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Abstract 

It is a striking fact that the path tracking accuracy of autonomous vehicles based on active front wheel steering is 
poor under high-speed and large-curvature conditions. In this study, an adaptive path tracking control strategy that 
coordinates active front wheel steering and direct yaw moment is proposed based on model predictive control 
algorithm. The recursive least square method with a forgetting factor is used to identify the rear tire cornering stiffness 
and update the path tracking system prediction model. To adaptively adjust the priorities of path tracking accuracy 
and vehicle stability, an adaptive strategy based on fuzzy rules is applied to change the weight coefficients in the 
cost function. An adaptive control strategy for coordinating active front steering and direct yaw moment is proposed 
to improve the path tracking accuracy under high-speed and large-curvature conditions. To ensure vehicle stability, 
the sideslip angle, yaw rate and zero moment methods are used to construct optimization constraints based on the 
model predictive control frame. It is verified through simulation experiments that the proposed adaptive coordinated 
control strategy can improve the path tracking accuracy and ensure vehicle stability under high-speed and large-
curvature conditions.
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1  Introduction
The rapid development of artificial intelligence technol-
ogy, it has brought new opportunities and challenges to 
autonomous vehicles, which have received increasing 
attention [1–4]. The main tasks in autonomous vehicle 
systems include environmental perception, vehicle posi-
tioning, behavior decision-making, motion planning, and 
execution control. As the core task in execution control, 
path tracking should ensure that the vehicle accurately 
follows the reference path and remains vehicle stability 
[5–8].

In active front wheel steering (AFS), steering opera-
tions can be applied to correct understeer or oversteer. 

AFS has been extensively studied and applied for path 
tracking, and shown to have little effect on vehicle longi-
tudinal dynamics and ride comfort. In Ref. [9], a switched 
strategy was proposed and the effects of different error 
models on the vehicle transient and steady-state char-
acteristics were analyzed. Lyapunov stability arguments 
were used to exploit the D-stability of vehicle path track-
ing closed-loop system to improve its transient behaviors 
[10]. Inspired by a model-free controller, an ultra-local 
model predictive control strategy for path tracking was 
proposed in Ref. [11]. To handle time-varying parame-
ters, a robust lateral control strategy based on H∞ control 
was studied [12]. A dynamic path tracking controller for 
a double-steering mobile robot on slippery grounds was 
designed in Ref. [13].

Vehicle limiting control methods to meet vehicle safety 
requirements under high-speed and large-curvature con-
ditions have received increasing attention. Many control 
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algorithms have been employed to improve the controller 
performance of AFS vehicles under extreme conditions. 
The center of percussion in the vehicle was used to design 
steering controller for autonomous racing vehicles in Ref. 
[14]. The vehicle sideslip angle in the feedback-feedfor-
ward control law was introduced in Ref. [15] to improve 
the path tracking accuracy and stability at the limits of 
handling. An obstacle avoidance and vehicle stability 
control strategy using safe envelopes based on model 
predictive control (MPC) was proposed in Refs. [16, 17]. 
The control strategy for drifting along the reference path 
beyond vehicle stability limits was studied in Ref. [18]. 
However, the controller performance is limited when the 
tire lateral force approaches the limits of handling.

Direct yaw moment control (DYC) can correct the 
vehicle posture by using differential braking to generate 
yaw moment. Coordinated control strategies based on 
AFS and DYC are therefore widely used for vehicle path 
tracking. Integrated longitudinal and lateral vehicle sta-
bility control was realized using a modular optimal con-
trol structure-based MPC, and the tracking errors were 
minimized using longitudinal control and yaw moment 
[19]. To enhance vehicle directional stability and steer-
ability, a new integrated control system based on non-
linear MPC was designed to coordinates active torque 
vectoring and electronic stability control [20]. A robust 
MPC with finite time horizon for path tracking was stud-
ied to address parametric uncertainties and external 
disturbances [21]. In Ref. [22], path tracking control via 
second-order sliding mode and nonlinear disturbance 
observer was studied. The coordinated strategy between 
path tracking and DYC based on vehicle sideslip angle 
estimation was proposed in Ref. [23]. In Ref. [24], MPC 
was combined with sliding surface control to track the 
reference yaw rate based on coordinated control frame. 
In the above works, the control strategies was coordi-
nated by DYC throughout the entire process of path 
tracking, and the advantages of AFS were not fully uti-
lized. Differential braking affected the vehicle longitudi-
nal dynamics and reduced the vehicle speed.

