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Abstract 

Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms, and 
the generalized analysis method and concise kinematics transfer matrix are obtained. In this study, first, according to 
the kinematics analysis of serial mechanisms, the basic principles of Lie groups and Lie algebras are briefly explained 
in dealing with the spatial switching and differential operations of screw vectors. Then, based on the standard ideas of 
Lie operations, the method for kinematics analysis of parallel mechanisms is derived, and Jacobian matrix and Hessian 
matrix are formulated recursively and in a closed form. Then, according to the mapping relationship between the par-
allel joints and corresponding equivalent series joints, a forward kinematics analysis method and two inverse kinemat-
ics analysis methods of hybrid mechanisms are examined. A case study is performed to verify the calculated matrices 
wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example. 
The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for 
kinematics analysis of hybrid mechanisms is practically feasible.
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1  Introduction
As robotic technology evolves, various types of robots 
are introduced in our day-to-day life, and they are 
increasingly applied to assist humans in many different 
fields [1]. Currently, the research hotspots of robotics are 
still focused on the lightweight design and compliance 
control [2, 3]. However, although advanced control algo-
rithms and drive technologies have expanded the appli-
cation of robots, their further application is limited by 
the inherent characteristics of typical robots [4].

The serial mechanism with a large workspace and flex-
ible movement is the typical configuration of robots [4]. 
The serial robot with joint actuators mounted exhibits 
a bulky mechanical structure, large moment of inertia, 

and low payload to weight ratio. When compared with 
the serial mechanism, the parallel mechanism exhibits 
several advantages of higher stiffness, higher payload to 
weight ratio, reduced inertia, and higher precision [5, 6]. 
Although the parallel mechanism effectively compen-
sates for the shortcomings of serial mechanisms, it also 
exhibits the disadvantage of small working space. There-
fore, hybrid mechanism, which exhibits the advantages 
of serial and parallel mechanisms, exhibits broad appli-
cation prospects for a humanoid robotic configuration. 
The serial mechanism can provide a larger workspace 
for the end manipulator. The parallel mechanism can 
guarantee stronger stiffness, higher load capacity of the 
hybrid mechanism, and higher positioning precision of 
the end manipulator. Mustafa et al. [7] proposed a cable-
driven humanoid robotic arm for the field of surgical 
instruments. Liu et al. [8] proposed a lightweight high-
payload cable-driven serial–parallel manipulator based 
on the special tension-amplifying principle.
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The Denavit–Hartenberg method [9, 10] is commonly 
used to design and analyze hybrid mechanisms. Li et al. 
[11] explored a better kinematic performance and design 
scheme for a novel mechanical leg. Pinskier et  al. [12] 
investigated a four degrees-of-freedom (DOF) hybrid 
parallel–serial slave mechanism and developed a bilat-
eral haptic controller to compensate for coupling and 
assembly errors. Liu et  al. [13] examined a bionic flex-
ible manipulator driven by pneumatic muscle actuator 
and designed a fuzzy torque control algorithm based on 
the computed torque method. Ling et al. [14] presented 
a kinetostatic modeling method for flexure-hinge-based 
compliant mechanisms with hybrid serial–parallel sub-
structures for providing accurate and concise solutions 
by combining the matrix displacement method with 
the transfer matrix method. Hu [15] proposed a serial–
parallel hybrid mechanism formed by two well-known 
Tricept parallel manipulators connected in serial and 
derived simple and compact formulae for the forward 
and inverse acceleration based on a vector approach. 
However, the Denavit–Hartenberg method involves sev-
eral weaknesses including a singularity problem and dif-
ficulty in locating the immediacy of physical meaning in 
differential kinematics. Additionally, the existing stud-
ies rarely focus on the generalized kinematics analysis 
method applicable to hybrid mechanisms.

