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Abstract

Planning and decision-making technology at intersections is a comprehensive research problem in intelligent
transportation systems due to the uncertainties caused by a variety of traffic participants. As wireless communication
advances, vehicle infrastructure integrated algorithms designed for intersection planning and decision-making have
received increasing attention. In this paper, the recent studies on the planning and decision-making technologies at
intersections are primarily overviewed. The general planning and decision-making approaches are presented, which
include graph-based approach, prediction base approach, optimization-based approach and machine learning based
approach. Since connected autonomous vehicles (CAVs) is the future direction for the automated driving area, we
summarized the evolving planning and decision-making methods based on vehicle infrastructure cooperative tech-
nologies. Both four-way signalized and unsignalized intersection(s) are investigated under purely automated driving
traffic and mixed traffic. The study benefit from current strategies, protocols, and simulation tools to help research-
ers identify the presented approaches’ challenges and determine the research gaps, and several remaining possible

research problems that need to be solved in the future.
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1 Introduction

Over the past decades, there are assive amounts of invest-
ments that have een put into elieving the traffic conges-
tion problem around the world. However, road traffic
congestion is still one of the major concerns of travelers.
It is found that congestion can inflict high economic costs
[1]. The cost in the United States is up to $124.2 billion in
2013 and is expected to increase to $186.2 billion in 2030
with traffic congestion forecast to increase by 60% [2]. In
this paper, the study focused on addressing the methods
of planning and decision-making methods at intersec-
tions. We believe that intersections could be one of the
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most critical traffic environments from the perspective of
safety and mobility [3-7].

From the previous research works, intersections are
important parts of traffic networks. The commonly used
approach to manage the intersection is traffic signals
control. However, the efficiency of the traditional traf-
fic lights is relatively low when traffic volumes are high
[8]. Currently, over 30,0000 traffic lights among the U.S.
with 82.7 billion investments [9]. It is necessarily to oper-
ate the traffic signal efficiently to reduce the congestion
and improvement the mobility at intersections. How-
ever, the majority of signals in the U.S. are pre-timed and
updated every 2-5 years. The re-timing traffic signals has
huge benefits. Ref. [10] discussed how this type of traffic
engineering maintenance can significantly reduce delays
and stops experienced by automobile drivers. The results
showed that the benefit to cost ratio for signal re-timing
is approximately 40:1.
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Moreover, researchers found that most incidents
occurred in intersections and caused significant traf-
fic delays in urban area [4]. From reports published
by National Highway Traffic Safety Administration
(NHTSA), intersection crashes are among the most seri-
ous crash modes in the U.S. In 2015, crashes in intersec-
tions accounted for 1.3 million police-reported crashes
and 5251 fatal crashes [11, 12]. These crashes correspond
to approximately 20% of all police reported crashes and
16% of all fatal crashes [13]. Therefore, it is important to
develop technologies at intersections to allow vehicles to
pass the intersection safely and efficiently.

With the autonomous vehicle technology and the wire-
less communication technology development, the field of
the autonomous intersection management (AIM) system
has attracted a lot of attention and shows lots of research
and development efforts. AIM can coordinate the move-
ment of autonomous vehicles through intersections. A
typical complete AIM system is shown as Figure 1. There
are several important components of the system: Vehicle
on board unit (OBU), Roadside unit (RSU), Signal Con-
troller, Traffic control unit (TCU), Traffic control center
(TCC), Traffic operation center (TOC), and Cloud.
For planning and decision-making purpose, the OBU
should contain vehicle dynamic control and intersection
approach/departure applications in intersection seg-
ment, the RSU should provide vehicle lane group control,
vehicle driving reservation and planning to help vehicles
cross the intersection. The signal controller helps control
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the traffic signal based on the data received. TCU/TCC/
TOC will coordinate to determine and execute the opti-
mal intersection passing movement. The Cloud system
could interact with other Ur ban Services/Applications.
However, if we want autonomous vehicles to operate at
intersection with high efficiency and safety, we must
design an appropriate way to coordinate them carefully
[14, 15]. Previously, intersection management research
separated into two branches, i.e., cooperative resource
reservation and trajectory planning [16]. In cooperative
resource reservation, the intersection space is separated
into the time-space sequence that is assigned to vehicles
and scheduled to achieve a safe crossing. The reserva-
tions can be managed by a centralized unit [17, 18] or
in a distributed manner [19, 20]. As for trajectory-plan-
ning approaches, researchers focused on the movement
of vehicles relative to a fixed point in the intersection
(which resembles the on-ramp merging solutions) to
achieve a safe crossing of vehicles [21-24]. Liu et al. pro-
posed a cooperative trajectory planning strategy to pass
through an intersection with V2X communication. The
results showed that the proposed strategy has the small-
est evacuation time among that in fixed lights and adap-
tive light [25].

As a key component of the automated intersection
management system, decision-making and planning of
vehicles becomes one of the major tasks to be solved [26].
For example, rule-based decision-making approaches are
commonly used in autonomous driving. However, such
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rule-based approaches are reliable and easy to interpret.
For simple driving scenarios, it can achieve a good per-
formance on safety with hand-engineered rules. But
when dealing with complex urban environments, such
as road intersections, where various uncertainties exist,
a rule-based approach cannot maintain safe and efficient
driving [27]. Thus, some other approaches with more
intelligence, such as optimization and learning-based
methods, have been widely discussed in past decades.
Since no uniform model can handle all scenarios, the
planning and decision-making methods of vehicles in the
complex urban driving environment is still challenging.
Refs. [28] and [29] uses optimization methods to gener-
ate paths and speed for the vehicles at intersections in the
goal of reducing overall fuel consumption and increas-
ing transportation efficiency, in fully connected and
partially connected traffics. Where Ref. [30] also consid-
ered the quality of the generated path and introduced a
heuristic algorithm to refine the trajectories of a team
of connected vehicles. Refs. [31] and [32] implemented
reinforcement learning to solve the problem considering
safety, efficiency and task completion in connected and
unconnected scenarios accordingly.

In this paper, we mainly focused on planning and deci-
sion-making technologies at road intersections, as shown
in Figure 2. Firstly, we divide the general planning and
decision-making technologies at intersections from the
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previous paper into several major approaches: graph-
based approach, prediction-based, optimization-based
approach, and machine learning based approach. Then,
we summarized those technologies used in vehicle infra-
structure cooperative environment. Both signalized and
unsignalized intersection(s) are considered with purely
automated driving traffic and mixed traffic. We believe
the study learned from current strategies, protocols, and
simulation tools help researchers identify the presented
approaches’ challenges and determine the open issues for
future research.

