied the aerodynamic 
behavior of a train under crosswinds based on the SST 
k-ω turbulence model. Comparing 6 different turbu-
lence models, the SST k-ω model is most suitable for the 
numerical simulation, and so, is used here. The solver is 
pressure-based. When the operating condition is wind-
less, the speed of the velocity inlet v (x, y, z) = (60, 0, 0) 
m/s, because the wind speed in the wind tunnel test was 
60 m/s. In this case, DAEH is the velocity inlet and BCGF 
is the pressure outlet. EABF, ABCD, HDCG and HEFG 

(a) Full vehicle model

(b) Head car model

(c) The relative position of the train in the calculation domain
Figure 4  Train geometry model
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are the wall. HDCG is a sliding wall surface with a slid-
ing speed of 60 m/s. When the train is running under the 
crosswind, the speed of the velocity inlet v(x, y, z) = (97.2, 
15, 0) m/s, so that it can simulate the train running at 350 
km/h while encountering a crosswind with a speed of 15 
m/s. The boundary conditions are shown in Figure 4(c). 
HDCG is sliding wall surface with a sliding speed of 97.2 
m/s. The number of boundary layers is 12 layers, y+ = 1. 
The height of the first boundary layer is 1 × 10−5 m. 
ρ = 1.225 kg/m3. The train grid and the boundary layer 
grid are shown in Figure 5.

3.3 � Aerodynamic Model Verification
This paper not only has experimental data verification, 
but also does grid independence testing to eliminate 
the difference in results caused by the number of grids. 
The study by Li et al. [24] provided experimental data of 
the model’s aerodynamic load when the train is running 

under windless conditions. Aerodynamic coefficients 
are solved using definition 11 and definition 12.

where Fd is drag force, and Fl is lift force of the train. 
v=60 m/s, A =0.1687 m2 and ρ=1.225 kg/m3.

A total of four sets of grids were used. As shown 
in the Table  1, EXP represents experimental values. 
Among them, the mesh amount of the mesh2 exceeds 
30 million, and the simulation results are not signifi-
cantly different from the mesh3, mesh4, and experi-
mental results. The larger the number of grids, the 

(11)Cd =
Fd

1
2ρAv

2
,

(12)Cl =
Fl

1
2ρAv

2
,

(a) Train grid

(b) View 1: boundary of nose        (c) View 2: boundary of brake disc         (d) View 3: boundary of inter-car gap
Figure 5  Train grid and the boundary layer grid

Table 1  Grid independence test

Item Number of grids Cd (head) Cl (head) Cd (mid) Cl (mid) Cd (tail) Cl (tail)

EXP ‒ 0.177 −0.062 0.072 0 0.196 0.192

mesh1 26.0 mil. 0.189 −0.041 0.086 −0.007 0.209 0.235

mesh2 31.4 mil. 0.183 −0.039 0.090 −0.004 0.205 0.222

mesh3 48.1 mil. 0.182 −0.036 0.093 −0.003 0.212 0.220

mesh4 58.9 mil. 0.183 −0.034 0.088 −0.007 0.203 0.222
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greater computational cost. Based on the above consid-
erations, mesh2 is selected for further research.

3.4 � Vehicle Dynamic Model
The dynamic model is a single vehicle model, and both 
bogies are trailer bogies, as shown in Figure  6. The 
Dynamic model has a primary-suspension system and a 
secondary-suspension system. The mechanical param-
eters of some components have nonlinear characteristics. 
The letters in the Figure  6 represent the main compo-
nents of train, as shown in Table 2.

The nonlinear characteristics of some components are 
shown in Figure 7. This paper selects the stiffness of steel 
spring of the primary-suspension in x, y, and z directions, 
the stiffness of the axle box arm positioning node in the x, 
y, z directions, the stiffness of the anti-rolling torsion bar, 
the damping of the shock absorber of the primary-sus-
pension, and the damping of the yaw damper as design 
variables. There are nine variables. The damping force of 
yaw damper is velocity-dependent, as shown in the Fig-
ure 7(c). It has different damping values at different speed 
grades. It is inappropriate to artificially choose fixed 
damping values for the yaw damper. But we can specify 
the coefficient α to change the slope of the damping force 
function. The new damping force function can be set as 
αc3. Parameters of the benchmark model and the range of 
each design variable are shown in Table 3. We use Latin 
hypercube sampling technology to construct 200 initial 
samples in the design space. These dynamic model sam-
ples have different suspension parameters.