Conversely, screw theory [16], Lie groups, and Lie 
algebras [17] are useful mathematical tools and pro-
vide simplified symbolic representation that can be 
used to obtain geometric-intuitive kinematic analy-
ses. Recently, in various extant studies, these math-
ematical tools were applied to robotic applications 
and the complicated methods were simplified. Li et al. 
[18] extended the method to kinematics analysis and 
derived the closed-solution of inverse kinematics for 
serial mechanisms. Dai et al. [19, 20] combined screw 
theory with Lie group algebra and summarized the 
related knowledge according to its relationship with 
mechanisms. Huang et  al. [21] presented a systematic 
approach for the kinematic calibration of a 6-DOF 
hybrid polishing robot and formulated the linearized 
error model based on screw theory. Li et  al. [22, 23] 
presented type synthesis of parallel mechanisms 
according to screw theory and Lie group. Sun et al. [24, 
25] proposed a generalized method to solve inverse 
kinematics of serial and parallel mechanisms using a 
finite screw. Gabardi et  al. [26] investigated the kin-
ematics analysis of a 4-UPU fully parallel manipula-
tor and performed the analysis of actuation Jacobian, 
constraint Jacobian, and singularity configurations 
via screw theory. Liu et al. [27, 28] analyzed the com-
prehensive interaction mechanism of motion-force 
transmissibility to the acceleration capacity of robots 

and used the performance atlases method to conduct 
parameters optimization for different types of parallel 
robots. Hence, it is feasible and tentative to propose a 
generalized method of kinematics analysis for hybrid 
mechanisms.

In our previous study [29], a novel 8-DOF hybrid 
manipulator is proposed to realize a kinematic function 
similar to that of the human arm, as shown in Figure 1. 
The humanoid shoulder joint (HSJ) adopts the spheri-
cal 5R parallel mechanism with 2-DOF, the humanoid 
elbow joint (HEJ) is a 3-DOF series mechanism, and the 
humanoid wrist joint (HWJ) adopts the spherical 3-RRP 
parallel mechanism with 3-DOF. The HSJ and HWJ real-
ize the positioning of the upper limb, and the forearm 
and HWJ cooperate with the end manipulator to per-
form partial fine operations. Furthermore, a closed-
form solution for the inverse displacement problem of 
the hybrid humanoid robotic arm (HRA) is derived. In 
this study, we focus on the application of screw theory, 
Lie groups, and Lie algebras in the field of kinematics 
analysis of hybrid mechanisms. This paper is organized 
as follows. In Section 2, the method of kinematics analy-
sis is proposed for hybrid mechanisms. In Section 3, the 
method is illustrated via the example of the humanoid 
HRA. In Section 4, the accuracy of the proposed method 
is verified via a simulation experiment. Finally, the con-
clusions of the study are discussed in Section 5.

Figure 1  Three-dimensional model of the HRA (left arm)
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2 � Kinematics Analysis of Mechanisms
According to the kinematics analysis of serial mechanisms, 
the basic principles of Lie operations in dealing with spa-
tial switching and differential operations of screw vectors 
are briefly explained. Then, the generalized kinematics 
analysis of parallel and hybrid mechanisms is established. 
The detailed descriptions of screw theory, Lie groups, and 
Lie algebras are reported in previous studies [16, 17, 20].

2.1 � Kinematics Analysis of Serial Mechanisms
The basic principles for kinematics analysis based on 
screw theory, Lie groups, and Lie algebras are shown in 
Figure 2, and the detailed derivation of formula is shown 
below.

The Jacobian matrix of series kinematic chains can be 
obtained as follows:

where ξi denotes the initial unit screw vector of the ith 
motion pair, ξ ′i denotes the real-time unit screw vector 
of the ith motion pair, Ad denotes the concomitant effect 
of Lie groups on Lie algebras, exp denotes exponential 
product formula.

The forward kinematics analysis of series kinematic 
chains can be derived as follows:

(1)

{

JO(θ)=
[

ξ1 ξ ′2 · · · ξ ′n
]

,
ξ ′i = Ad

exp
(

ξ̂1, θ1

)

··· exp
(

ξ̂ i−1, θi−1

)ξ i,

(2)VO = JO(θ) θ̇ =

[

ωO

vO

]

,

(3)εO = JO(θ)θ̈+J̇O(θ)θ̇ ,

where VO denotes the velocity vector of the point on the 
end platform that coincides with the origin of the base 
coordinate system, εO denotes the acceleration vector of 
this point, ωO denotes the orientation velocity vector of 
this point, νO denotes the linear velocity vector of this 
point.

The differential matrix of Jacobian matrix can be cal-
culated as follows:

Thus, Eq. (3) can be expressed as follows:

where HO(θ) =

{

ξ ′m × ξ ′n, m < n,
0, other cases,

m denotes the 

number of rows of the matrix, n denotes the number of 
columns of the matrix.