The rest of this paper is organized as follows: In Sec-
tion 2, we introduce the general planning and decision-
making technologies at intersections. In Section 3, we
show that the Vehicle-Infrastructure cooperation control
method for intersections. In this section, we also dis-
cuss in detail about the impact of wireless communica-
tion technologies. Then, we compare existed state-of-art
under mixed traffic environment, and their according
performances are studied in follow Section 4. Further-
more, the previous approaches’ challenges and determine
the open issues for future research are discussed in Sec-
tion 5. Finally, Section 6 concludes this paper.
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2 General Planning and Decision-making Methods
at Intersections
Planning and decision-making algorithms at intersec-
tions have been rapidly developed over the years. Which
includes planning algorithms such as optimal trajectory
generation within the topology occupation-free space,
and decision-making methods which mainly focus on
speed profile generation along the generated trajec-
tory. These methods generally share the same major goal
which is establish efficient, safe, and real-time behaviors
of the ego vehicle. Overall, planning and decision-making
algorithms of autonomous vehicles could be divided into
several categories, which include graph-based approach,
optimization-based approach and machine learning-
based approach. These methods are explained as follows.

2.1 Graph Based Approach

Graph based method which is also widely used in mobile
robotics could help vehicle find a path within the free
space. At intersections, an explore searching method
has been implemented, which is the rapid random tree
search (RRT) method. The RRT method is first intro-
duced by LaValle [33]. This algorithm could search a pos-
sible path under a very short period and could enable
fast regeneration if the environment changes. The algo-
rithm follows a growing tree based searching method,
the tree growing method could be briefly concluded as,
first, a point is randomly sampled in the free searching
space, secondly, the newly sampled point and each of the
tree nodes are connected, the distance is calculated from
each of the tree nodes to the newly sampled point and a
tree node is selected from certain heuristics, for exam-
ple, the shortest distance. Then from the nearest point
to the sampled point’s direction, a line with a predefined
length is extended from the nearest point to obtain a new
point (let us named it point x). Lastly, if the line segment
between the nearest point and point x are within the free
space, this point x and the connect line is attached as part
of the search tree.

After the RRT method was proposed, many variants
developed from this algorithm has been proposed. Some
classic variations including the RRT* algorithm [34] and
CL-RRT algorithm [35] which are two state-of-the-art
variants in literature and are often been compared with
as benchmarks. RRT* provides two additional steps com-
pared with traditional RRT by adding a rewire process
to the search tree growing process, and had shown that
it could provide asymptotic optimal paths with enough
searching time with proper modifications [36]. CL-RRT
uses the closed-loop simulation while generating the tree
to provide better feasibility of the generated paths. The
algorithm first generate tree search paths, then instead of
using straight lines to connect the nodes, it uses a simple
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controller to generate the path from the father node to
the new node. This method enables better control feasi-
bility as kinematic has been considered during the path
generation process. With the emerging development of
the RRT family, RRT-based algorithms had shown to sat-
isfying performances and are widely applied in autono-
mous driving including intersection scenarios.

Ma et al. [37] implemented a variation of the RRT
algorithms family to generate paths at an intersection.
It makes uses of the road geometry in the first place
and pre-generates splines accordingly as the base tree.
Using the spline as the initial tree, more branches are
generated so that a collision free path could be found.
By regenerating the search tree repeatedly at a high fre-
quency, obstacle avoidance could be performed. Chen
et al. [38] formed the problem in to a hierarchical plan-
ning problem. The major method could be divided into
three layers, high-level route planning layer, mid-level
task planning layer and the low-level motion planning
layer. The high-level route planning layer first generates
several way-points given the road geometry. Then, the
task planner generates tasks accordingly to the received
way-points. Finally, the low-level motion planner gener-
ates real-time control commands for each tasks as inter-
sections. Yoon et al. [39] introduced a spline-based RRT*
algorithm which combined cubic Bézier polynomial
curves and RRT* search method to achieve high efficient
collision avoidance at intersections under continuous
search space. Mehta et al. [40] introduced a human inter-
face into the RRT algorithm which enables an additional
experienced drivers knowledge that could assist the pro-
cess of re-planning.

However, RRT algorithms are mostly implemented in
maze and other static environments, with the complex-
ity and fast-changing nature of intersections leads to
conservative decisions and the refresh rate of the planner
may be challenging in some critical corner case scenarios.

2.2 Prediction-Based Approach

Only considers and plans on the current state could be
dangerous at times and might be insufficient to guaran-
tee full-safety. Thus, planning considering the predicted
future path of the environment vehicles is one of the very
popular ways to solve intersection planning problems,
crediting from the existing plentiful motion prediction
and risk assessment algorithms [41-48]. Huang et al. [44]
trained a variational neural network using multiple sen-
sors to predict the conditional variational distribution of
the possible future states of the ego vehicle.

The proposed algorithm is able to cooperate with vari-
ous uncertainties and also are able to coordinate between
different sensors’ information, by combining the physics-
based model to the system, it can increase the prediction
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accuracy and other performances of the prediction pro-
cess. Ref. [43] introduced an RNN-based method to
predict the surrounding vehicle’s intentions using Lidar-
tracking information. The recurrent neural network was
trained by a dataset containing of unsignalized intersec-
tion naturalistic driving behaviors. The naturalistic driv-
ing dataset was also used to evaluate the performance of
the prediction results. Using this method, the predictor
was able to predict severe potential collisions for more
than a second in advance. Jeong et al. [49] used support
vector machine to predict the intentions of environment
vehicles, given the predicted states, the vehicle could
generate and perform human-like planning behaviors at
unprotected intersections.

Jeong et al. [50] trained a long short-term memory-
based RNN to predict the future states of the surround-
ing vehicles, with the prediction results, the planner was
able to increase safety. Wang et al. [51] operates the preci-
sion process using the probabilistic occupancy to predict
the motions of vehicles with Monte Carlo simulation, the
prediction model was preset and which is obtained from
off-line training, then it is used for on-line planning to
achieve good real-time performance of planning result.
Ref. [52] also introduced a LSTM model that combines
intention estimation and trajectory prediction, the frame-
work first trained a high-level intention estimator to pre-
dict the rough path of the vehicle at intersections then it
performs a more detailed trajectory prediction at inter-
sections. For the prediction and planning framework, if
the prediction result is sound and accurate, this type of
methods could provide sufficient safety performance and
could be implemented under different scenarios. There-
fore, developing and applying these path prediction and
risk assessment algorithms, the result of the intersection
planning performance could be improved greatly.