The tire cornering stiffness is an important param-
eter that reflects the tire dynamics. The tire dynamics 
tends to be in the nonlinear or saturated regime under 
high-speed and large-curvature conditions. A robust 
H∞ output-feedback control method for path track-
ing was proposed to deal with tire cornering stiffness 
uncertainty [25]. In Ref. [26], a novel robust adaptive 
indirect control method based on an exponential-like 
sliding-mode fuzzy type-2 neural network approach 
was proposed to enhance the path tracking perfor-
mance. A robust event-triggered automatic steering con-
trol approach with H∞ performance was studied in Ref. 
[27]. This methods use the bounded disturbance energy 

hypothesis to handle parameter uncertainties. The choice 
of the assumed bounded range is important because an 
inappropriate choice may lead to excessive conservative-
ness. A parameter identification model for tire cornering 
stiffness was derived in Ref. [28] based on vehicle dynam-
ics model, and the tire cornering stiffness in the linear 
segment was measured in low-speed circle test. The side-
slip angle was eliminated, and the normalized tire lat-
eral stiffness estimated using the recursive least square 
method [29]. As the amount of online observation data 
increased, the identification algorithm became suscep-
tible to dimensional disasters and excessive reference to 
historical data.

Based on the above previous works, a novel adaptive 
coordinated path tracking control strategy with direct 
yaw moment control based on MPC is proposed in this 
study to improve the tracking accuracy and ensure vehi-
cle stability. The architecture of the adaptive coordinated 
MPC path tracking control scheme is shown in Figure 1. 
The main innovations and contributions of this study 
are as follows: (1) The tire nonlinear dynamic character-
istics are described using a linear tire model. An online 
tire stiffness identification method is proposed in which 
the least square method with a forgetting factor is used 
to update the system prediction model parameters to 
improve the accuracy of vehicle state prediction. (2) To 
improve the tracking accuracy under high-speed and 
large-curvature conditions, an adaptive coordinated path 
tracking control strategy was proposed, the weight coeffi-
cient of the objective cost function is changed using fuzzy 
rules, and adaptive coordination between path tracking 
and DYC is realized. (3) The adaptive coordinated MPC 
controller is designed and tested on the CarSim-Simulink 
platform under these conditions.

The organization of this paper is as follows: The model 
of the path tracking control system and controller design 
are presented in Section 2. The adaptive coordinated con-
trol strategy is presented in Section 3. The simulation is 

Figure 1  Architecture of adaptive coordinated MPC path tracking 
control scheme
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presented in Section  4. Section  5 concludes the paper 
with a brief discussion of the results.

2 � Model of Path Tracking Controller 
for Autonomous Steering

2.1 � Vehicle Dynamics Model
Because the proposed controller requires the vehicle 
dynamics information under high-speed and large-curva-
ture conditions, the vehicle lateral, yaw, and roll dynam-
ics are established as shown in Figure  2 to capture the 
essential vehicle dynamics state parameters. The tires are 
the only components that connect the road to the vehicle. 
All movements, including the starting, acceleration, brak-
ing, and turning of the vehicle, are realized through the 
tires. During the path tracking process under high-speed 
and large-curvature conditions, vehicle yaw moment is 
provided by the lateral force of the front and rear tires. 
The lateral acceleration of the vehicle is mainly caused by 
the lateral force of the front and rear tires. At the same 
time, the coupling relationship between the yaw rate and 
longitudinal velocity can produce additional vehicle lat-
eral acceleration. The vehicle roll dynamics are described 
using the characteristics of the suspension damping and 
stiffness considering the coupling relationship between 

the vehicle lateral velocity, longitudinal velocity, and roll 
dynamics.

