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Abstract 

Although there are methods for testing the stress-strain relation and strength, which are the most fundamental and 
important properties of metallic materials, their application to small-volume materials and tube components is lim-
ited. In this study, based on energy density equivalence, a new dimensionless elastoplastic load-displacement model 
for compressed metal rings with isotropy and constitutive power law is proposed to describe the relations among 
the geometric dimensions, Hollomon law parameters, load, and displacement. Furthermore, a novel test method was 
developed to determine the elastic modulus, stress-strain relation, yield and tensile strength via ring compression 
test. The universality and accuracy of the method were verified within a wide range of imaginary materials using finite 
element analysis (FEA), and the results show that the stress-strain curves obtained by this method are consistent with 
those inputted in the FEA program. Additionally, a series of ring compression tests were performed for seven metallic 
materials. It was found that the stress-strain curves and mechanical properties predicted by the method agreed with 
the uniaxial tensile results. With its low material consumption, the ring compression test has the potential to be as an 
alternative to traditional tensile test when direct tension method is limited.
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1  Introduction
Various tubular structures are widely applied in engi-
neering due to their high strength and stiffness to weight 
ratios, and high energy absorption to weight ratios, such 
as the fuel-cladding tubes in nuclear reactor [1, 2] and 
energy absorbers [3, 4]. Therefore, the mechanical prop-
erties such as stress σ–strain ε relation and strength of 
their materials must be accurately evaluated and carefully 
considered in the design of these structures. However, 
it is difficult or impossible to perform tensile tests for 
small-volume materials and tube components. Accord-
ingly, a new test method for non-traditional small speci-
mens, such as small rings, is needed.

Ring specimens are easy sample preparation and sim-
ple operation, obtaining the mechanical properties via 
ring test has been the focus of research works over the last 
forty years. Wang et al. [5] proposed a ring hoop tension 
test method to acquire the hoop σ–ε relations of nuclear 
fuel cladding tubes. In this test, a dog-bone specimen was 
machined on a ring extracted from the tube. Next, the ring 
was placed over two loading D-blocks that were parted by 
a testing machine. However, the method is not suitable for 
thin-walled rings, and the results are affected by the fric-
tion between the test specimen and loading D-blocks. 
Reddy and Reid [6–8] introduced a simple theory to obtain 
the yield strength via a ring compression test (RCT). The 
load P-displacement h curve is obtained by applying a lat-
eral load to the ring specimen through two rigid platens, 
and then the yield stress is determined according to a lin-
ear relation between the yield load and stress. However, for 
most metallic materials with constitutive power law, this 

Open Access

Chinese Journal of Mechanical 
Engineering

*Correspondence:  lix_cai@263.net
1 Applied Mechanics and Structure Safety Key Laboratory of Sichuan 
Province, Southwest Jiaotong University, Chengdu 610031, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-021-00622-y&domain=pdf


Page 2 of 12Han et al. Chinese Journal of Mechanical Engineering          (2021) 34:109 

method is not universally applied. With the development of 
simulation technology, Nemat-Alla [9] developed an exper-
imental-numerical method to acquire the σ–ε curves of 
compressed rings. In this method, an imaginary σ–ε curve 
is inputted in the finite element analysis (FEA) program to 
predict the P–h curve. Then, the test and analysis curves 
are compared to adjust the inputted σ–ε relation until they 
agree. This method cannot be used extensively owing to 
the complicated iterative calculations involved. Based on 
the work of Nemat-Alla, Vincent et  al. [10] evaluated the 
mechanical properties of oxidized Zircaloy-4 cladding 
materials and a valid accordance was presented. Chen and 
Cai [11–14] proposed a theoretical model for compressed 
rings under plane-stress conditions based on energy den-
sity equivalence. This model can predict the σ–ε curves 
of metallic materials with constitutive power law; how-
ever, it does not give details about the elastic modulus test 
method, and the thickness effect of ring specimen is not 
considered. The longitudinal RCT has been described as 
“the unofficial standard” friction test method and is widely 
used to study the friction behavior of bulk metal forming 
analytically [15, 16], experimentally [17, 18] and numeri-
cally [19, 20]. In addition, the energy absorption properties 
of ring structures [21–27] have been widely investigated, 
however, the potential of the RCT in these studies has not 
been highlighted due to the lack of an elastoplastic solution 
for compressed rings.