3.5 � Related Settings of Vehicle Dynamics Simulation
Vehicle dynamic simulations, presented in this paper are 
based on the commercial software Simpack. JingJin track 
spectrum is used as the track spectrum. The wheel tread 
type is LM tread. The wheel-rail contact force can be 

calculated by the simplified theory of Kalker (FASTSIM) 
[27]. The vehicle speed is 350 km/h. The train is run for 20 
s. The number of sampling points is 5100. The wind load 
on the train consists of two parts: aerodynamic forces and 
aerodynamic moments. Lift and side forces are regarded 
as concentrated forces acting on the center of the car 
body. The roll moment, pitch moment and yaw moment 
obtained by CFD simulation are the moments of the aer-
odynamic force on the center of the car body. Therefore, 
in the vehicle dynamics model, they also act on the center 
of the car body. The wind load is applied to the centre of 
the car body from 0 s, and reaches full load after 2 s after 
which the wind load remains unchanged. When the simu-
lation is completed, the wheel-rail vertical force and wheel-
rail lateral force of each wheel are extracted.

3.6 � Vehicle Dynamic Model Verification
The topological structure of all dynamic model sam-
ples is the same as that of the benchmark train. We ver-
ify whether this structure can respond correctly when 
excited. The train is only subjected to two types of loads, 

Figure 6  Vehicle dynamic model

Table 2  Symbolic description of the vehicle dynamic model

Item Symbol

Mass of car body M

Shock absorber of primary-suspension c1

Axle box arm positioning node k0

Steel spring of primary-suspension k1

Air spring k2

Shock absorber of secondary-suspension c2

Spring of yaw damper k3

Yaw damper c3

Anti-rolling torsion bar k4

Traction rod k5

Lateral stop k6
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namely constant aerodynamic load and fluctuating track 
excitation. These two loads have been verified separately.

3.6.1 � Aerodynamic Response Verification
For a moving train, side force has a very large impact 
on safety. Therefore, we use side force to verify whether 

the model behaves normally when encountering a con-
stant load. When the train is running on a straight 
track (without the excitation effect of the track spec-
trum), the lateral resultant force of rail acting on the 
wheelset should be equal to the value of the side force 
of the train, but in the opposite direction. The time 

(a) Lateral damping force of 2                   (b) Vertical damping force of 2

(c) Longitudinal damping force of 3 (d) Longitudinal elastic force of k5

(e) Lateral elastic force of k6

Figure 7  Damping force function and Elastic force function
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history curve of the side force and the resultant force 
of rail acting on the wheelset are shown in Figure 8. The 
results show that when the train runs stably, the result-
ant force on the wheelsets is 10 kN. This shows that the 
response of the model is normal.

3.6.2 � Rail Excitation Verification
In this section, we only consider the influence of track 
excitation on the dynamic behavior of the train, that 
is, with the train running without crosswinds. In the 
research process, the track spectrum we used is the 
JingJin spectrum. It is measured on the railway line. 
In order to check whether the wheelset response is 
normal, we replaced the JingJin spectrum with a sine 
function spectrum. The waveform of the track in the z 
direction is determined by Eq. (13):

where z is the unevenness of the track. A=0.5 mm. x is 
the longitudinal distance of the track. λ is the wavelength, 
λ=97.2 m.

When the train is excited by the track, the wheelsets 
will be forced to vibrate. If the model is accurate, the 
vibration frequency of the wheelset should be equal to 

(13)z = A sin

(

2πx

�

)

,

the excitation frequency, when the state of motion is 
stable. The excitation frequency is as follows:

where v is the train speed, v=97.2 m/s.
The verification result of the vertical displacement of 

each wheelset is shown in Figure 9.
Figure  9 shows that in the time interval of 10‒20 s, 

the vertical displacement curve of each wheelset con-
tains 10 cycles. The vibration frequency is 1 Hz. The 
response of the wheelset is correct. In summary, the 
model can respond correctly to both constant aerody-
namic loads and fluctuating track excitations.