In Figure 2, m is the vehicle total mass. h is the height 
of the sprung mass from the roll center, lf and lr are the 
distances from the center of gravity to the front and rear 
axles, respectively. ls is the half distance between the left 
and right tires. g is the acceleration due to gravity. vx and 
vy are the longitudinal and lateral speed, respectively. r 
and φ are the yaw rate and roll angle, respectively. Fx1 and 
Fx3 are the longitudinal tire force of the front and rear 
axles. Fy1 and Fy3 are the lateral tire force of the front and 
rear axles. δ and β are the front tire steering angle and 
vehicle sideslip angle. θ is the vehicle yaw angle. K and D 
are the suspension roll damping and stiffness.

The vehicle dynamics model is given by Eq. (1).

where ms is the vehicle sprung mass. M is the external 
yaw moment. Iz is the moment of inertia about z-axis. Ix 
is the moment of inertia of sprung mass about the x-axis. 
X and Y are the coordinate positions of the vehicle in 
XOY coordinate system.

Under the small-angle approximation, the vehicle 
dynamics model can be approximated as

2.2 � Tire Dynamics Model
The Fiala brush tire model is highly accurate and fully 
accounts for the nonlinear dynamic characteristics. The 
lateral force of the tire can be described as a function of 
the tire slip angle.

where α and Cα are the tire slip angle and cornering stiff-
ness, respectively. μ is the adhesion coefficient between 
the road surface and the tire. Fz is the vertical force.

(1)
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
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m(v̇y + vxr) = 2Fx1 sin δ + 2Fy1 + 2Fy3,

Iz ṙ = (2Fx1 sin δ + 2Fy1)lf − 2Fy3lr +M,

Ixφ̈ = msh(v̇y + vxr)+msghφ − Kφφ − Dφφ̇,

Ẏ = vx sin(θ)+ vy cos(θ),

Ẋ = vx cos(θ)+ vy sin(θ),
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ṙ ≈ (2Fy1lf − 2Fy3lr +M)/Iz ,

φ̈ ≈ [msh(v̇y + vxr)+msghφ − Kφ − Dφ̇]/Ix.

(3)

Fy[f ,r] = ftire(α)

=



























− Cα tan α +
C2
α

3µFz
|tan α| tan α

−
C3
α

27µ2F2
z

, |α| < arctan

�

3µFz

Cα

�

,

− µFzsgn(α), otherwise,

Figure 2  Vehicle dynamics model
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Because the tire slip angle does not directly partici-
pate in the control optimization solution process and 
the vehicle lateral speed is relatively small compared to 
the longitudinal speed, the tire slip angle of the front 
and rear tires can be approximated as

To make full use of the tire nonlinear dynamics and 
reduce the nonlinear complexity of the controller, the 
front tire lateral force can be considered as the control 
input for the MPC optimization and mapped to the 
desired δ via

The nonlinear dynamics of the rear tire should be 
properly accounted for to approximate the MPC linear 
optimization problem accurately. The steady-state solu-
tion of the rear lateral force is expressed as

where κ is the curvature of the reference path at the dis-
tance s.

The equivalent cornering stiffness can be written as

where Fr and αr are the tire slip angle and corresponding 
tire lateral force.

The predicted rear tire lateral force in the MPC frame 
can be written as

2.3 � Path Tracking Model
It is desired that the path tracking should follow the 
reference path accurately by minimizing the lateral and 
heading deviations while maintaining rollover and lat-
eral stability. The relationship between the vehicle and 
reference path is illustrated in Figure 3, where the CM 
point represents the center of vehicle mass.

The path tracking kinematic relationship can be 
expressed as

(4)















αf = arctan

�

vy + lf r

vx

�

− δ ≈
vy + lf r

vx
− δ,

αr = arctan

�

vy − lrr

vx

�

≈
vy − lrr

vx
.

(5)δ =
vy + lf r

vx
− αf .