Hence, the main purpose of this investigation is to 
develop a method for three-dimensional rings that can 
acquire the mechanical properties of metallic materials 
through RCT. To achieve this, a dimensionless elastoplas-
tic load-displacement model for compressed rings (EPLD–
Ring) is proposed based on energy density equivalence. 
Solving this model using the information contained in the 
P–h curves yielded the elastic modulus, σ–ε relation, and 
strength of the tested material. Finally, the model is veri-
fied via FEA with a wide range of imaginary materials and 
through experiments with seven metallic materials.

2 � Theoretical Model for Ring Compression
2.1 � Energy Density Equivalence Method
For an unidirectionally loaded ring specimen, as shown in 
Figure 1, assuming that a geometric point M exists in the 
effective deformation region Ω and that the energy density 
of the representative volume element (RVE) at M is equal 
to the average energy density of all RVEs in Ω, we have

where uM, σij and εij are the energy density, stress tensor 
and strain tensor in the RVE at M, respectively; εij-M is 

(1)uM=

∫ εij - M

0
σijdεij = U/Veff,

the strain tensor in the RVE at M in a deformation state; 
Veff is the effective volume of Ω; U is the total deforma-
tion energy of Ω, which is given by

According to the von-Mises equivalence principle, 
the energy density of the RVE at M in a complex stress 
state is equivalent to that in a uniaxial stress state:

where εeq-M is the equivalent strain in the RVE at M in 
a deformation state; σeq and εeq are the equivalent stress 
and strain, respectively.

Combining Eqs. (1) and (3), the total deformation 
energy is expressed as

2.2 � Elastoplastic Load‑displacement Model
For most isotropic, homogeneous, and power law hard-
ening metallic materials, the equivalent σ–ε relations 
are almost consistent with the Hollomon model:

where K is the strain-hardening coefficient ( K=Enσ 1−n
y  ); 

E and n are the elastic modulus and strain-hardening 
exponent, respectively; σy and εy are the nominal yield 
stress and strain, respectively, related by σy = Eεy.

Substituting Eq. (5) into Eq. (4), the total deformation 
energy U is derived as follows:

(2)U =

∫∫∫

�

u
(

x, y, z
)

dxdydz,

(3)uM =

∫ εij - M

0
σijdεij =

∫ εeq - M

0
σeqdεeq,

(4)U=Veff

∫ εeq - M

0
σeqdεeq.

(5)σeq =

{

Eεeq εeq ≤ εy,

Kεneq εeq > εy,

Figure 1  Schematic of the RCT​
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When εeq-M is much larger than εy, the value of 
(1− n)εn+1

y /2 is small compared with that of εn+1
eq - M and 

can be ignored. Next, Eq. (6) is simplified as follows:

Under linear elastic and elastoplastic conditions, the 
following assumptions can be made:

where V* is the characteristic volume, and V* = A*h*; A* 
and h* are the characteristic area and length, respectively; 
A* = βBD(1−ρ2), and h* = D, where B and D are the thick-
ness and diameter, respectively; ρ is the diameter ratio; β 
is the thickness effect coefficient; k0 is the elastic defor-
mation coefficient; k1 and k2 are the effective volume 
coefficient and exponent, respectively; k3 and k4 are the 
equivalent strain coefficient and exponent, respectively.

Substituting Eq. (8) into Eq. (7), U is derived as 
follows:

According to the work-energy principle, W = U, taking 
the derivative of the displacement with respect to both 
sides of Eq. (9), the load-displacement relation is deduced 
as follows:

(6)

U =















EVeff

2
ε2eq - M εeq - M ≤ εy,

KVeff

n+ 1

�

εn+1
eq - M −

1− n

2
εn+1
y

�

εeq - M > εy.

(7)U=












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The rearrangement of Eq. (10) is expressed as follows:

where P* is the characteristic load; ξe is the dimensionless 
P–h deformation coefficient under linear elastic defor-
mation; ξep and m are the dimensionless P–h deformation 
coefficient and exponent under elastoplastic deforma-
tion, respectively. Eq. (11) is called the elastoplastic load-
displacement model for compressed ring (EPLD-Ring).