The forward kinematics analysis of series mechanisms 
can be derived as follows:

where PM denotes the position vector of the end-refer-
ence point, VM denotes the velocity vector of this point, 
εM denotes the acceleration vector of this point, ωM 

(4)























J̇O(θ)=
�

ξ̇1 ξ̇ ′
2
· · · ξ̇ ′n

�

,

ξ̇ ′i =
�

θ̇1 · ξ1 + · · · + θ̇i−1 · ξ
′
i−1

�

× ξ ′i,

J̇O(θ)θ̇ = θ̇1 · ξ1 ×
�

ξ ′2 · θ̇2 + · · · + ξ ′n · θ̇n
�

+θ̇2 · ξ
′
2 ×

�

ξ ′3 · θ̇3 + · · · + ξ ′n · θ̇n
�

+ · · · + θ̇n−1 · ξ
′
n−1 × ξ ′n · θ̇n.

(5)εO = JO(θ)θ̈+θ̇
T
HO(θ)θ̇ ,

(6)VM =

[

ωM

vM

]

=

[

ωO

vO + ωO × PM

]

= JM(θ)θ̇ ,

(7)εM = JM(θ)θ̈+θ̇
T
HM(θ)θ̇+cM,

Figure 2  Relationship among screw theory, Lie groups, and Lie algebras
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denotes the orientation velocity vector of this point, νM 
denotes the linear velocity vector of this point, cM 

= 
[

03×1

ωM × vM

]

.

Evidently, in non-singular configurations, the inverse 
kinematics analysis of series mechanisms can be calcu-
lated as follows:

2.2 � Kinematics Analysis of Parallel Mechanisms
Due to the coupling effect of kinematic chains on the 
moving platform, the kinematics transfer matrices (J and 
H) cannot be directly obtained.

2.2.1 � Velocity Analysis of Parallel Mechanisms
The forward velocity analysis of parallel mechanisms can 
be obtained as follows:

where JMφ  denotes the Jacobian matrix of the end-plat-
form based on active pairs, φ̇ denotes the velocity vector 
of active pairs, 

[

JMθ
](b) denotes the Jacobian matrix of the 

bth kinematic chain, and θ̇ (b) denotes the velocity vector 
of motion pairs of the bth kinematic chain.

Meanwhile, in the non-singular configurations, the 
inverse velocity analysis of parallel mechanisms can be 
derived as follows:

Assuming that the first motion pair of each kinematic 
chain acts as the active pair, φ̇ can be expressed as 
follows:

According to Eq. (11), JMφ  and JφM can be calculated as 
follows:

where (1:) denotes the first row of matrices.

(8)θ̇ = J (θ)−1
M VM,

(9)θ̈ = J (θ)−1
M

(

εM − θ̇
T
HM(θ)θ̇ − cM

)

.

(10)VM = JMφ φ̇ =

[

JMθ θ̇
](b)

,

(11)

{

φ̇ = J
φ
MVM,

θ̇
(b)

=
[

J θM
](b)

VM =
[

JMθ
]−1(b)

VM.

(12)φ̇ =

[

θ̇
(1)
1 θ̇

(2)
1 · · · θ̇

(b)
1

]T
.

(13)JMφ =

[

J
φ
M

]−1
,

(14)J
φ
M =

[

[

J θM
](1)

1:

[

J θM
](2)

1:
· · ·

[

J θM
](b)

1:

]T
,

2.2.2 � Acceleration Analysis of Parallel Mechanisms
Evidently, the forward acceleration analysis of parallel 
mechanisms can be obtained as follows:

Meanwhile, the inverse acceleration analysis of parallel 
mechanisms can be derived as follows:

According to Eqs. (12), (14), and (16), φ̈ can be calcu-
lated as follows:

where 
[L1]

(b) =

[

[

J θφ

]T[[
[

J θM

]T

1:

]

∗HM
θ

]

J θφ

](b)

, 
[

J θφ

](b)

=
[

J θM
](b)

JMφ , 

where * indicates the generalized scalar product of 
matrices, and the matrix before * is equivalent to a 
constant.

Thus HM
φ  and Hφ

M can be expressed as follows:

2.3 � Kinematics Analysis of Hybrid Mechanisms
The realization of the conversion of parallel joints and 
equivalent series joints is the key to the kinematics analy-
sis of hybrid mechanisms. In our previous study [29], the 
inverse displacement problem of hybrid mechanisms was 
solved based on the equivalent series mechanism. In gen-
eral, the equivalent series manipulator can be obtained 
based on the DOF of hybrid mechanisms. Therefore, it is 
clear that the equivalent series joint exhibits the same kin-
ematics characteristics as the parallel joint follows:

(15)
εM = JMφ φ̈+φ̇

T
HM

φ φ̇+cM

=

[

JMθ θ̈+θ̇
T
HM

θ θ̇
](b)

+cM.