(6)Fr,ss =
mlf

L
v2xκ ,

(7)Cr =
(Fr,ss − Fr)

αr,ss − αr
,

(8)Fyr = Fr − Cr(α − αr).

where θ and θd are the actual yaw angle and reference 
yaw angle of vehicle, respectively. κ(s) is the curvature of 
the reference path at the position s.

2.4 � Design of Path Tracking Controller Based on MPC
2.4.1 � Prediction Model
The controller state space model, in which the front tire lat-
eral force and external yaw moment are taken as the control 
inputs, can be derived from Eqs. (2), (4), (8), and (9) as

The state vector, system output vector, control input, 
the state matrix and output matrix are respectively 
expressed as

(9)


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ė = vy + vxθe,

θ̇e = r − vxκ(s),

ṡ = vx cos(θe)− vy sin(θe),

θe = θ − θd ,

(10)
{
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y = C1x.
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Figure 3  Path tracking kinematic relationship
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To facilitate controller design and implementation, the 
continuous-time state-space model is converted into a dis-
crete increment system using previous Euler method and 
expressed as Eq. (11).

where T is the sampling time, and

To guarantee a convex optimization solution and 
reduce the computational complexity of the MPC, the 
following assumptions are made

where Np denotes the prediction horizon.
Therefore, the system prediction outputs in the predic-

tion horizon can be expressed as

where Nc denotes the control horizon, and

�1 =
msh

mIx +mmsh2
, �2 =

1

Ix +msh2
.

(11)
{

ξ(k + 1) = Aξ(k)+ B�u+ Eκ +D,

η(k) = Cξ(k),

ξ(k) =
[

x(k) u(k − 1)
]T
, η(k) =
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θe e
]T
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0 I
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I

]T
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E =
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]T
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0
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,

C =

[

0 0 0 0 1 0 0

0 0 0 0 0 1 0

]

.

Ai,k = Ak ,k , i = 1, . . . , i + Np − 1,
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.
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2.4.2 � Objective Cost Function and Optimization
The path tracking control objective of the MPC control-
ler is the solution of a convex optimization problem at 
each sampling step. The first optimal value of the control 
sequence is used as the future input. The objective func-
tion and constraints can be expressed as

where ε is a non-negative slack variable used to ensure 
that the optimization problem is always feasible. The 
optimal front lateral force input Fyf and the external yaw 
moment M can be obtained using a look-up table and 
yaw moment allocation algorithm. To accurately capture 
the propagation of β, r and φ at high frequency, the sam-
pling time T is set to 0.02 s considering the accuracy of 
the captured vehicle information. Note that the values of 
the control horizon Nc and prediction horizon Np are set 
to Nc = 20 and Np = 30 based on control accuracy and cal-
culation efficiency considerations. The weighting matri-
ces are obtained by iteratively tuning, R = diag{10, 1}, 
Q = diag{1000, 5}, and W = 10.

2.4.3 � Stability Constraints
The vehicle lateral stability constraints are defined by the 
bounds of the two key variables of vehicle sideslip angle β 
and yaw rate r. The bounds of the β and r reflect the max-
imum capabilities of the tire under the assumptions of 
steady-state cornering [30]. The maximum steady-state 
yaw rate and vehicle sideslip angle can be expressed as

Considering the tire saturation and maximum tire lat-
eral force, the maximum steady-state yaw rate and vehi-
cle sideslip angle can also be expressed as

(13)

min
u(k)

JNp =

k+Np−1
∑

i=k

ηTQη +

k+Nc−1
∑

i=k

�uTR�u+W ε,

(14)s.t.
[

Hvx
i
]

≤ Gv, i = 0, 1, · · · ,Np − 1,

(15)−ls ≤ yZMP ≤ ls, i = 0, 1, · · · ,Np − 1,

(16)
∣

∣�u(k + i)
∣

∣ ≤ �umax, i = 0, 1, · · · ,Nc − 1,

(17)�u(k + i)= 0, i = Nc,Nc + 1, · · · ,Np − 1,

(18)
∣

∣u(k + i)
∣

∣ ≤ umax, i = 0, 1, · · · ,Np − 1,

(19)







rmax =
µg

vx
,

βmax= arctan(0.02µg).
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The vehicle stability constraints defined by Eq. (20) can 
be expressed as the matrix inequality.

where HV =

[

1/vx −lr/vx 0 0 0 0
0 1 0 0 0 0

]

 , 

GV =
[

αr,sat µg/vx
]T.