Moreover, according to Eq. (11), for compressed rings 
under ideal linear-elastic loading conditions, the loading 
stiffness SL (= P/h) is expressed as follows:

3 � Parameter Determination
The EPLD-Ring model is a dimensionless equation that 
correlates the geometric dimensions of ring (D, ρ, B), 
Hollomon law parameters (E, σy, n), load, and displace-
ment. The six constants contained in the model can be 
directly determined via FEA for ring compression speci-
mens with various geometric dimensions and Hollomon 
law parameters.

3.1 � FEA Model
FEA for ring compression was conducted using commer-
cial software ANSYS14.5. Considering the symmetry of 
the ring, a 1/4 three-dimensional FEA model was estab-
lished, as shown in Figure  2. The imaginary materials 
inputted in the FEA program were assumed homogenous 
and isotropic hardening; they satisfied the von-Mises cri-
teria, and only linear elastic deformation occurred in the 
dies with elastic modulus Ep. Target172 and Contact173 
elements were used to establish a contact pair between 
the lower surface of the die and the outer surface of the 
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(12)SL = βk0B
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1− ρ2
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E.



Page 4 of 12Han et al. Chinese Journal of Mechanical Engineering          (2021) 34:109 

ring, and a Solid185 element was used for the main parts 
of the ring and die. The cross-section of the ring and the 
left cross-section of the die were subjected to a symme-
try constraint, and a displacement load was applied to the 
upper surface of the die. The influence of mesh size on 
the FEA model results was analyzed using various geo-
metric rings, and the mesh size that stabilized the calcu-
lation results of the P–h curves was selected.

According to the EPLD-Ring model, the P–h curves 
can be normalized by a normalized load, P/BD(1−ρ2), 
and a dimensionless displacement, h/D, as shown in Fig-
ure 3. Thus, the diameter of the rings was fixed to 10 mm 
during the subsequent parameter determination steps.

3.2 � Thickness Effect Coefficient
β is closely related to the characteristic thickness, B/D, of 
ring specimens, and the unit thickness loading capacity 

of the specimens increases with the increase in B/D. 
For various B/D values, P/B–h/D curves are obtained 
via FEA, as shown in Figure  4. Table  1 lists the FEA 
conditions.

In the dimensionless displacement (h/D) range from 
0.05 to 0.15, fitting the P/B–h/D curves of various 
B/D values with the power law yielded the data array, 
{B/D, CB/D}, where CB/D is the fitting coefficient and 
C = βξepED(1–ρ2). Using β = 1 for B/D = 0.1, β values 
for other B/D values can be obtained using β B/D = CB/

D/C0.1. The β versus B/D curve shown in Figure  5 and 
the relation between them is expressed as an arctangent 
equation:

where b1 to b4 are the fitting constants (see Table 2).

3.3 � Elastic Deformation Coefficient k0
k0 is related to the die elastic modulus, Ep, and the diam-
eter ratio of ring specimen, and can be obtained by fit-
ting the P/P*–h/D curves with a linear equation under 
linear elastic deformation. The k0 versus 1−ρ curve 
was obtained via FEA with Ep fixed at 400 GPa, as 
shown in Figure  6(a); the relation between k0 and 1-ρ 
can be described by the following power law equation: 
k0 = a1(1− ρ) a2, where a1 and a2 are the fitting coeffi-
cient and exponent, respectively. We defined Ep

* = 400 
GPa as the characteristic elastic modulus and k0

* = a1(1− 
ρ)a2 as the characteristic elastic deformation coefficient. 
Subsequently, the Ep/Ep

* versus k0/k0
* curve shown in 

Figure 6(b) was obtained via FEA with ρ fixed at 0.6; the 
relation between Ep/Ep

* and k0/k0
* can be described by 

the following power law equation: k0/k0
* = a3(Ep/Ep

*)a4, 
where a3 and a4 are the fitting coefficient and exponent, 

(13)β = b1 arctan

[

b2

(

B

D

)

+b3

]

+ b4,Figure 2  FEA model for ring compression

Figure 3  Normalized load–dimensionless displacement curves for 
various dimeters Figure 4  Unit thickness P–h curves for various B/D values
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respectively. Thus, the relation between k0, Ep, and ρ is 
expressed as follows:

where c01, c02, and c03 are the fitting constants, and 
c01 = a1a3, c01 = a2, and c03 = a4 (see Table 2).