2.3 Optimization Based Approach

Another popular approach for planning at intersections
is by modeling the planning problem into a real-time
optimization problem, by properly study and set up the
cost function and boundaries as well as constrains, plan-
ning and decision-making could be operated in a heuris-
tic manner. One major type of optimization method used
for autonomous driving at in intersections is the model
predictive control method. The key components in a
model predictive control framework include an obstacle
model, a vehicle model and a proper optimization solving
method.

The vehicle model includes the point-mass [53] model
which takes the vehicle as a single point with a certain
mass, which does not consider the vehicle’s shape or
kinematic [54] or dynamic [55]. The kinematics model
on the other hand, takes in the vehicle geometry into
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consideration which is often used in path planning, one
classical type of formulation of the kinematic formula-
tion are knows as the bicycle modeling. The dynamic
model is established considering the dynamic characters
of the vehicle, which could include tire model, vehicle
body dynamic model which are nonlinear, and are often
used in vehicle control problems and highway scenarios
with large or rapid change lateral forces. The obstacle
model which are established and set for obstacle avoid-
ance includes 2 types of classical approaches. One of
them is through setting a virtual repulsive force as part
of the reward function to add forces to keep a safe dis-
tance from the obstacle to the ego vehicle, this type of
formulation are also known as the potential field method.
A variable for additional slackness could be added to the
constraints of the optimization process, which are able
for more acceptable feasibility. However, sometime this
kind of modifications could lead to nonconvex and non-
linear cost functions, and proper linearization or approx-
imation for the optimization process is necessary. One of
the other approach is through properly setting the con-
strains which allow the ego vehicle to operate within the
obstacle-free space, but in reality, the constrains obtained
from the real-world are most likely nonconvex. Solv-
ing those nonconvex problems could lead to very high
computation power requirements, therefore, the model
is often modified to a linear programming (LP) prob-
lem, quadratic programming (QP) problems [56], etc.
or dynamic programming problem. After the model has
been properly established and set to a typical optimiza-
tion problem, then this problem is solved by using the
corresponding optimization solver.

Optimal control method such as model predictive
control (MPC) has been broadly developed and used
in solving planning and decision-making problems for
autonomous vehicles at intersections. Authors in Ref.
[57] designed a Robust Model Predictive Control plan-
ning algorithm to guarantee sufficient safe gaps at critical
intersection scenarios. This method improves the driving
efficiency and driving comfort and also refines the model
with “Affine Disturbance Feedback” Ref. [51] introduced
a hierarchical method for planning at intersections, it
first used road geometry to generate some reference ini-
tial trajectories, then model predictive control was used
to optimize the initial trajectories and generated deci-
sions and the corresponding motions along the refined
path. During this process, the constrains and optimiza-
tion boundaries of the optimization problem was easy to
be implemented through coordinate transformation. For
the final level, probabilistic-occupancy grid-based pre-
dictions of environment vehicles which were obtained
before-hand to enable better real-time performances.
The simulation results have showed that there exists good
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improvement of the planned path and speed, which also
demonstrated the efficiency of the proposed approach.

Hult et al. [58] presented a bi-level (coordination
arrangement level and vehicle motion planning level)
MPC for intersection planning. Which coordinated
occupancy time slots before the vehicle enters the inter-
section and provides ego vehicle direct control inputs
separately. This approach had shown solid improve-
ments on the feasibility and stability of the planning per-
formance at the intersections with certain assumptions.
Nilsson et al. [59] used two loosely coupled MPCs to ena-
ble better planning performance, the idea of decoupling
of the longitudinal and lateral of the vehicle control is
introduced and the two MPCs are assigned to each direc-
tion accordingly. Liu et al. [60] introduced a MPC model
that could automatically select appropriate parameters
for various types of maneuvers to increase the generality
usage of the planner. To obtain better driving comfort, a
special lane-associated potential field was implemented.
Also, the environment vehicles are seen as polygons
which are modified to be converted into hard constraints
in the MPC problem to ensure safety. Ref. [61] generates
speeds of the vehicle within a fixed generated path from
a set of waypoints by using temporal optimization. How-
ever, the problem turns out to be nonconvex. To solve
this problem, the MPC problem was simplified by a set of
quadratic programs and were solved by the slack convex
feasible set (SCES) algorithm to improve the real-time
performance of the proposed method. Ref. [17] formed
the two-dimensional intersection steering and accel-
eration planning problem into an optimization problem,
the motion dynamics of ego vehicle were considered in
a distance scale instead of a time scale. The optimiza-
tion problem was solved based on Minimum Principle of
Portraying.

Other optimal control methods such as the Bezier
curve optimization method is implemented for inter-
section planning. Ref. [62] considers constrains such as
collision avoidance and formulates the planning prob-
lem as an optimization problem under equality con-
strains. Then, the optimization is solved using Quadratic
programming (QP) and Hildreth’s algorithm. Ref. [63]
assumed that the ego vehicle is able to detect all sur-
rounding obstacles. With this assumption, it introduced
a reactive and adaptive path planner and also formalized
the problem as a Bezier curve optimization problem with
certain constrains and solved it using Lagrangian and
gradient-based methods.

2.4 Machine Learning Based Approach
Machine learning (ML) approach has been a boost-
ing approach due to the prosperous development of the
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artificial intelligence and the wider application of the
computer science. By using these ML approaches, the
ego vehicles is able to implement more human-like driv-
ing behaviors by studying from naturalistic driving data
or from driving expert experiences. Using those meth-
ods, the ego vehicle is able to cooperate under complex
scenarios.

2.4.1 End-to-End Neural Network Approach

One common approach for the neural network (NN)
approach is the end-to-end approach, that is, by feed-
ing in the images and sensor information of expert driv-
ers driving at intersections and the actual actions of the
drivers at such scenarios, a NN network is trained so that
when at a similar scenario, giving the original input from
the sensors, the model will be able to directly provide
actions as output. This mean that the logic in the deci-
sion-making from perception to action is embedded in
the NNs. Ref. [64] uses end-to-end methods as the core
of its proposed algorithm, however, they used 360-degree
camera instead of only using front camera as classical
end-to-end planners would do. The trained network has
also been carefully modified to adapt to the new censor-
ing format. Also, a route planner is added to help the
driving task significantly. Which as result, this proposed
method could decrease the chances of collision at inter-
sections. Instead of only having camera input for classical
end-to-end methods, Ref. [65] took LIDAR and HD maps
as inputs which enables a 3D interpretation, the paper
put the newly proposed method into real-world practice,
and the learned cost volume could help the ego vehicle
perform more safely at intersections, and the vehicle is
able to handle traffic light while interacting with the sur-
rounding traffic participants.