Vehicle rollover stability is a significant concern in 
transportation design. In particular, vehicle rollover 
stability is especially important under high-speed and 
large-curvature extreme conditions. To predict the vehi-
cle rollover propensity, the zero-moment point (ZMP) 
metric is applied to the projected vehicle trajectories. The 
ZMP is given by Ref. [31].

According to the state space model, the ZMP can be 
written as

where N 1 =
[

h
g 0 − Ix

mg
0 0 0

]

 , 
N 2 =

[

0 hvx
g 0 h 0 0

]

.
The vehicle rollover stability constraints defined by Eq. 

(23) can be expressed as Eq. (24).

3 � Adaptive Coordinated Control for Path Tracking
When the vehicle is under the extreme conditions of high 
speed and large-curvature path, the tire slip angle is strictly 
restricted in the method proposed in Refs. [7, 9] to ensure 
vehicle stability. This results in a steady state steering phe-
nomenon with poor path tracking control performance 
in which the steering states remain stable. Therefore, an 
adaptive coordinated control strategy is proposed here in 
which the tire cornering stiffness is identified online, the 
weight coefficient of the objective cost function is adaptively 
changed, and the yaw moment control is adaptively coordi-
nated to improve the vehicle path tracking performance and 
ensure vehicle stability under extreme conditions.

3.1 � Tire Cornering Stiffness Identification Based 
on Recursive Least Square

To reduce the computational burden of the path track-
ing controller based on model predictive control, a 
continuous linearized tire model is used to establish 

(20)











αr,sat = arctan(3lf µmg/LCar ),

rmax = µg/vx,

βmax = αr,sat + lrr/vx.

(21)|HV x| ≤ GV ,

(22)yZMP = hφ +
h

g
(v̇y + vxr)−

Ix

mg
φ̈.

(23)yZMP = N 1ẋ + N 2x,

(24)−ls ≤ yZMP ≤ ls.

the predictive model. To account for the nonlinear tire 
dynamic characteristics, a control strategy is proposed 
based on the optimal front tire lateral force. However, 
because errors for the lateral force of the rear tire from 
the model linearization are still present under high-speed 
and large-curvature conditions, the recursive least square 
method with a forgetting factor is used to determine the 
rear tire cornering stiffness.

3.1.1 � Recursive Model
A simplified two-degrees of freedom (DOF) vehicle 
dynamics model is established to determine the tire cor-
nering stiffness, as illustrated in Figure 4.

Under the small-angle assumption approximation, the 
vehicle dynamics model can be expressed as

The vehicle dynamics equation can be discretized using 
the previous Euler method and expressed as

Considering the vehicle data for the first k steps and 
transforming the above equation into the least squares 
form, the recursive model of the vehicle tire cornering 
stiffness can be expressed as

(25)
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




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



β̇ =
2Cr + 2Cf

mvx
β − (

2lrCr − 2lf Cf

mv2x
+ 1)r +

2Cf

mvx
δf ,

ṙ =
−2lrCr + 2lf Cf

Iz
β +

−2l2r Cr − 2l2f Cf

Izvx
r +

2lf Cf

Iz
δf .

(26)
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β(k + 1)− β(k) =
2Cr + 2Cf

mvx
Tβ(k),

− (
2lrCr − 2lf Cf

mv2x

+ 1)Tr(k)+
2Cf

mvx
Tδf (k),

r(k + 1)− r(k) =
−2lrCr + 2lf Cf

Iz
Tβ(k),

+
−2l2r Cr − 2l2

f
Cf

Izvx
Tr(k)+

2lf Cf

Iz
Tδf (k).