3.4 � Elastoplastic Deformation Coefficients k1 to k4
Because the influence of Ep on the elastoplastic P–h 
curves is limited, k1 to k4 are only related to the diameter 
ratio, ρ, of ring specimens. For the ring specimens with a 
fixed ρ, these deformation constants can be determined 
by fitting the elastoplastic P–h curves with various n val-
ues. Table 3 shows the FEA conditions used to determine 
k1 to k4 for the ring specimen with a ρ of 0.6.

In the dimensionless displacement ranging from 0.05 
to 0.15, fitting the P/P*–h/D curves of various n values 
with the power law yielded data arrays {n, ξep} and {n, 
m}. Data arrays {n+1, ξepE(n+1)/K(m+1)}, and {n+1, 

(14)k0 = c01(1− ρ)c02
(

Ep/E
∗

p

)c03
,

m+1} were acquired by combining the FEA conditions 
and Eq. (11). By fitting the relation between n+1 and 
ξepE(n+1)/K(m+1) with an exponent equation, k1 and k3 
were determined. k2 and k4 were determined by fitting the 
relation between n+1 and m+1 with a linear equation.

Similarly, k1 to k4 could be directly determined for vari-
ous ρ values (0.625 to 0.7), as shown in Figure 7. The rela-
tions between k1 to k4 and ρ are as follows:

where c11, c12, c21, c22, c31, c32 and c41 to c43 are the fitting 
constants (see Table 2).

In summary, the fitting constants of the EPLD-Ring 
model parameters are valid for rings with thickness B 
within [0.1D, 0.4D] and diameter ratio ρ within [0.6, 0.7]. 
If the geometric dimensions (D, ρ, B) of a ring is meas-
ured, then β and k0 to k4 can be calculated by combining 
Eqs. (13)–(15) and the parameters in Table 2. In fact, by 
re-calibrating parameters β and k0 to k4, the EPLD-Ring 
model can be appropriate for rings whose dimensions are 
not within the aforementioned range.

4 � Novel Ring Compression Test Method
4.1 � Elastic Modulus Test Method
During the RCT, because of the interference of the initial 
contact nonlinearity, geometric dimension errors, and 
other factors, the linear elastic condition in initial load-
ing stage of the P–h curves is difficult to satisfy; there-
fore, the elastic modulus E obtained through the initial 
loading stiffness SL of the P–h test curve is difficult to 
realize. Using the initial unloading stiffness Su during 
the loading–unloading test to calculate E is common in 

(15)



















k1 = c11ρ
c12 ,

k2 = c21ρ
c22 ,

k3 = c31 + c32ρ,

k4 = c41 + c42ρ + c43ρ
2,

Table 1  FEA conditions for determine β 

Elastic modulus of 
the die

Geometric size of rings Power law parameters

Ep (GPa) D (mm) d (mm) B (mm) E (GPa) σy (MPa) n

400 10 6 1 to 4 200 400 0.1

Figure 5  β versus B/D 

Table 2  Fitting constants of the EPLD-Ring model parameters

b1 b2 b3 b4 c01 c02 c03 c11

0.0467 9.90 − 2.27 1.04 0.456 2.07 0.0630 0.177

c12 c21 c22 c31 c32 c41 c42 c42

− 2.07 0.0337 − 3.01 0.832 − 0.730 0.361 1.52 − 1.07
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elastoplastic indentation problem [28, 29]. Accordingly, 
this method was applied in our investigation.

In the loading–unloading test for ring compression, 
the power-law equation, Pu = ahu

t, was used to fit the 
data points of the unloading-stage Pu–hu curve. Su is 
expressed as follows:

where a and t are the fitting coefficient and exponent 
of the Pu–hu curve, respectively, and humax is the dis-
placement at initial unloading point of the Pu–hu curve. 

(16)Su =
dPu

dhu

∣

∣

hu=humax
= atht−1

umax,

Results show that a proportional relation exists between 
SL and Su:

where α is the stiffness ratio, which can be determined 
via a multilevel loading–unloading test for rings with 
known E.