2.4.2 Reinforcement Learning Based Approach

Reinforcement learning (RL) is also a common approach
for intersection decision-making and planning for auton-
omous vehicles, for classical RL problems the reward
functions are set up using the expert driving knowl-
edge, and shall be fine-tuned for better performance.
However, with the development of the NN networks,
these approaches are commonly combined with neural
networks to better learn from human expert behaviors
which enables better feasibility. Bouton et al. [66] intro-
duced a safe RL algorithm using a method called model-
checker to improve safety, they also used a learning based
belief update method which allows the applied method to
better coop with occlusions and sensor-obtained errors.
Ref. [67] enabled general decision-making of intersection
vehicles at occluded multi-lane intersections. The reward
function combines risk assessment and the NN-based
Q network is used to estimate the possible risk, which
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enabled the planner to enable less cation actions but at
the same time ensures safety. Ref. [68] studied typical
behaviors of other vehicles which enable the ego vehicle
to better coop with environmental interactive vehicles
at intersections. The speed profile of the surrounding
vehicles and the dynamic distance from the environ-
ment vehicles to the ego vehicle was evaluated and are
later on considered in the model to perform different
types of driving behaviors. This algorithm proposed ena-
bles the ego vehicle to cross the intersection safety since
it avoid collision almost in most of the operation period,
this performance has outperformed many state-of-the-
art models at that time. Ref. [69] introduced an inter-
section planner and decision maker that considered the
operational-level control of the vehicle at intersections.
The planner takes the hard dynamic and kinematic con-
strains of the ego vehicle into consideration in the deep
RL model, this increases the feasibility of the general-
level planning outcomes in the real-world intersection
planning scenarios, and the feasibility of using the algo-
rithm in applications was verified by simulations. Isele
et al. [70] combined reinforcement learning and NN to
learn active sensing behaviors to achieve safety in a con-
gestion intersection environment. Qiao et al. [71] learned
the policies of intersection scenarios with automatically
generated curriculum (AGC) to increase the learning
process. The performance of the deep reinforcement
learning approach is closely related to the training data,
and it is a crucial thing to obtain accurate, complete, and
sound dataset to let the model learn all the possible sce-
narios which leads to safer and better planning and deci-
sion-making outcome.

2.4.3 Partially Observable Markov Decision-Making Process
Approach

In a Markov decision-making process (MDP) model, all
the states, transfer functions, reward functions, etc. are
considered to be static. However, in the real-world appli-
cation and modeling, the states of the participants and
environment are not always fully observable. Thus, to
represent this uncertainty of the real world, a partially
observable Markov decision-making process (POMDP)
based approach has been widely applied and is becoming
an emerging technique for highly interactive intersection
planning problems for self-driving vehicles. POMDP is a
decision-making framework for the agent in an uncertain
scenario. The model is able to merge the uncertainties
formulation into its own framework, for decision-making
and planning of self-driving vehicles, these uncertainties
could be sensors perception noise, surrounding drivers’
intention uncertainties, future paths uncertainties and
control output uncertainties. The agent would receive an
observation from the reward after a decision had been
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generated at each time step [72]. The major approach for
solving the POMDP problems could be categorized into
two types, one of them is the exact solution methods and
another one is the approximate solution methods. For
real-world intersections planning problems which is very
complicated, an exact solution is often impossible to find
in real time, therefore, it is common to obtains approxi-
mate results as the solution.

Bouton et al. [73] navigated the ego vehicle at intersec-
tion scenarios where frequent changes usually occurred
by modeling the problem into a POMDP problem and
solved the problem using Monte Carlo tree search
(MCTS) method, the presented results proved that
the planner outperform the threshold-based heuristic
method in both safety and efficiency. Ref. [74] also for-
mulated the intersection planning and decision-making
problem into a POMDP problem, the paper modeled the
unknown intention of the surrounding vehicles with a
probabilistic model and merged that into the observation
model of the POMDP model. By solving the POMDP
problem, the ego vehicle was able to make decisions in
a continuous space on a fixed path at intersections in an
online manner. Extend from Ref. [74], Ref. [75] proposed
an intersection planning and decision model that the
model is able to coop with multiple surrounding vehicles
and was capable to outperform the base-line method in
computation time, the proposed POMDP model was also
able to operate in a continuous state space. Due to the
curse of computational complexity, planning methods
using POMDP methods often plans the vehicle’s speed
on a fixed path. However, this indicates that the inter-
section is not fully explored, Refs. [76, 77] proposed a
critical turning point (CTP) concept that enables the ego
vehicle to generate several candidate paths to select and
follow. which the candidate paths are generated through
quintic polynomials. Given the candidate paths, the ego
vehicle is able to select a candidate path and then plan
speed along the selected path based on the beliefs of the
uncertain intentions of the oncoming vehicle. Therefore,
the intersection space is better explored under a limited
amount of computational power.

Ref. [78] considered occlusion caused by both dynamic
and static objects, and represented the movements of the
surrounding vehicles in the observation filed (OF) and
the phantom vehicles as reachable sets. This enabled the
ego vehicle to operate in urban intersections and per-
form less conservative yet safe actions compared to the
traditional method. Brechtel et al. [79] considered sev-
eral kinds of uncertainties and predicted the results from
different actions due to various assumptions in the pro-
posed algorithm. The authors did not applied symbolic
representation to represent the state-space for all the
possible cases, instead, they used a continuous solver that
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represents specific situations. Ref. [27] developed deci-
sion-making at generalized congested intersections that
avoided both static and dynamic obstacles. The objects in
the observable area were being predicted and the objects
in the occluded area were modified with more attention
to avoid dangerous collisions. The proposed algorithm
was able to generate human-like behaviors at uncon-
trolled intersections.

3 Vehicle-Infrastructure Cooperation Method

for Intersections
3.1 Cooperation Methods in Signalized Intersection
Research on optimization algorithms on traffic conflict at
intersections began at the end of the last century. Since
the concept of CAV has not yet emerged at that time, the
early research on traffic optimization algorithms focused
on the study of signal timing, i.e., optimization on the
traffic signal phase and timing (SPAT).