(16)



















φ̈ = J
φ
M

�

εM − φ̇
T
HM

φ φ̇ − cM

�

= J
φ
MεMφ − φ̇

T
H

φ
Mφ̇ − J

φ
M(cM),

θ̈
(b)

=

�

J θM

�

εM − θ̇
T
HM

θ θ̇ − cM

��(b)

.

(17)

φ̈ =













�

J θM
�(1)

1:
�

J θM
�(2)

1:
...
�

J θM
�(b)

1:













εM −













φ̇
T
[L1]

(1)φ̇

φ̇
T
[L1]

(2)φ̇
...

φ̇
T
[L1]

(b)φ̇













−













�

J θM
�(1)

1:
�

J θM
�(2)

1:
...
�

J θM
�(b)

1:













cM,

(18)HM
φ = JMφ ∗H

φ
M,

(19)H
φ
M =

[

[L]
(1)
1 [L]

(2)
1 · · · [L]

(b)
1

]T
.

(20)VM = JMψ ψ̇ = JMφ φ̇ =

[

JMθ θ̇
](b)

,
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where ψ̇ =
[

θ̇E1 θ̇E2 · · · θ̇Ei
]T indicates the motion 

pairs of the equivalent series manipulator.
The velocity and acceleration vectors of motion pairs 

of the equivalent series joints can be obtained as follows:

2.3.1 � Forward Kinematics Analysis of Hybrid Mechanisms
According to the kinematics analysis of serial and par-
allel mechanisms, the generalized method for forward 
kinematics analysis of hybrid mechanisms is proposed. 
The flow diagram for this method is shown in Figure 3. 
Firstly, the velocity and acceleration vectors of motion 
pairs of the equivalent series joints can be calculated 
based on Eqs. (22) and (23). Then, by applying Eqs. (6) 
and (7), the kinematics characteristics of the end-plat-
form can be obtained. In this paper, we consider the 
HRA, as an example, to demonstrate the method in 
Section 3.

2.3.2 � Inverse Kinematics Analysis of Hybrid Mechanisms
There are two similar methods for the inverse kinemat-
ics analysis of hybrid mechanisms. The flow diagram of 
the first method is shown in Figure 4. Firstly, the velocity 
and acceleration vectors of motion pairs of the equiva-
lent series manipulator can be calculated based on Eqs. 
(8) and (9). Then, by applying Eqs. (20) and (21), the 
velocity and acceleration vectors of moving platform of 
the parallel joints can be obtained. Finally, the kinemat-
ics characteristics of all the motion pairs of the hybrid 
manipulator can be derived by applying Eqs. (11) and 
(16).

When a certain kinematic chain of a parallel joint has 
the same DOF as the parallel joint, then this chain can 
replace the equivalent series joint. The flow diagram of 
this method is shown in Figure 5, and its solution proce-
dure is similar to that of the first method. In this paper, 
we consider the HRA, as an example, to demonstrate the 
two methods in Section 3.

(21)

εM = JMψ ψ̈+ψ̇
T
HM

ψ ψ̇+cM

= JMφ φ̈+φ̇
T
HM

φ φ̇+cM

=

[

JMθ θ̈+θ̇
T
HM

θ θ̇
](b)

+cM,

(22)ψ̇ = J
ψ
MJMφ φ̇,

(23)ψ̈ = J
ψ
M

(

JMφ φ̈+φ̇
T
HM

φ φ̇ − ψ̇
T
HM

ψ ψ̇
)

.

3 � Kinematics Analysis of the Humanoid Robotic 
Arm

3.1 � Structural Configuration
The humanoid shoulder joint (HSJ) is based on a spheri-
cal 5R parallel mechanism, as shown in Figure 6(a). The 
initial unit axis vectors of all the revolute pairs in the 
HSJ are shown in Figure 6(b). Let O-XYZ be a base refer-
ence frame attached at the center O, where Y and OA2 
axes are coincident. Let O-X1Y1Z1 be a moving reference 
frame of the HSJ attached at center O, where X1 and OC2 
axes are coincident and Z1 and OC1 axes are coincident.