Multilevel loading–unloading tests were performed 
on 30Cr2Ni4MoV with E is 202 GPa and 7075Al with E 
is 72 GPa. The P–h curves, and α values for various h/D 
values are shown in Figure 8. The results show that α is 
approximately constant in the dimensionless displace-
ment (h/D) range of 0.01 to 0.05, and the average value 
αm is 0.967. Thus, according to Eqs. (12) and (17), E can 
be derived as follows:

where β and k0 can be calculated with Eq. (13), Eq. (14), 
and the parameters in Table 2.

4.2 � Elastic Modulus Test Method
According to Eq. (11), σy and n are derived as follows:

where k1 to k4 can be calculated with Eq. (15) and Table 2.
For steels, ξep and m are obtained using the power 

law equation to fit the P–h curves obtained via the RCT 
within the h/D range of 0.05–0.15; for light alloys, the 
fitting range is 0.07–0.15. Next, according to Eq. (19), 
the Hollomon law parameters σy and n are acquired. 
Additionally, the strain-hardening coefficient K and σ–ε 
curve can be obtained according to Eq. (5). The yield 
strength Rp0.2 is determined by referring to the method 
recommended in the ISO 6892 standard, and the ten-
sile strength [30] is calculated from the Hollomon law 
parameters as follows:

(17)SL = αSu,

(18)E =
αmSu

βk0B
(

1− ρ2
) ,

(19)























σy =

�

ξepE
1−n(n+ 1)

k1k
n+1
3 (m+ 1)

�1/(1−n)

,

n =
(m+ 1)− k2 − k4

k4
,

(20)Rm = K (n/e)n,

Figure 6  Fitting relations between (Ep, ρ) and k0

Table 3  FEA conditions for determining k1 to k4 (ρ = 0.6)

Elastic modulus of 
the die

Geometric dimensions Power-law parameters

Ep (GPa) D (mm) d (mm) B (mm) E (GPa) σy (MPa) n

200 10 6 1 200 400 0.1 to 0.4
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where e is the natural constant, and e = 2.718.

5 � Results and Discussion
5.1 � FEA Verification
To verify the universality and accuracy of the novel RCT 
model, a wide range of imaginary materials with given 
constitutive relations were inputted in the FEA program 
for rings with various geometric dimensions. Using 
the method proposed in Section  4.2, the Hollomon law 
parameters could be acquired by fitting the P–h curves 
obtained using FEA, and then the inputted σ–ε curves 
and the predicted curves are compared and shown in Fig-
ure 9. For rings with various geometric dimensions (D, ρ, 
B) and Hollomon law parameters (εy, n), the goodness of 
fit between the predicted σ–ε curves and the constitutive 
relations inputted in the FEA program were better than 
99% in most case, with the lowest being 97.2% for n = 0.4, 
as shown in Figure 9(c).

5.2 � Experimental Verification
5.2.1 � Experimental Conditions
The traditional tensile tests and RCTs were carried out 
on seven metallic materials, including five steels, one 
titanium alloy, and one aluminum alloy. Both tests were 
performed on an MTS 809 testing machine, an MTS 
634.11F-24 extensometer was used to measure the dis-
placement of ring specimen, as shown in Figure 10. Four 
specimen types were machined and the nominal dimen-
sions of these specimens were {D, d, B} (Unit: mm): A—
{6, 4, 1}, B—{8, 5, 1}, C—{10, 6, 1}, and D—{10, 6, 2}, a 
micrometer was used to accurately measure the dimen-
sions of specimens before tests. The dies material was 
40Cr with Ep = 210 GPa. The basic mechanical proper-
ties and Hollomon law parameters of the seven metallic 
materials obtained by the tensile test are listed in Table 4.

Figure 7  Fitting relations between k1 to k4 and ρ 

Figure 8  Multilevel loading–unloading tests to determine α
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5.2.2 � Experimental Results and Discussion
Ring compression tests were carried out at a constant 
displacement rate of 0.18 mm/min. Four specimens 
were tested for each experimental condition, one for 
determining the elastic modulus E using a loading–
unloading test, and the remaining three for determining 
the Hollomon law parameters (σy, n) using a monotonic 
loading test. The P–h curves of both tests are shown in 
Figures 11 and 12, respectively.