(27)M(k)Ĉ = N (k),

Figure 4  2-DOF vehicle dynamics model
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where the matrixes M(k) and N(k) are given by

3.1.2 � Recursive Least Square Method with Forgetting Factor
The recursive least square method is modified to provide 
new parameter identification based on the previous steps. 
However, the parameter identification of the tire corner-
ing stiffness may become inaccurate because of the data 
saturation phenomenon. Therefore, a forgetting factor is 
introduced to overcome the problem of data saturation by 
reducing the impact of old data. The recursive model can 
be rewritten as

where

and λ is the forgetting factor, which is set to the value of 
0.98.

The cornering stiffness at the kth sampling moment is 
then given by

The tire cornering stiffness at the next moment is identi-
fied by updating the prediction model of the vehicle path 
tracking system with the current parameter identification

M(k) =

























2Tβ(1)+2Tδf (1)

mvx
+

2lf r(1)

mv2x

2Tβ(1)
mvx

− 2lrTr(1)

mv2x

2lf Tβ(1)+2Tδf (1)

Iz
−

2l2
f
Tr(1)

Izvx

−2lrTβ(1)
Iz

−
2l2r Tr(1)

Izvx

.

.

.
.
.
.

2Tβ(k)+2Tδf (k)

mvx
+

2lf r(k)

mv2x

2Tβ(k)
mvx

− 2lrTr(k)

mv2x

2lf Tβ(k)+2Tδf (k)

Iz
−

2l2
f
Tr(k)

Izvx

−2lrTβ(k)
Iz

−
2l2r Tr(k)

Izvx

























,

N (k) =

















β(2)− β(1)+Tr(1)

r(2)− r(1)

.

.

.

β(k + 1)− β(k)+Tr(k)

r(k + 1)− r(k)

















, Ĉ =

�

Ĉf

Ĉr

�

.

(28)M(k)Ĉ = N (k),

M(k)=

[

�α(k − 1)

α(k)

]

, N (k)=

[

�γ (k − 1)

γ (k)

]

,

γ (k)=

[

β(k + 1)− β(k)+Tr(k)

r(k + 1)− r(k)

]

,

α(k)=





2Tβ(k)+2Tδf (k)

mvx
+

2lf r(k)

mv2x

2Tβ(k)
mvx

− 2lrTr(k)
mv2x

2lf Tβ(k)+2Tδf (k)

Iz
−

2l2f Tr(k)

Izvx

−2lrTβ(k)
Iz

−
2l2r Tr(k)
Izvx





(29)Ĉ =

[

Ĉf

Ĉr

]

= (M(k)TM(k))−1M(k)TN (k).

(30)Ĉ(k + 1) = P(k + 1)H(k + 1),

3.2 � Adaptive Strategy of Weight Coefficients Based 
on Fuzzy Rule

To ensure high tracking accuracy and improve vehicle 
stability, an adaptive strategy for the weight coefficients 
is applied based on fuzzy rules. Based on the compo-
nents of the objective cost function, the lateral deviation, 
heading deviation ratio, and vehicle sideslip angle ratios 
are chosen as the fuzzy control inputs, which can be 
expressed as

The weight coefficients of each index in the objec-
tive cost function are then adaptively changed, and the 
priorities for tracking performance and vehicle stabil-
ity adjusted. The inputs of the fuzzy controller can be 
fuzzified into the five fuzzy sets of ZO (zero), PSr (posi-
tive smaller), PS (positive small), PB (positive big), and 
PBr (positive larger). The lateral and heading deviations, 
and the vehicle stability performance weight ratios (side-
slip angle, yaw rate, and roll angle) are similarly chosen 
as the fuzzy control outputs and fuzzified into the four 
fuzzy sets of ZO (zero), PS (positive small), PM (positive 
medium), and PB (positive big).

The correlations between the inputs and outputs in 
the fuzzy rules are constructed based on driving experi-
ence and the consideration of both tracking accuracy and 
ride comfort when tracking the predetermined path, and 
listed in Tables 1, 2, 3.