In 1998, Schutter used optimal control to minimize
the queuing length [80]. At the beginning of this century,
the second wave of artificial intelligence also affected
the field of transportation management. Bingham used
a fuzzy neural network method to optimize SPAT [81].
Wiering [82] and Abdulhai [83] introduced reinforce-
ment learning into the field of SPAT optimization. They
innovatively regarded the traffic lights in continuous
intersections as multiple agents. Through the communi-
cation equipment, i.e., V2X technology as shown in Fig-
ure 3, the central coordinator collects the position and
velocity of the CAVs. Estimation on the waiting time of
the vehicles at the intersection is further accomplished to
be used in SPAT optimization. In the optimization pro-
cess, minimizing the waiting time of all CAVs is taken as
the optimization target. Q-learning method is applied to
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Figure 3 lllustration of the traffic light optimization in signalized
intersections [84] (CAVs upload their information to the traffic control
center through the wireless network. The optimized SPAT is sent to
the controller at each intersection)
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optimize the SPAT of multiple intersection traffic lights.
Duan extended the previous method, adopting different
optimization goals in different traffic flows, and collabo-
ratively optimizing the timing of multiple signal lights
[84].

With the merging development of automated vehicle
technology, researchers have gradually taken CAVs into
consideration for traffic optimization at intersections
rather than merely collecting the CAVs’ information.

The most commonly-known research in this field is the
predictive cruise control algorithm proposed by Asadi
[85]. First, through V2I technology, the CAV obtains the
SPAT information of several consecutive traffic lights
ahead. The time window of the continuous traffic green
lights provides hard constraints to CAV control. Then,
combined with the vehicle model, model predictive
control (MPC) is applied to control the CAV to drive
through several consecutive traffic lights with no idling at
the intersections. Through continuous velocity trajectory
planning, the overall travel time of the CAVs is signifi-
cantly reduced. In this algorithm, CAVs are guaranteed
to pass multiple intersections without stopping, which
is also named as green wave traveling in later research.
Xu proposed a hierarchical cooperation optimization
method for the traffic light and CAVs [86]. In this study,
considering the complex coupling relationship between
signal light time allocation and CAV driving strategy
optimization, Xu decoupled the problem into the upper-
level traffic efficiency optimization problem and the
lower-level CAV control problem as shown in Figure 4.
In the proposed hierarchical control method, the upper-
level controller optimizes the overall traffic flow and pro-
vides each CAV a target arrival time at the intersection.
The lower-level controller optimizes the fuel consump-
tion of CAV based according to the received arrival time,
i.e., a terminal time constraint in the optimization.

I | | Onboard 1 |
l l | H Vehicle Control | |
: " ol |
| Traffic Optimization |!]| || | Speed | | Position ||
' |y g T—_I
| .

[ l ¢ N | .
: Signal Vehicles’ : : Onboard N |
(| Timing arriving time || f{ Vehicle Control | :
[ R ¥ v |
| L+ - x-

| Roadside | : | Splucd | I Position |:

Figure 4 |llustration of the hierarchical cooperation optimization
method for the traffic light and CAVs in Ref. [86] (The traffic efficiency
is optimized at the upper controller and the fuel consumption at the
lower controller. Vehicle arrival time is the intermedia value)
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3.2 Cooperation Methods in Unsignalized Intersection
Since CAVs obtain traffic light SPAT in advance, it is
unnecessary to keep the traffic light if all vehicles are
CAV. In approaching the intersection, each CAV is
capable of scheduling the arrival time and optimize its
speed trajectory. However, the routes of incoming CAVs
have complicated conflict relationships at intersections.
Therefore, obtaining a high-efficiency conflict-free arrival
plan is a priority in CAV scheduling. Researchers have
also pointed out that the passing order of the vehicles is
the key factor influencing traffic mobility at intersections
(87, 88].

As incoming CAVs approach the intersection from dif-
ferent directions, the optimal passing order changes con-
stantly and the solution space increases exponentially,
preventing the determination of the optimal passing
order using the brute-force method. This problem is typi-
cally solved using a reservation-based method [89]. The
most straightforward reservation-based solution is the
first-in-first-out (FIFO) strategy, in which vehicles that
enter the intersection first are scheduled to leave it first
[14, 86, 90]. There exist plenty variants of the basic FIFO
strategy. In Ref. [91], the FIFO strategy is extended into
platoon based scenarios, i.e., the scheduling unit is a CAV
platoon rather than single CAV. In Ref. [92], the schedul-
ing is made according to CAVs’ estimating arrival time at
the intersection. In Ref. [93], the queuing theory is intro-
duced to dissipate the accumulating CAVs.

However, the FIFO passing order is not likely to be
the optimal solution in most cases. Batch-based strategy
is an improved version of the FIFO strategy, and it pro-
cesses the vehicles in batches according to their direction
to reduce the traffic delay [18]; however, its performance
has not been fully optimized. Another widely used strat-
egy is the optimization-based method. After formulat-
ing the scheduling problem as an optimization problem,
various methods have been proposed to find the optimal
passing order. Ref. [74] POMDP to formulate the prob-
lem, and used the adaptive belief tree algorithm to find
the optimal passing order. Ref. [94] proposed a similar
method to create a tree representing all possible solu-
tions of the pass order, where the leaves of the tree stand
for the complete scheduling plan. Guler [95] proposed
an iterative algorithm to find the optimal passing order.
In Ref. [96], they extended their work and proposed two
central problems of intersection management: (1) Find
the optimal arrival/departure sequence of CAVs, (2)
Once they know the arrival/departure time, CAVs can
obtain their optimized speed trajectory through various
control methods, e.g., optimal control. In their research,
they used the branch and bound method to find the best
arrival/departure sequence. Guney [97] used particle
swarm optimization (PSO), and Lu [98] used mix integer
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linear planning (MILP) to solve similar problems. Liu
[99] transformed the centralized optimization problem
into a distributed optimization problem, and solved the
problem locally on each vehicle to find the best solution.
In Ref. [100], a queue-based method was introduced to
find the optimal solution that leads to the smallest aver-
age delay. Similar ideas are also applied in Ref. [101].

Apart from these specific methods, some researchers
have also noticed that finding the optimal passing order
of multiple CAVs is a discrete problem rather than a con-
tinuous problem, and thus graph theory is considered a
promising methodology to describe and solve this prob-
lem. Studies have modeled the problem using graph the-
ory by employing the conflict graph analysis to optimize
the traffic-signal phase plan [102, 103]. However, the
scheduling of multiple CAVs is more difficult than sched-
uling a limited number of traffic signal phases because
the number of incoming CAVs is much larger than the
number of traffic signal phases. Some methods have been
proposed to address this difficulty. Apart from the depth
first spanning tree (DFST) algorithm proposed in Ref. [6],
Petri net [104] and conflict duration graph [105] are also
used in modeling the scheduling problem. However, the
discussion on the optimality of the scheduling problem of
multiple CAVs is inadequate.