Through the method proposed in Section  4.1, the 
elastic moduli E of the seven materials were calculated 
and listed in Table  5. It can be seen that the elastic 
moduli predicted via ring compression test method are 
all close to those obtained via traditional tensile tests, 
and that the relative error between the two results is 
less than 3% for most cases, with the maximum error 
being 5.6%. Additionally, multiple loading–unloading 
test for a single specimen can also be used to determine 
the elastic modulus and the average value taken as the 
final result.

Figure 9  Comparison between the predicted σ–ε curves and those 
inputted into the FEA program

Figure 10  RCT set-up

Table 4  Basic mechanical properties and Hollomon law 
parameters of seven metallic materials

Materials Basic mechanical properties Hollomon law 
parameters

E (GPa) Rp0.2 (MPa) Rm (MPa) σy n

Q345E 210 467 585 348 0.147

16MnR 210 300 515 254 0.172

A508-III 210 511 656 468 0.118

P91 208 597 692 562 0.0825

30Cr 202 798 886 751 0.0798

TC4-DT 120 804 875 800 0.0661

7075Al 72 437 519 431 0.102
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Figure 12 clearly show that the P–h curves of three par-
allel specimens with the same geometric dimensions and 
material are consistent; thus, according to Section  4.2, 
the average predicted values of the three parallel speci-
mens is taken as the final test result, as shown in Fig-
ure  13. The predicted σ–ε curves of the seven metallic 
materials are in a good agreement with the traditional 
tensile test results, the goodness of fit between the two 
curves were better than 99% in most case, with the lowest 
being 95.4% for 16MnR, as shown in Figure 13(a).

Based on the method proposed in Section  4.2, the 
yield and tensile strengths of the seven metallic mate-
rials were obtained, as shown in Figure  14. It can be 
seen that the errors of yield strengths Rp0.2 obtained by 
RCTs and traditional tensile tests were mostly within 
3% and individually within 8% for six metallic mate-
rials, except for Q345E with errors of approximately 
16%. The reason for this difference is that the constitu-
tive model adopted in this study cannot be adequately 
describe the σ–ε relations near the yield plateau. The 

tensile strengths Rm obtained by RCTs and traditional 
tensile tests were within 3%.

In summary, for isotropic material with constitutive 
power law, the novel ring compression test method 
proposed in this study can effectively predict the elas-
tic modulus, strengths and σ–ε relation, and for the 
material whose σ–ε relation has an obviously yield pla-
teau, this method can used as a reference.

6 � Conclusions

(1)	 In the present study, a dimensionless elastoplastic 
load–displacement model for three-dimensional 
compressed rings is proposed based on energy den-
sity equivalence. The six constants contained in the 
model can be determined via FEA.

(2)	 The compression test results for two metal rings 
show that the initial theoretical ring stiffness is pro-
portional to the unloading stiffness at the unload-
ing point of the P–h curve in the h/D range of 0.01 

Figure 11  Load–displacement curves of loading–unloading tests
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to 0.05. Accordingly, a novel ring compression 
method was developed to obtain the elastic modu-
lus, stress–strain relation, and strengths of metal-
lic material. The method is verified via FEA with 
a wide range of imaginary materials and through 
experiments with seven metallic materials, and a 
valid accordance was presented.

(3)	 Because of their low material consumption, millim-
eter ring specimens have the potential to determine 
the mechanical properties of small-volume materi-
als and tube components.

Figure 12  Load–displacement curves of monotonic ring compression tests

Table 5  Comparison between the predicted elastic moduli and those obtained by traditional tensile tests

Materials Types A Types B Types C Types D

ER (GPa) Errors (%) ER (GPa) Errors (%) ER (GPa) Errors (%) ER (GPa) Errors (%)

Q345E 209 − 0.50 213 1.4 209 − 0.50 206 − 1.9

16MnR 207 − 1.4 209 − 0.5 214 1.9 206 − 1.9

A508-III 208 − 1.0 202 − 3.8 212 1.0 207 − 1.4

P91 211 1.4 216 3.8 213 2.4 211 1.4

30Cr 198 − 2.0 206 2.0 205 1.5 198 − 2.0

TC4-DT 119 − 0.8 123 2.5 124 3.3 116 − 3.3

7075Al 73 1.3 74 2.8 74 2.8 76 5.6
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