(14)f =
ω

2π
=

2πv

2π�
= 1 Hz,

Table 3  The main parameters of the benchmark model and the 
range of each design variable

Item Orientation Parameters of 
benchmark 
model

Min Max

M (kg) ‒ 40750 ‒ ‒
c1 (kN/ms−1) z 10 5 20

c2 y Figure 6(a) ‒ ‒
c2 z Figure 6(b) ‒ ‒
c3 x Figure 6(c) α=1 α=0.5 α=2

k0 (N/m) x 4.6×107 2.0×107 6.0×107

k0 (N/m) y 1.38×107 3.8×107 2.38×107

k0 (N/m) z 4.6×107 2.0×107 6.0×107

k1 (N/m) x 9.198×105 6.0×105 1.3×106

k1 (N/m) y 9.198×105 6.0×105 1.3×106

k1 (N/m) z 9.475×105 6.0×105 1.3×106

k2 (N/m) x 1.5×105 ‒ ‒
k2 (N/m) y 1.5×105 ‒ ‒
k2 (N/m) z 2.0×105 ‒ ‒
k3 (N/m) x 3.5×107 ‒ ‒
k4 (N/rad) x 4.15×106 2.0×106 6.0×106

k5 x Figure 6(d) ‒ ‒
k6 y Figure 6(e) ‒ ‒

(a) Side force

(b) The resultant force of wheelsets
Figure 8  Aerodynamic load verification
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4 � Optimization Process and Results Analysis
4.1 � Aerodynamic Performance of High‑Speed Train 

under Crosswind
The pressure distribution of the train is shown in Fig-
ure  10. More detail about the pressure distribution of 
head car and tail car as shown in Figure 11. The stream-
line distribution of the cross-section in each car as 
shown in Figure  12. The cross-sections were located 
in center point of each car. Figure 13 shows the vortex 
structure around the train in the form of vorticity.

It can be seen from Figure 10 and Figure 11 that there 
is a large positive pressure zone on the windward side of 
the train. This is caused by the force of the crosswind. For 
the head car and the tail car, the streamlined area is most 
susceptible to crosswinds. On the windward side, there 
is a large area of positive pressure in the nose tip of the 
head car. On the leeward side, almost the entire stream-
lined area of the head car is a negative pressure area. And 
the value of negative pressure is very large. The huge dif-
ference in pressure between the two sides causes the head 
car to experience huge side forces. In the tail car, the situ-
ation was exactly the opposite. The area and value of neg-
ative pressure on the windward side of the streamlined 
area of the tail car are larger than those on the leeward 
side. This results in the streamlined area of the trailing 
car being mainly subjected to the pull by the crosswinds 
rather than a thrust. Figure 12 shows the streamline dis-
tribution of each cross-section. On the leeward side of 
the head car, the airflow has begun to form two vortexes. 
The cross section of the middle car shows that the vortex 
generated by the head car has become very large. As the 
vortex continues to develop, it will gradually move away 
from the tail car. Figure  13 shows the vortex structure 
in the form of vorticity. Steady-state simulation can get 
the main vortex structure around the train. We noticed 
that the area of the bogie, the leeward side of the head 
car and the streamline shape area of the tail car are the 
main areas where the vortex structure is generated. The 
head car produced two main vortex structures. The vor-
tex structure located below the head car is relatively 
unstable, while another has been developing steadily 

(a) Wheelset 1

(b) Wheelset 2

(c) Wheelset 3

(d) Wheelset 4
Figure 9  Vertical displacement of wheelsets

Figure 10  Pressure distribution of the train (Pa)
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along the train, and finally formed into the large vortex 
structure shown in Figure  12. Vortices may adversely 
affect the infrastructure around the railway, but these are 
not within the scope of this paper. This paper pays more 
attention to the aerodynamic loads on the train. When 
the train is running with the speed of 350 km/h, under 
the crosswind speed of 15 m/s, the drag force, side force, 
lift force and roll moment, pitching moment, and yaw 
moment of the scaled train are obtained. It is obviously 
inappropriate to apply the aerodynamic load of the scaled 

model directly to the full-scale dynamic model. In this 
paper, the Reynolds number is 3×106, and yaw angle is 
8.7°. Although the Reynolds number of the scale model 
and the full-size model are different, the previous work 
has found that there are few effects of such Reynolds 
number on the aerodynamic coefficients of trains under 
different yaw angles between 0° and 30° [28, 29]. Based 
on the same coefficients of the two models, the aero-
dynamic load of the scaled model is converted into the 
aerodynamic load of the full-scale model, as shown in 

Figure 11  Pressure distribution of the head car and tail car (Pa)

Figure 12  Streamlined distribution of each cross-section
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Table 4 and Table 5. However, in the field of train system 
dynamics, drag force is usually not considered. Among 
the remaining five types of aerodynamic loads, the values 
of the side force, roll moment, pitching moment and yaw 
moment of the head car are the largest. Although the lift 
force of head car is not the largest in the train, it is not 
small. Therefore, safety of the head car is probably the 
worst in the whole train. It is necessary to optimize the 
dynamics parameters of the head car to ensure that the 
high-speed train runs safely under crosswind.