The humanoid elbow joint (HEJ) is based on a series 
3-DOF kinematic chain RRR, as shown in Figure  7(a). 
The initial unit axis vectors of all the revolute pairs in the 
HEJ are shown in Figure 7(b). Let O2-X2Y2Z2 be a mov-
ing reference frame of the HEJ attached at the center O2, 
where Z2 and O2D axes are coincident.

The humanoid wrist joint (HWJ) is based on a spheri-
cal 3-RRP parallel mechanism, as shown in Figure 8(a). 
The initial unit axis vectors of all the motion pairs in the 
HWJ are shown in Figure 8(b). Let O3-X3Y3Z3 be a base 
reference frame of the HWJ attached at center O3, where 
Z3 and O2F axes are coincident. The moving reference 

Figure 3  Forward kinematics analysis of hybrid mechanisms
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frame attached at center O4, which coincides with point 
O3, is O4-X4Y4Z4.

The HRA can be equivalent to a series robotic arm, 
as shown in Figure 9. Specifically, β1 and γ1 denote the 
input of the equivalent series shoulder joint, and α4, β4, 
and γ4 denote the input of the equivalent series wrist 
joint.

3.2 � Pre‑processing of Parallel Joints
To clarify the kinematics analysis of the hybrid HRA, the 
Jacobian matrices of the parallel joints and correspond-
ing equivalent series joints are calculated first.

3.2.1 � Pre‑processing of Humanoid Shoulder Joint
The HSJ exhibits only 2 degrees of rotational freedom. 
Hence, the Jacobian matrix of kinematics chain 1 can be 
obtained according to Eqs. (6) and (8) as follows:

where S′
i
 denotes the real-time unit axis vector of the ith 

motion pair.
However, for the kinematic chain 2, a virtual revolute 

pair D2 is added to make the Jacobian matrix a square 
matrix of the following form:

(24)











�

[Jω]
SJ
θSJ

�1
=

�

SA1 S′
B1

S′
C1

�

,

�

[Jω]
θSJ
SJ

�1
=

�

�

[Jω]
SJ
θSJ

�1
�−1

,

Figure 4  First method for the inverse kinematics analysis of hybrid 
mechanisms

Figure 5  Second method for the inverse kinematics analysis of 
hybrid mechanisms
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where SD2 =
[

0 0 1
]T and S0

D2
=

[

0 0 0
]T.

Similarly, the Jacobian matrix of the kinematic chain 
2 can be obtained according to Eqs. (6) and (8):

where (:1) denotes the first column of matrices.
According to Eqs. (13) and (14), the Jacobian matrix 

of the HSJ based on the active pairs can be obtained as 
follows:

(25)

{

ξD2
=

[

SD2 S0
D2

]T
,

θD2 = θ̇D2 = θ̈D2 = 0,

(26)





















































�

�

Jω
�SJ

θSJ

�2
=

�

SA2 S′
C2

S′
D2

�

,
�

[Jω]
SJ
θSJ

�2
=

�

SA2 S′
C2

�

,














�

�

Jω
�θSJ

SJ

�2
=

�

�

�

Jω
�SJ

θSJ

�2
�−1

,

�

[Jω]
θSJ
SJ

�2
=

�

�

�

Jω
�θSJ

SJ

�2

1:

�

�

Jω
�θSJ

SJ

�2

2:

�T

,

(a) Three-dimensional model of the HSJ 

(b) Mechanism diagram of the HSJ 
Figure 6  Structural configuration of the HSJ

(a) Three-dimensional model of the HEJ 

(b) Mechanism diagram of the HEJ 
Figure 7  Structural configuration of the HEJ

(a) Three-dimensional model of the HWJ 

(b) Mechanism diagram of the HWJ 
Figure 8  Structural configuration of the HWJ
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For the corresponding equivalent series joint, the Jaco-
bian matrix can be obtained according to Eqs. (6) and (8) 
as follows:

3.2.2 � Pre‑processing of the Humanoid Wrist Joint
The HWJ has 3 degrees of rotational freedom. Hence, 
the Jacobian matrix of the kinematic chains can be 
obtained according to Eqs. (6) and (8) as follows:

where label 3 in the upper left corner indicates that the 
calculation is performed in the O3-X3Y3Z3 coordinate 
system.