To tackle the problem of optimality, mathematical
modeling, i.e., the computational reduction of the inter-
section scheduling problem, is an essential research
aspect. Some researchers have focused on reducing this
problem into typical algorithmic problems, including the
job-shop scheduling problem [106], abstraction-based
verification problem [107], and polling system problem
[108]. In Refs. [109, 110], the problem is reduced to mini-
mum clique cover problem, i.e., a classical NP-hard graph
theory problem and a heuristic method is proposed to
find the optimal passing order with high efficiency.

3.3 CAV Control Methods in the Cooperation
CAV control involves two aspects: longitudinal control
and lateral control. In most of the previous research,
lateral control is neglected by assuming the CAVs are
running on their target lanes. Longitudinal control
is the fundamental control problem in intersection
management.

Considering a fully autonomous intersection scenario,
a hierarchical framework is frequently used to realize the
CAV coordination [86]. First, after collecting the infor-
mation of the CAVs in real-time, the centralized control-
ler schedules the arrival time of the CAVs to improve the
traffic efficiency. Then, a distributed controller is applied
to the CAV to implement the determined arrival plan.
Multiple methods have been proposed to address the
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vehicle control problem. Milanés proposed a fuzzy logic
method to optimize the speed trajectories of two CAVs
[111]. Onieva used the fuzzy logic method to analyze the
relative driving conditions of a CAV and a conventional
vehicle. Then genetic algorithm is used to optimize the
control parameter of the vehicle [112].

Malikopoulos claimed that at multiple intersections, a
distributed optimal control method is suitable to mini-
mize fuel consumption and maximize intersection flow
[113]. In this paper, the definition of the CAV informa-
tion set is given, and it is proved that whether the flow
maximization problem has a feasible solution is only
related to the hard constraints of the CAVs. They fur-
ther proposed the application of the distributed optimal
control method in multiple intersections [114], and pro-
vided the proof of the feasible solution conditions of the
method [115]. Moreover, the virtual platoon method was
proposed in Ref. [6], which projects the CAVs from dif-
ferent lanes into a virtual lane. Thus, the typical vehicle
platoon analysis methods [116] can be used in the con-
trol problem of the CAVs on different lanes as if they are
traveling in the same lane.

Energy consumption is the main focus of intersec-
tion cooperation. Eco-approaching focuses on the CAV
approaching process, which is the main focus on most
of the research. Avoiding queuing [117, 118] and green
wave driving [119, 120] are two common research top-
ics. Human driving error [121] and mixed traffic [122] are
also discussed in some research to further improve the
fuel economy. Eco-departure is another types of research
which focus on the CAV leaving process. Ref. [123] opti-
mizes the departure process of a CAV platoon to mini-
mize the energy consumption.

In the aforementioned studies on intersections, the
CAVs were assumed to run in their target lanes, i.e.,
only their longitudinal control was considered. In prac-
tice, however, CAVs approach from random lanes and
have different target lanes; therefore, it is necessary to
extend this research to scenarios that permit lane chang-
ing. Earlier studies on this topic focused on obtaining a
smooth CAV speed trajectory [124, 125]; however, traf-
fic efficiency was not investigated completely. With
regard to CAV scheduling, which we are concerned
with, a few studies formulated this problem as an MIP
[126] or a linear programming problem [127]. This was
done by assuming that lane changing maneuvers are
accomplished in a given time interval. Ref. [128] pro-
posed a practical bi-level framework, where the high-
efficiency arrival plans and collision-free path planning
are solved on the upper and lower levels separately. Ref.
[129] proposed a practical method to decouple the lon-
gitudinal control and lateral control of the CAVs. Several
other prospective studies also focused on changing lane
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directions dynamically rather than allocating CAVs to
constant directional lanes [130-132]. However, flexible
lane directions are unsuitable for a mixed traffic environ-
ment, where human-driven vehicles (HDVs) and CAVs
coexist.

4 Planning and Decision-making Method
under Mixed Traffic

For real-world implementation of CAVs, essential
requirements include equipment of connected devices,
e.g., being equipped with vehicle-to-vehicle or vehicle-
to-infrastructure equipment [133], and capabilities
of autonomous control, i.e., being directly operated
by industrial personal computers or microcontrollers
[134]. According to the Department of Transportation
of US, it will take 20-25 years to realize 95% MPR of
connected vehicles [135], and based on the estimation
of Ministry of Industry and Information Technology
of China, the MPR of partial/conditional autonomous
vehicles is expected to reach 25% by 2025 [136]. Con-
sidering the long-term deployment of CAV technolo-
gies, research on mixed traffic environment of CAVs
and HDVs is of great importance to improve traffic
mobility at intersections in the near future.

4.1 Traffic State Estimation under Mixed Traffic

The aforementioned research mainly considered a fully-
autonomous scenario—the market penetration rate
(MPR) of CAVs is 100%. In practice, however, it might
take decades for all the HDVs in current transportation
systems to be transformed into CAVs. Instead, a more
practical scenario in the near future is a mixed traffic
system where CAVs and HDVs coexist [137].

Existing research on mixed traffic intersections
mostly focused on the estimation of traffic states and
optimization of traffic signals. For example, Priemer
et al. utilized dynamic programming to estimate the
queuing length in the mixed traffic environment and
then optimized the traffic phase time based on the esti-
mated results [138]. Feng proposed hierarchical archi-
tecture to allocate the traffic SPAT [139]. Estimation
of location and speed (EVLS) method was built to seg-
ment the incoming road. Afterwards, the HDVs’ driving
information is estimated based on the segmentation.
Using fuzzy logic, the traffic condition on the envi-
ronment was also estimated in Ref. [140]. Ref. [9] pro-
posed a method to combine the vehicle arrival time and
expectation maximization to estimate the traffic flow.
The fundamental idea of the research is to estimate
the HDVs’ trajectory and traffic flow through CAVs’
trajectory.
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To improve the estimation accuracy, the celebrated
results on microscopic car-following models have been
recently employed to describe the behaviors of HDVs,
including Gipps Model [141], Optimal Velocity Model
(OVM) [142] and Intelligent Driver Model (IDM) [143];
see, e.g., Refs. [144, 145].