4.2 � Safety Evaluation Metrics
We have 200 dynamic models with different suspension 
parameters. The aerodynamic loads shown in the Table 4 
are applied to those dynamic models. The wheel-rail lat-
eral and vertical forces of the train can be obtained through 
simulation, and the safety metrics can be calculated. Before 
research, it is necessary to describe the composition of the 
safety metrics. The safety metrics used in this study are 
determined according to GB/T 5599 and EN 14067-6 [18, 
30].

(1)	Derailment coefficient Q/P

where Q and P are the wheel-rail lateral and vertical 
forces, respectively. α is rim angle and μ is wheel-rail fric-
tion coefficient.

(2)	Wheel-rail lateral force L

where P0 is the static axle load.

(3)	Vertical wheel-rail contact force Plim

(4)	Wheel load reduction rate �P/P

where ∆P is the wheel load reduction; PR, PL are the verti-
cal forces on the left and right wheels, and Pst is the verti-
cal static load of the wheel-rail.

(5)	overturning coefficient ∆P/Pst

(15)
Q

P
=

tan α − µ

1+ µ tan α
≤ 0.8,

(16)H ≤ 15+
P0

3
≤ 55.5 kN,

(17)Plim < 160 kN.

(18)
�P

P
=

|PR − PL|/2

Pst
≤ 0.8,

Figure 13  Vortex structure around train

Table 4  Aerodynamic force of full-size train

Item Drag force (N) Lift force (N) Side force (N)

Head 9608 25411 50744

Mid 6922 36633 12569

Tail 12803 29209 −9947

Table 5  Aerodynamic moments of full-size train

Item Rolling moment 
(N⋅m)

Pitching 
moment (N⋅m)

Yaw moment (N⋅m)

Head 12256 −158271 −376525

Mid −566 46429 −6946

Tail −817 −98693 −217833
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where Pi1 represents the wheel-rail vertical force of the 
front wheel on the load reduction side of the bogie, and 
Pj1 represents the wheel-rail vertical force of the rear 
wheel on the load reduction side of the bogie.

All metrics can be calculated from wheel-rail forces. 
Metric values change over time. We find the maximum 
value of each metrics and record it as the final safety value. 
Applying wind load to the benchmark model can obtain 
the safety metrics, as shown in the Table 6. We can see that 
the derailment coefficient and wheel-rail lateral force have 
exceeded the standard.

4.3 � Structure of the Surrogate Model
We take the design variables of each dynamic model as 
input data, the safety metrics of the corresponding mod-
els as output data, and use neural networks to analyze this 
input and output. The neural network is our surrogate 
model. Before setting up a surrogate model, we must per-
form some processing on the data. There are nine design 
variables, whose range of values vary greatly. If we input 
them directly into the neural network, the mapping accu-
racy of the neural network may be poor. Therefore, it is 
necessary to normalize the input variables so that their val-
ues are between 0 and 1.

where xnew is the design variable after conversion, xi is the 
design variable before conversion, ximin is the minimum 
value of the xi, and ximax is the maximum value of xi.

Similarly, there are five metrics of safety, three of which 
are coefficients and the other two are forces. There is a 
huge difference between them. In order to avoid the loss of 
mapping accuracy of the neural network, we need to deal 
with it in advance. The difficulty was that, due to the uncer-
tainty, we did not know the precise range of the five metrics 
before running the simulation. Usually the ranges of over-
turning coefficient, wheel load reduction ratio and derail-
ment coefficient are between 0‒1. However, the derailment 
coefficient is special. It is the ratio of lateral force to verti-
cal force. During the simulation, if the value of the lateral 
force is extremely large and the value of the vertical force 
is extremely small at the same instant, the maximum value 
of the derailment coefficient will be very large. In this case, 
the maximum value of the derailment coefficient of some 