3.3 � Coordinated Strategy for Direct Yaw Moment
Active front wheel steering is an effective means of 
ensuring the lateral stability of the vehicle. However, 
it may lead to understeering under high-speed and 
large-curvature conditions. DYC can give full play to 
the vehicle yaw dynamics and has a significant effect 
on restraining vehicle understeer. Therefore, an adap-
tive control strategy for coordinating active steering 
with direct yaw moment under high-speed and large-
curvature conditions is proposed to improve tracking 
performance, as shown in Figure 5.

(31)P(k + 1)−1 = M(k + 1)TM(k + 1),

(32)H(k + 1) = M(k + 1)TN (k + 1).

(33)



































Ie = abs

�

ereal

emax

�

,

Iθ = abs

�

θreal

θmax

�

,

Iβ = abs

�

βreal

βmax

�

.
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3.3.1 � Analysis of Vehicle Steady State Steering
As shown in Figure  6, when the autonomous vehicle 
completes steady-state steering with the maximum steer-
ing ability, the lateral force of the front tires and lateral 
acceleration should satisfy Eq. (34). (34)

{

Fy ≤ Fss
max,

ay ≤ ass
max

.

Table 1  Lateral deviation fuzzy rules for weight ratio

Qe Ie

ZO PSr PS PB PBr

Iθ ZO ZO PS PS PM PB

PSr ZO PS PS PM PB

PS ZO PS PS PM PB

PB ZO PS PS PM PB

PBr ZO PS PS PM PB

Table 2  Heading deviation fuzzy rules for weight ratio

Qθ Ie

ZO PSr PS PB PBr

Iθ ZO ZO PS PS PM PB

PSr ZO PS PS PM PB

PS ZO PS PS PM PB

PB ZO PS PS PM PB

PBr ZO PS PS PM PB

Table 3  Vehicle stability fuzzy rules for weight ratio

Qβ Ie

ZO PSr PS PB PBr

Iβ ZO ZO PS PS PM PB

PSr ZO PS PS PM PB

PS ZO PS PS PM PB

PB ZO PS PS PM PB

PBr ZO PS PS PM PB

Figure 5  Adaptive switching block diagram

Figure 6  Force analysis of vehicle steady state steering
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Under steady state steering conditions, the lateral force 
of the vehicle tires can be expressed as

where R is the turning radius.
The vehicle motion under steady-state steering motion 

is approximated as uniform circular motion in the sam-
pling period. The required centripetal acceleration can 
then be expressed as

Based on the above analysis, the lateral acceleration 
and lateral force of the tires are chosen as performance 
indicators for triggering the switching rule.

3.3.2 � Adaptive Switching Rules
When the switching rules are not triggered, active front 
wheel steering control is chosen for path tracking. The 
switching rules are as follows:

1.	 At time k, calculate vehicle reference lateral accelera-
tion.

	 if (|Fy| ≥ |Fss
yf  − τ| and  |ay| ≥ |assy |

	 QM = 1;

	 Update control matrix and objective cost function;

	 else

	 QM = 0;

	 Update control matrix and objective cost function;

	 End.

(35)











Fss
yf =

mb

2LR
v2x ,

Fss
yr =

ma

2LR
v2x .

(36)







F = massy ,

assy =
v2x
R
,

B1 =





2
m

2lf

IZ
2�1 0 0 0

0
−1
IZ

0 0 0 0





T

,

B1 =





2

m

2lf

IZ
2�1 0 0 0

0 0 0 0 0 0





T

,

2.	 Optimization: Find the optimal U(k) = [Fy M]T 
(U(k)  = Fy).

3.	 Set k = k + 1, and update system states and state 
space model.

In the above, QM is the weight coefficient of the exter-
nal yaw moment, τ is the buffer factor, which is set to the 
value of 5.

When the vehicle exits the coordinated control of 
active front wheel steering and direct yaw moment, the 
external yaw moment is not directly returned to zero to 
avoid a sudden change caused by updating the control 
quantity weight and control matrix. The external yaw 
moment instead satisfies the following relationship.

where ∆M is maximum change of yaw moment, and T is 
the sampling time.