According to Eqs. (13) and (14), the Jacobian matrix of 
the HWJ is based on the active pairs and can be obtained 
as follows:

With respect to the corresponding equivalent series 
joint, the Jacobian matrix can be obtained according to 
Eqs. (6) and (8) as follows:

(27)













































�

Jω
�SJ

φSJ
=

�

�

Jω
�φSJ

SJ

�−1
,

[Jω]
SJ
φSJ

=

� �

�

Jω
�SJ

φSJ

�

:1

�

�

Jω
�SJ

φSJ

�

:2

�

,














�

Jω
�φSJ

SJ
=

�

�

[Jω]
θSJ
SJ

�1

1:

�

�

Jω
�θSJ

SJ

�2

1:

�

�

Jω
�θSJ

SJ

�2

3:

�T

,

[Jω]
φSJ
SJ =

� �

�

Jω
�φSJ

SJ

�

1:

�

�

Jω
�φSJ

SJ

�

2:

�T
.

(28)







[Jω]
SJ
ψSJ

=
�

SY1 S′
X1

�

,

[Jω]
ψSJ

SJ =

�

[Jω]
SJ
ψSJ

�T
.

(29)















�

3[Jω]
WJ
θWJ

�b

=

�

3SHb

3S′
Kb

3S′
Pb

�

,

�

3[Jω]
θWJ

WJ

�b

=

�

�

3[Jω]
WJ
θWJ

�b
�−1

,

(30)











3[Jω]
WJ
φWJ

=

�

3[Jω]
φWJ

WJ

�−1
,

3[Jω]
φWJ

WJ =

�

�

3[Jω]
θWJ

WJ

�1

1:

�

3[Jω]
θWJ

WJ

�2

1:

�

3[Jω]
θWJ

WJ

�3

1:

�T

.

3.3 � Forward Kinematics Analysis of the Humanoid 
Robotic Arm

According to Eq. (22), the velocity vector of motion pairs 
of the corresponding equivalent series joint can be cal-
culated as follows:

Meanwhile, according to Eq. (11), the velocity vec-
tors of passive motion pairs of the corresponding par-
allel joint can be calculated as follows:

Thus, according to Eqs. (18) and (19), [Hω]
SJ
φSJ

 and 
3[Hω]

WJ
ψWJ

 can be calculated. Then, according to Eq. 
(23), the acceleration vector of the corresponding 
equivalent series joint can be calculated as follows:

Finally, according to Eqs. (6) and (7), the forward 
kinematics analysis of the HRA can be obtained as 
follows:

where JHRA
ψ =

[

ξY1ξ
′
X1
ξ ′Dξ

′
Eξ

′
F ξ

′
Z4
ξ ′Y4ξ

′
X4

]

 , 
ψHRA =

[

ψY1ψX1θDθEθFψZ4ψY4ψX4

]T   , 

HHRA
ψ =

{

ξ ′m × ξ ′n, m < n,
0, other cases,

  

m, n = Y1,X1,D,E, F ,Z4,Y4,X4.

(31)







3[Jω]
WJ
ψWJ

=
�

3SZ4
3S′

Y4

3S′
X4

�

,

3[Jω]
ψWJ

WJ =

�

3[Jω]
WJ
ψWJ

�−1
.

(32)

{

ψ̇SJ = [Jω]
ψSJ

SJ [Jω]
SJ
φSJ

φ̇ SJ,

ψ̇WJ =
3[Jω]

ψWJ

WJ
3[Jω]

WJ
φWJ

φ̇ WJ.

(33)











θ̇
(b)

SJ =

�

[Jω]
θSJ
SJ

�(b)

[Jω]
SJ
φSJ

φ̇ SJ,

θ̇
(b)

WJ =

�

3[Jω]
θWJ

WJ

�(b)
3[Jω]

WJ
φWJ

φ̇ WJ.

(34)































ψ̈SJ = [Jω]
ψSJ

SJ

�

[Jω]
SJ
φSJ

φ̈+φ̇
T
SJ[Hω]

SJ
φSJ

φ̇ SJ

−ψ̇
T
SJ [Hω]

SJ
ψSJ

ψ̇SJ

�

,

ψ̈WJ =
3[Jω]

ψWJ

WJ

�

3[Jω]
WJ
φWJ

φ̈+φ̇
T
WJ

3[Hω]
WJ
φWJ

φ̇ WJ

−ψ̇
T
WJ

3[Hω]
WJ
ψWJ

ψ̇WJ

�

.