4.2 CAV Control under Mixed Traffic

Despite these existing works, the topic of CAV control,
i.e., trajectory optimization of CAVs, in mixed traffic
intersections has not been fully discussed. To tackle this
problem, several works regarded HDVs as disturbances
in the control of CAVs [118, 144], or focused on the task
of collision avoidance based on the prediction of HDVs’
behaviors [30, 122]. It is worth noting that most of these
methods were limited to improving the performance
of CAVs themselves in their optimization frameworks,
instead of optimizing the global traffic flow consisting
of both HDVs and CAVs at the intersection. Two nota-
ble exceptions are in Refs. [29, 146], which attempted
to improve the performance at the signalized intersec-
tion from the perspective of the so-called mixed platoon.
They enumerated several possible formations consisting
of HDVs and CAVs, and investigated their effectiveness
through small-scale simulation experiments. Ref. [147]
clarify a general and explicit definition of the “1 + n”
mixed platoon as shown in Figure 5. A concise conclu-
sion is made that the stability and controllability of the
proposed platoon structure is irrelevant to the platoon
size.

In fact, considering the interaction between adjacent
vehicles in the same lane, it is easy to understand that
velocity trajectories of CAVs could have a certain influ-
ence on those of surrounding vehicles, especially the
vehicles following behind them. Accordingly, the driv-
ing strategies of CAVs could have a direct impact on the
performance of the entire mixed traffic intersection; such
impact might even be negative when inappropriate CAV
strategies are adopted [118]. By contrast, when taking
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Figure 5 Schematic for the”1 + n"mixed platoon (Red arrows
denote the information flow of the leading CAV (colored in red),
which collects information from the following HDVs as well as the
traffic light and has an external control input. Black arrows represent
the information flow of the HDVs (colored in black), which are under
control by human drivers and only acquire information from the
preceding vehicle)
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the performance of entire mixed traffic into explicit con-
sideration, the optimization of CAVs’ trajectories could
bring further benefits to traffic mobility. Such idea of
improving the global traffic performance via controlling
CAVs has been recently proposed as Lagrangian Control
of traffic flow [148], which has been discussed in various
traffic scenarios, including closed ring road [137], open
straight road [149], traffic bottleneck [150], and non-sig-
nalized intersection [151].

The vehicle trajectory planning problem in mixed
traffic environment is similar to that of the 100% MPR
conditions, which is interpreted in Section III-C. The
difference of vehicle trajectory planning in mixed traffic
environment is that the HDV behavior has influence the
CAV trajectory planning result. Typical methods to solve
the problem include shooting heuristic method [30], pre-
ceding horizon method [152] and event-triggered algo-
rithm [147].

5 Discussion and Potential Research Direction
Based on the planning and decision-making technologies
mentioned above, we summarize the current open issues
and discuss several critical future research directions on
planning and decision-making at intersections in this
section.

5.1 Penetration Rate of CAVs and Level of Automation
The penetration rate of CAVs shows significant influence
to the performance of the above planning and decision-
making methods [72, 122, 153]. Higher penetration rate
of CAVs usually means better performance in many
methods. In fact, many existed studies assumed 100%
penetration rate of CAVs with fully automation to reduce
the complexity of the planning and decision-making
model. Full information of all vehicles can be used and/or
all vehicles can be controlled to better design the inter-
section planning and decision-making methods, this
guarantees conflict-free vehicle cooperation [86, 110].
However, we all know that the 100% penetration rate
of CAVs and fully automated vehicles (i.e., level 5) need
much more time than we expected, despite the grows of
the number of CAVs and the development of CAVs’ tech-
nologies. Therefore, it is important to analysis the per-
formance of the proposed planning and decision-making
models at intersections under mixed traffic scenarios. It
will make the method more piratical and convincing if it
could handle traffic with both human-driven vehicles and
CAVs, with and without connectives, and with different
levels of automation [154, 155].

Moreover, some studies demonstrated that there
existed a significant changing point of the performance
along with the increasing of the penetration rate of CAVs.
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Niroumand et al. developed a program to program to
control the trajectory of mixed connected-automated
vehicles (CAVs) and connected human-driven vehicles
(CHVs) through signalized intersection. The results indi-
cate that the proposed program will become the domi-
nant signal indication after the CAV market penetration
rate of 80% [156].

Although there is several remarkable research related
to the impact of the penetration rate of CAVs, there are
still many problems need to be explored. As a good start-
ing point, it is urgent to conduct more complex inter-
section planning and decision-making scenarios with
different penetration rate of CAVs. Meanwhile, previous
studies usually adopted simulation-based model to study
the impact of the penetration rate. Developing theoreti-
cal models or theoretical simulation combined models
can better verify the impact of penetration on intersec-
tion planning and decision-making performances.

5.2 Reliability of Communication

The rapid development of the V2X technology provides
an opportunity to improve traffic mobility and safety in
intersection management [133]. Through vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) com-
munication, a centralized controller is deployed at the
intersection to coordinate the connected and automated
vehicles (CAVs) to pass through the intersection. Same
as the penetration rate of CAVs, many current studies
assumed perfect communication environment to support
the planning and decision-making method [157, 158].
However, communication issues, such as latency [159],
package loss [160], band-width [161, 162], is highly affect
the model performance at intersections. It is hard for a
traffic engineer to understand what makes these issues
occur. However, more efforts to develop a method with
robustness to these issues need to be conducted. Liu et al.
considered vehicle coordination at signal-free intersec-
tions with latency [163].

Although these factors to impact the reliability of com-
munication has been studied by the networking commu-
nity and the control community, we still lack a connection
between communication performance and intersection
level planning and decision-making performance.

5.3 Driver Behavior of CAVs at Intersections

Significant amount of research has been done on the
driver behavior under homogeneous traffic conditions
at intersections [164], however little or no research has
been found on mixed traffic conditions, where vehicles
do vary in physical and dynamic characteristics [165]. As
for mixed traffic with CAVs and human-driven vehicles,
fewer studies related to the area.
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Since there are few CAVs in real-world, researchers
mainly using simulation approach to analysis the driver
behavior of CAVs under mixed traffic at intersections
[166—168]. R Arvin et al, evaluated the safety perfor-
mance of CAVs at intersections. A simulation framework
was developed, and Adaptive Cruise Control (ACC) and
cooperative CACC car following models are used to
mimic the behavior of CAVs [169].

The nature of human planning and decision-making
at intersections has significant research value. A well-
developed driver behavior is robust to environmental
uncertainties and can well capture the real-world behav-
ior of human drivers. By adapting the driver behavior
model, vehicles with more accurate predictions of human
actions can be provided when operating in mixed traffic
environments.

5.4 Multi Intersections Coordination and Optimization
The current planning and decision-making technologies
using CAV mainly emphasized on isolated intersection.
Few of them discussed coordination and optimization
between two or more intersections. The main challenge
of Multi intersections planning and decision-making
is how to use CAVs and other communication devices
to coordinate multiple intersections, and how to effec-
tively solve the resulting large-scale problems. These
issues require further specialized investigation. Bui et al.
focused on optimizing traffic flow at multiple intersec-
tions using Cooperative game-theoretic approach [170].
Zhang et al. coordinated control of traffic signals between
intersections using adaptive genetic algorithm based on
cloud computing [171].