(19)
�P

Pst
= 1−

Pi1 − Pj1

Pst
≤ 0.9,

(20)xnew =
xi − ximin

ximax − ximin
,

samples is less than 1, and the maximum value of the 
derailment coefficient of other samples is much larger than 
1. This situation is very unfavorable for the neural network 
to build a surrogate model. Usually, we don’t really care 
about the specific value of the particularly large derailment 
coefficient. But, one of the objectives of our optimization 
is to make the derailment coefficient as small as possible. 
Therefore, after the dynamic simulation of a certain sam-
ple, if the maximum value of the derailment coefficient 
is greater than 1.5, we artificially set to be equal to 1.5 to 
avoid excessive differences between samples. The other two 
metrics that need to be dealt with are the vertical wheel-rail 
contact force and wheel-rail lateral force. Their values are 
much larger than 1. Because of large differences in magni-
tude between these two metrics and other metrics, it may 
be difficult for the surrogate model to establish a correct 
mapping relationship. However, the range of wheel-rail 
vertical force is typically within 0‒200 kN, and the range of 
wheel-rail lateral force is typically within 0‒150 kN. Thus 
we can use Eq. (20) to crudely normalize these two metrics.

The structure of the surrogate model is shown in Fig-
ure  14. It is a neural network with three hidden layers. 
The number of neurons in each hidden layer is different. 
Increasing the number of hidden layers and neurons will 
enhance the ability of the neural network to map non-
linearly, but too many neurons and hidden layers will eas-
ily cause the surrogate model to overfit the data, which is 
not good for optimization. The nonlinear activation func-
tions tanh, softplus and sigmoid are used to enhance the 
nonlinear fitting ability of the neural network. The opti-
mizer is RMSprop, lr = 0.01, rho = 0.9.

4.4 � Process of Optimization
The specific optimization process is shown in Figure 15. 
Minimizing the values of 5 objectives is the ultimate goal 
of optimization.

As mentioned above, we already have two hundred 
sets of data. They comprise the design variables and cor-
responding safety metrics of each model. They are used 
as the input and output of the neural network to build a 
primary surrogate model. Of course, the mapping accu-
racy of the first attempt at a surrogate model is not suf-
ficient. But NSGA-III algorithms can still find a series of 
non-dominated solutions based on this rough surrogate 
model. The population number of the NSGA-III algo-
rithm is set to 300, and the evolutionary generation num-
ber is set to 300. In each cycle, we always can get a series 
of non-dominated solutions. Partial solutions in this non-
dominated solution set are randomly selected. Design 
variables corresponding to these solutions are found 
and inputted into the dynamic model. Through dynamic 
simulation, the values of the safety metrics of each model 
can be obtained and compared with the predicted values 

Table 6  Safety metrics of benchmark model

Q/P Plim (kN) �P/P H (kN) ∆P/Pst

1.31 133.30 0.643 85.67 0.425
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obtained by the surrogate model. If the accuracy meets 
the requirements, it is determined that the optimization 
has been successful. The non-dominated solution set is 
the pareto-optimal front we need. Next, we can find the 
most suitable solution in the solution set according to 

preference. If the accuracy does not meet the require-
ments, the samples that have been simulated will be 
treated as new sample points and will be used in the 
expanded sample set together with the original samples 
in the next stage of neural network training. The accuracy 
of the surrogate model improves as the number of cycles 
increases. In terms of model structure, the greater the 
number of design variables and/or objectives, the more 
difficult it is to build a surrogate model. The train often 
experiences random excitations, caused by the effect of 
the track spectrum, which also makes it very difficult to 
build a very accurate surrogate model. Therefore, it is 
necessary to make some trade-offs between model accu-
racy and calculation cost. In each cycle, 20 solutions 
are randomly selected from the optimized pareto solu-
tion set. If these solutions satisfy Eq. (21), the accuracy 
requirements are met:

where oi represents the ith predicted value of the solution 
by the surrogate model, and yi represents the ith simula-
tion value obtained by the same solution put through the 
dynamic model.

In summary, 
∑5

i=1

∣

∣oi − yi
∣

∣/yi represents the sum of 
the absolute values of the relative errors between the pre-
dicted values and the simulation values of each solution. 
(1/20)

∑20
j=1 (•) is to average the 20 individuals. Even so, 

we have paid a very high price. The initial 200 samples 
were far from enough, and a total of 670 samples were 
used throughout the study.