(35)

{

VHRA = JHRA
ψ ψ̇HRA,

εHRA = JHRA
ψ ψ̈HRA+ψ̇

T
HRAH

HRA
ψ ψ̇HRA+cHRA,

Figure 9  Mechanism diagram of the equivalent series robotic arm
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3.4 � Inverse Kinematics Analysis of the Humanoid Robotic 
Arm

3.4.1 � The First Method
According to Eqs. (8) and (9), the velocity and acceler-
ation vectors of the equivalent series manipulator can 
be calculated as follows:

According to Eqs. (20) and (21), the velocity and 
acceleration vectors of moving platforms of the parallel 
joints can be calculated as follows:

According to Eqs. (11) and (16), the velocity and accel-
eration vectors of all the motion pairs of the parallel joints 
can be obtained as follows:

3.4.2 � The Second Method
According to the mobility analysis of the hybrid HRA, kin-
ematic chain 2 of the HSJ and kinematic chain 1 (or 2, or 3) 
of the HWJ are selected to form the corresponding branch 
series of the robotic arm.

According to Eqs. (8) and (9), the velocity and accelera-
tion vectors of the branch series manipulator can be calcu-
lated as follows:

(36)











ψ̇HRA =

�

JHRA
ψ

�−1
VHRA,

ψ̈HRA =

�

JHRA
ψ

�−1�

εHRA − ψ̇
T
HRAH

HRA
ψ ψ̇HRA − cM

�

.

(37)

{

V SJ = [Jω]
SJ
ψSJ

ψ̇SJ,

εSJ = [Jω]
SJ
ψSJ

ψ̈SJ+ψ̇
T
SJ [Hω]

SJ
ψSJ

ψ̇SJ+cSJ,

(38)

{

3VWJ =
3[Jω]

WJ
ψWJ

ψ̇WJ,

3εWJ =
3[Jω]

ψWJ

WJ ψ̈WJ+ψ̇
T
WJ

3[Hω]
WJ
ψWJ

ψ̇WJ+
3cWJ.

(39)











θ̇
(b)

SJ =

�

[Jω]
θSJ
SJ

�(b)

V SJ,

θ̇
(b)

WJ =

�

3[Jω]
θWJ

WJ

�(b)
3VWJ,

(40)











θ̈
(b)

SJ =

�

[Jω]
θSJ
SJ

�

εSJ − θ̇
T
SJ [Hω]

SJ
θSJ
θ̇SJ − cSJ

��(b)

,

θ̈
(b)

WJ =

�

3[Jω]
θWJ

WJ

�

3εWJ − θ̇
T
WJ

3[Hω]
WJ
θWJ

θ̇WJ −
3cWJ

��(b)

.

(41)











ψ̇B−HRA =

�

J
B−HRA
ψ

�−1

VHRA,

ψ̈B−HRA =

�

J
B−HRA
ψ

�−1�

εHRA − ψ̇
T

B−HRAH
B−HRA
ψ ψ̇B−HRA − cHRA

�

,

where JB−HRA
ψ =

[

ξA2
ξ ′C2

ξ ′Dξ
′
Eξ

′
F ξ

′
H1
ξ ′K1

ξ ′P1

]

 , 
ψB−HRAHRA =

[

θA2θC2θDθEθFθH1θK1θP1
]T   ,  

HB−HRA
ψ =

{

ξ ′m × ξ ′n, m < n,
0, other cases,

 

m, n = A2,C2,D,E, F ,H1,K1,P1.

According to Eqs. (20) and (21), the velocity and accel-
eration vectors of moving platforms of the parallel joints 
can be calculated as follows:

Similarly, according to Eqs. (39) and (40), the velocity 
and acceleration vectors of all the motion pairs of the 
parallel joints can be obtained.

4 � Simulation Experiment
To verify the method of kinematics analysis, a verifica-
tion scheme is proposed as shown in Figure 10. Firstly, 
according to the kinematics information of the target 
trajectory, the velocity and acceleration vectors of the 
active pairs are obtained based on the inverse kinemat-
ics analysis. Then, the kinematics information of the 

(42)











V SJ =

�

[Jω]
SJ
θSJ
θ̇
�2
,

εSJ =
�

[Jω]
SJ
θSJ
θ̈+θ̇

T
[Hω]

SJ
θSJ
θ̇+cSJ

�2
,

(43)











3VWJ =

�

3[Jω]
WJ
θWJ

θ̇
�1
,

3εWJ =

�

3[Jω]
WJ
θWJ

θ̈+θ̇
T
[Hω]

WJ
θWJ

θ̇+3cWJ

�1
.