Analyzing the planning and decision level coordina-
tion and optimization for multi intersections still needs
more efforts to conducted. Finding global optimal solu-
tion with avoid falling into a local optimum and has fast
solution efficiency can significant improve the mobility of
the transportation system.

5.5 Multi-objective Multi-agent Planning
and Decision-making

The traffic condition at intersections very complicated.
The geometry of the intersection is often inconsistent
and participants are various. Therefore, the planning
and decision-making objectives for each traffic par-
ticipants at intersections are usually different. Current
algorithms for optimizing traffic operations at an iso-
lated intersection consider mostly one objective func-
tion [19, 66, 170]. For example, vehicle delay is main
factor to impact traffic mobility. The approach to opti-
mize vehicle delay can lead to long pedestrian wait-
ing times as well as reducing safety conditions at the
intersection. We know that some optimization goals
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cannot be achieved at the same time, and some are
even contradictory. How to balance or adjust the final
collaborative optimization according to different pur-
poses is one of the research directions. Ref. [172] pre-
sented a multi-criteria optimization approach to the
isolated intersection. The trade-off algorithm between
vehicle and pedestrian delay is developed. The pro-
posed approach is tested and showed that by worsen-
ing vehicle delays, pedestrian delays can be improved.
Ref. [173] developed a multi-objectives model that con-
sidered including guaranteeing CAV safety, alleviating
traffic congestion, and improving the performance of
fuel consumption.

With the development of future research, at least two
different intelligent bodies such as roads and vehicles
will appear in the entire autonomous transportation sys-
tem. How to coordinate and solve the planning decision-
making problems between different agents will affect
road safety and the efficiency of the entire transportation
system. At present, there are two solutions for intelli-
gent decision-making technology in autonomous driving
technology: one is a rule-based [174], and the other is
a solution that is constantly iterated through artificial
intelligence [175]. Among them, the rule-based solu-
tion requires manual construction of a very complex rule
structure, which can happen; while artificial intelligence
uses neural networks, confrontation networks and other”
black box” processing solutions, the driving behavior of
autonomous vehicle drivers is closer to human driving
behavior.

5.6 Real World Testing and Implementations

Real world testing and implementations for planning and
decision-making under CAVs at intersections is another
critical research direction in the area. There are thou-
sands of papers related to planning and decision-making
methods since 2000’s and the majority of them are simu-
lation-based [26, 176, 177]. In the early stages of research
in this field, it is acceptable to avoid using real data.
Because in the beginning, it was just to prove that some
algorithms are feasible for planning and decision-making
at intersections. However, along with the development
of different planning and decision-making methods, the
data itself plays more and more important roles in prob-
lem formulating, model building, and algorithm devel-
oping. In simulation environment, we could simplify
many issues caused by traffic data, such as observation
errors, data lost, and data noise. Meanwhile, for traffic
state estimation using real-world observed data, obser-
vation errors are inevitable when applied to real traffic
systems [178]. Sometimes it may cause bias and even
failures of the theoretical methods develop by simulation
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environment. To conduct initial testing/validation of the
methods, there are several large-scale CV/probe vehicle
data sets at intersections that researchers can use, which
including the Interaction dataset [179], highD dataset
[180], and the inD dataset [181].

How and to what extent could the errors using real-
world data influence the accuracy and robustness of the
models are important research topics.

5.7 Energy Conservation

In the past decades, the transportation system has
resulted in increased air pollution and energy waste
issues. Passenger vehicles are a major pollution contribu-
tor, producing significant nitrogen oxides, carbon mon-
oxide, and other pollution. The Environmental Protection
Agency estimates that vehicles cause nearly 75 percent
of the carbon monoxide pollution in the United States.
China claims that the country would reach peak carbon-
dioxide emissions by 2030 and achieve carbon neutrality
before 2060. When vehicles pass through intersections,
the complexity and uncertainty of the environment often
lead to incomplete planning and decision-making, which
causes congestion. Traffic congestion usually leads to
high energy usage and air pollutant emissions. There-
fore, the urgent need to reduce the transportation sector
fuel consumption levels requires researchers and poli-
cymakers to develop various advanced energy conserva-
tion strategies for planning and decision-making at road
intersections. There are two major types of research top-
ics in this area. One focuses on the CAVs approaching
process, and the other focuses on the CAVs leaving pro-
cess. For CAVs approaching process, avoiding queuing
and green wave driving are two common research topics.
Ref. [117] developed an Eco-CACC algorithm that com-
putes the fuel-optimum vehicle trajectory through a sig-
nalized intersection by ensuring that the vehicle arrives
at the intersection stop bar just as the last queued vehicle
is discharged. The result demonstrated that the proposed
Eco-CACC system produces vehicle fuel savings up to
40%. Meanwhile, human driving error and mixed traffic
are also discussed in some research to improve energy
conservation further. As for CAVs leaving process, eco-
departure technologies draw researchers’ attention to
the CAV leaving process. Ref. [123] analyzed the eco-
departure of CAVs With V2X communication at signal-
ized intersections. The results showed that eco-driving
has the potential to save fuel for CAVs. However, its reali-
zation requires accurate control of the engine and trans-
mission. Although there are several publications related
to energy conservation at a road intersection, there is still
lots of research and work that needs to be done in this
area. The assumption of the existing papers is usually too
idealistic. Maybe the research work’s good starting point
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is to analyze the planning and decision-making under an
unsignalized intersection environment.

6 Conclusions

This paper summarized the studies related to planning
and decision-making technologies for CAVs at road
intersections. The focus of the research is how to make
AVs and CAVs pass the intersection safely and effi-
ciently. We searched several digital libraries for papers
published from the last five years and summarized the
main themes. The review started with general plan-
ning and decision-making technologies, four major
approaches are presented: graph-based approach, pre-
diction-based approach, optimization-based approach
and machine learning based approach. Then, the
review summarized Vehicle-Infrastructure cooperation
control method. With the wire-less communication
technology development, some planning and decision-
making methods deployed by the centralized controller
at intersections to coordinate the CAVs to pass through
the intersection through vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communication. Finally,
the review summarized planning and Decision-making
method under mixed traffic. After carefully review the
previous studies, the review identified the presented
approaches’ challenges and pointed out the open issues
for futures research. Detailed discussions were also
provided to present several future research needs and
directions in this important area.
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