4.5 � Optimization Result Analysis
A total of 210 pareto solutions were obtained. If the 
number of objectives is 2 or 3, a 2D plane coordinate 
system or a 3D space coordinate system could be used 
to represent the pareto solution. When the number of 
objectives is greater than 3, it is difficult to visualize 
the result by the traditional method. Parallel coordi-
nates are introduced here to represent the pareto solu-
tion set, as shown in Figure 16. Before the pareto front 
is presented, it is necessary to perform numerical pro-
cessing on each metric so that the five metrics having 
very different values can be represented on one graph, 
as shown in following equation.

(21)
1

20

20
∑

j=1

5
∑

i=1

∣

∣oi − yi
∣

∣

yi
× 100% ≤ 35%,

(22)
(

Q

P

)

inew

=

(

Q

P

)

i

/0.8,

(23)Hinew =
Hi

55.5
,

Figure 14  Structure of surrogate model

Figure 15  Process of optimization
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where i=1, 2, ..., 210, i is the serial number of the pareto 
solution 

(

Q
P

)

inew
 , Hinew , Pliminew

 , 
(

�P
P

)

inew
,
(

�P
Pst

)

inew
 are 

the derailment coefficient, wheel lateral force, wheel-rail 
vertical force, and wheel load reduction rate after conver-
sion 

(

Q
P

)

i
 , Hi , Plimi

 , 
(

�P
P

)

i
,
(

�P
Pst

)

i
 are the derailment coef-

ficient, wheel lateral force, wheel-rail vertical force, and 
wheel load reduction rate before conversion.

The purple line in Figure  16 represents the pareto-
optimal front. All solutions are combined into a five-
dimensional curved surface. The values of the safety 
metrics of the benchmark model are also shown on 
the graph. The pareto front is evenly distributed across 
the entire curved surface, indicating that pareto solu-
tions are well distributed, proving the reliability of 
the algorithm. The result shows that four metrics are 
greatly improved compared to the benchmark model in 
derailment coefficient, vertical wheel-rail contact force, 
wheel-rail lateral force, and wheel load reduction rate. 
The improvement in overturning coefficient is not obvi-
ous. This shows that different objectives have different 
sensitivities to design variables. By changing the stiff-
ness of the steel spring of the primary-suspension, the 
damping of the shock absorber of primary-suspension, 

(24)Plim
inew

=
Plimi

160
,

(25)
(

�P

P

)

inew

=

(

�P

P

)

i

/0.8,

(26)
(

�P

Pst

)

inew

=

(

�P

Pst

)

i

/0.9,

the damping of the yaw damper, the stiffness of the 
anti-rolling torsion bar and the stiffness of the axle box 
arm positioning node, we can effectively reduce the 
derailment coefficient, vertical wheel-rail contact force, 
wheel-rail lateral force, and wheel load reduction rate 
of the train. However, it may not be effective to reduce 
the overturning coefficient only by changing the design 
variables mentioned above. If it is wished to further 
reduce the overturning coefficient, other methods may 
need to be considered. Because the overturning coef-
ficient is quite unusual, it seems to have little correla-
tion with the suspension parameters of the bogie. If we 
do not want an object to overturn, the most effective 
measures are to reduce the intensity of the crosswind 
or increase the mass of the object. By changing the 
shape of the car body, the effect of crosswind on trains 
can be reduced, thereby the overturning moment can 
be greatly reduced, which in turn reduces the overturn-
ing coefficient. We select a set of design variables from 
the pareto solution set, as shown in Table 7. The design 
variables are used as the input of the dynamic model to 
obtain the simulation values of the safety metrics. Pre-
dicted values by surrogate model and simulation values 
by dynamic model are shown in Table 8.

In Table 8, the difference between the predicted values 
and the simulation values is relatively small. Among the 
simulation values, the five metrics are all better than the 
benchmark model. The errors’ absolute values of derail-
ment coefficient, vertical wheel-rail contact force, wheel 
load reduction rate, wheel-rail lateral force and over-
turning coefficient are 1.1%, 2.1%, 4.6%, 15.3% and 3.6% 
respectively. The total error of the 5 objectives is 26.7%. 
Of course, the improvement of the overturning coef-
ficient is not obvious. The remaining four metrics are 
greatly improved, compared to the benchmark model. In 
particular, the derailment coefficient and the wheel-rail 
lateral force are no longer in excess of the safety stand-
ards, and they are far from the warning line. Table  8 