Figure 10  Verification scheme
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end-moving platform is obtained according to the for-
ward kinematics analysis.

In this paper, same dimensions of the HRA, target 
trajectory, and given redundant inputs, as used in our 
previous study [[29]], are selected, and the first set of 
solutions for the inverse displacement problem are used 
as position-orientation information for the HRA.

The target trajectory is as follows:

β1 and F are selected as the given input variables:
(44)

g st=







1 0 0 Xst(t)

0 0 1 −r5 − r6

0 −1 0 −r4 + Zst(t)

0 0 0 1






,



















Xst(t) = h1 sin
�

2π t
T

�

,

Zst(t) = h1 − h1 cos
�

2π t
T

�

,

h1 = 80 mm,
T = 10 s.

4.1 � Inverse Kinematics Analysis
According to the first method of inverse kinematics anal-
ysis, the velocity and acceleration vectors of the active 
inputs can be calculated, as shown in Figure 11.

Meanwhile, according to the second method of inverse 
kinematics analysis, the velocity and acceleration vectors 
of the active inputs can also be calculated, as shown in 
Figure 12. To verify whether the two methods are equiv-
alent, the calculation errors between the two methods 
are obtained, as shown in Figure 13. Evidently, the calcu-
lation errors are almost equal to 0, and the two methods 
of inverse kinematics analysis are equivalent.

(45)

{

β1 = −
h2
2π sin

(

2π t
T

)

+ h2
t

T
, h2 = 10◦,

θF = 0.

(a) Velocity of active pairs 

(b) Acceleration of active pairs 
Figure 11  First method of inverse kinematics analysis

(a) Velocity of active pairs 

(b) Acceleration of active pairs 
Figure 12  Second method of the inverse kinematics analysis
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4.2 � Forward Kinematics Analysis
The first set of velocity and acceleration vectors of the 
active pairs are selected for the forward kinematics 
analysis. According to the method of forward kinemat-
ics analysis, the velocity and acceleration vectors of the 
end-moving platform can be calculated as shown in 
Figure 14 and 15.

Evidently, the orientation of the end-moving plat-
form remains unchanged. To verify the accuracy of the 
method for forward kinematics analysis, the calcula-
tion errors between the forward kinematics and target 
trajectory are obtained as shown in Figure 16.

Clearly, the calculation errors are almost equal to 0, 
the motion of the end-moving platform are exactly the 

same as the target trajectory. Conversely, the simula-
tion data obtained from our previous study [29] are 
used to verify the kinematics analysis method. Then, 
the calculation errors between the proposed method 
and simulation in the translation motion are shown in 
Figure 17.

Similarly, the errors between the simulation results 
and theoretical calculation are acceptable, which is 
mainly due to the difference between the three-dimen-
sional model and numerical solution. Therefore, the 
accuracy of the proposed methods is verified for forward 
kinematics analysis and inverse kinematics analysis.

(a) Errors in velocity (b) Errors in acceleration 
Figure 13  Errors between the two methods of the inverse kinematics analysis

(a) Angular velocity (b) Angular acceleration 
Figure 14  Rotation of the end-moving platform
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(a) Translational velocity (b) Translational acceleration 
Figure 15  Translation of the end-moving platform

(a) Errors in translational velocity (b) Errors in translational acceleration 
Figure 16  Translational motion error between the forward kinematics and target trajectory

(a) Errors in translational velocity (b) Errors in translational acceleration 
Figure 17  Translational motion error between the proposed method and simulation
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5 � Conclusions

(1)	 When compared to other methods with respect to 
the kinematics analysis of hybrid mechanisms, the 
proposed methods, based on screw theory and Lie 
groups Lie algebras, exhibit evident physical signif-
icance, and the kinematic transfer matrices (J and 
H) can be expressed concisely and uniformly.

(2)	 Additionally, the velocity and acceleration vec-
tors of all the motion pairs can be easily obtained, 
which lays the groundwork for the establishment of 
dynamics model and design of front-negative feed-
back control system.

(3)	 The equivalent series mechanism and branch series 
mechanism are equivalent in dealing with the 
inverse kinematics analysis. Although the physical 
significance of transfer matrices based on the two 
methods are inconsistent, they do not change the 
transfer properties of the hybrid mechanism.
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