Figure 16  Pareto-optimal front

Table 7  Design variable

Item Orientation Design variable

c1 (kN/ms−1) z 7.39

c3 x α = 0.581

k0 (N/m) x 2.0 × 107

k0 (N/m) y 2.243 × 107

k0 (N/m) z 4.908 × 107

k1 (N/m) x 1.234 × 106

k1 (N/m) y 6.547 × 105

k1 (N/m) z 6.0 × 105

k4 (N/rad) x 2.544 × 106



Page 15 of 17Zhang et al. Chin. J. Mech. Eng.           (2021) 34:86 	

proves that our idea is feasible. When the train is run-
ning in a crosswind environment, safety will be greatly 
reduced. Optimizing only two of these metrics does not 
guarantee train safety. Only when all safety metrics are 
taken into account can an optimization scheme be con-
sidered reasonable. And we can do this by combining 
the surrogate model method and advanced optimization 
algorithms. None of the five metrics exceeded the safety 
standards. They were all well below the alert values. Fig-
ure 17 shows the wheel-rail vertical and lateral forces of 
wheelset2 of the benchmark model and the optimized 
model (Wheelset2 being most representative of the dif-
ferences in the forces experienced by these models). 
Where A is the lateral wheel-rail force of the right wheel, 
B is the lateral wheel-rail force of the left wheel, C is the 
vertical wheel-rail force of the right wheel, and D is the 
vertical wheel-rail force of the left wheel.)

In Figure  17, we can see that both the benchmark 
model and optimized model’s vertical force and lateral 
force of wheel-rail on the windward side are smaller than 
on the leeward side. Because the wind load is applied 
to the body center of the car body, the windward side 
wheel has reduced load and the leeward side wheel has 
increased load. Wheel-rail forces of both models fluc-
tuate over time. This is caused by the synergistic effect 
of wind loads and track spectrum. However, it is obvi-
ous that the wheel-rail force fluctuations of the bench-
mark of the model are more severe than the optimized 
model. In particular, the benchmark model’s lateral and 
vertical forces of the wheel-rail on the leeward side have 
many protrusions on the time course curve. This phe-
nomenon did not appear on the optimized model’s time 
course curve. The peak points of the protrusions are the 
maximum points of wheel-rail forces. In Figure  17(b), 
the maximum vertical force of the right wheel is 133.30 
kN. This value is the Plim of the benchmark model. Other 
safety metrics are also obtained from wheel-rail forces, 
either directly, or indirectly. The extreme values of forces 
are the root cause of the train exceeding the safety stand-
ards. The optimization process is intended to adjust the 
dynamic parameters, to alleviate the abnormal fluc-
tuation of wheel-rail force and reduce the peak value of 
the wheel-rail force. Reducing peaks is not only helpful 
for safety. We have reason to believe that this will also 
improve the smoothness and comfort for passengers 

when the train is running. But quantitative analysis needs 
further study.

5 � Conclusions

(1)	 Combining aerodynamics, the surrogate model 
method and the many-objective optimization 
meth-od, we can optimize train dynamic perfor-
mance comprehensively, considering more safety 

Table 8  Safety metrics after optimization

Item Q/P Plim (kN) �P/P H (kN) ∆P/Pst

Predicted value 0.271 98.33 0.496 29.08 0.436

Simulation value 0.268 100.44 0.474 34.36 0.421

(a) Simplified illustration of wheelset2

(b) Benchmark model

(c) Optimized model
Figure 17  Wheel-rail forces of benchmark model and optimized 
model
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metrics. These measures can make trains run more 
safely.

(2)	 By changing the stiffness of the steel spring of the 
primary-suspension, the damping of the shock 
absorber of the primary-suspension, the damping of 
the yaw damper, the stiffness of the anti-rolling tor-
sion bar and the stiffness of the axle box arm posi-
tioning node, we can effectively reduce the derail-
ment coefficient, vertical wheel-rail contact force, 
wheel-rail lateral force, and wheel load reduction 
rate. However, an improvement of the overturning 
coefficient is not significant, and further research is 
needed.

(3)	 When the train is running, the wheel-rail force may 
fluctuate drastically with time. Many protrusions 
features will be shown on the wheel-rail force time-
history curve. The extreme points are the root cause 
of exceeding the safety standards. The optimization 
process is to adjust the parameters of the design 
variables to suppress the occurrence of fluctuation, 
thereby improving the safety metrics.
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