When the vehicle is on a small-curvature path, the 
AFS controller working mode is adopted, and the con-
troller outputs the desired front tire lateral force. When 
the vehicle is on a large-curvature path, the coordinated 
yaw moment control starts to work, and the AFS + DYC 
controller is adopted. The controller outputs the desired 
front tire lateral force and external yaw moment. This 
controller is superior because it can reduce the vehicle 
yaw rate (shown in Eq. (1)) and thereby reduce the head-
ing and lateral position deviations (shown in Eq. (9)).

3.4 � External Yaw Moment Distribution
The external yaw moment M generated by the MPC 
controller should be allocated to the four tires. The lat-
eral force of the front tires is saturated. Therefore, dif-
ferential braking of the rear tires is used to generate the 
desired external yaw moment. This can be translated 
into a multi-objective optimization problem in which a 
quadratic function is applied to establish the objective 
cost function for achieving the desired yaw moment with 
the minimum tire force. The objective function and con-
straints can be expressed as

where Q1 = diag{1, 1} is a weighting positive-definite 
diagonal matrix and c = [2 2]T is an offset vector.

(37)M(k) = Mmax −�MTk ,

(38)min J1 = min
1

2
(F x + c)TQ1(F x + c),

(39)s.t.W FF x = M,

(40)F x,min ≤ F x ≤ F x,max,

(41)W F= [ −ls ls ] F x= [ F x3 F x4 ]
T,
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4 � Simulation
4.1 � Reference Path and Vehicle Parameters
The proposed adaptive coordinated MPC controller was 
verified using MATLAB/Simulink and CarSim. In this 
section, two simulation cases are presented to verify the 
effectiveness of the proposed MPC path tracking control-
ler. The vehicle parameters are presented in Table 4. The 
reference path was parameterized as the curvature profile 
shown in Figure 7 and the position profile shown in Fig-
ure 8 using the path generation method proposed in Refs. 
[32, 33].

4.2 � Case 1
To verify the performance of the adaptive coordinated 
controller, the road adhesion coefficient of 0.85 and a 
constant vehicle speed of 69 km/h were set in the simula-
tion. The first MPC controller (AFS MPC) control input 
is the lateral force of the front tires, for which the simula-
tion results are represented by black dotted lines in the 
following figures, and those of the adaptive coordinated 
controller (AFS + DYC MPC) by blue solid lines.

As can be seen from Figure  9, the controllers per-
formed well under high-speed and large-curvature con-
ditions. The path generated by the proposed controller is 
closer to the reference path (represented by the red solid 
line). Although the tracking performance decreased at 
larger curvatures, the proposed controller still achieved 
better control performance.

As can be seen from Figures 10 and 11 and Tables 5 and 
6, the absolute value of the maximum value of the lateral 
deviation (Max abs(e)) is reduced by 13.0%, and that of 

Table 4  The main vehicle parameters

Parameter Value

Vehicle mass m (kg) 1610

Vehicle sprung mass ms (kg) 1430

Yaw inertia Iz (kg·m2) 2059.2

Roll inertia Ix (kg·m2) 700.7

Distance from front axle to gravity center lf (m) 1.05

Distance from rear axle to gravity center lr (m) 1.61

Distance between left and right tires 2ls (m) 1.565

Height of the sprung mass from the roll center h (m) 0.65

Front cornering stiffness Cf (N/rad) 67862

Rear cornering stiffness Cr (N/rad) 45714

Suspension roll damping K (N·m/rad) 145330

Suspension roll stiffness D (N·m·s/rad) 4500

Friction coefficient μ 0.85
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Figure 7  Reference path

0 50 100 150 200 250 300 350

-0.02

-0.01

0

0.01

0.02

Station ( m )

C
ur
ve
tu
re
(m

-1
)

Figure 8  Reference path curvature

0 20 40 60 80 100 120 140 160 180

0

50

100

150

200

East ( m )

N
or
th

(m
)

69 70 71

130

140

150

65.25 65.255

6.1
6.2
6.3
6.4
6.5

AFS+DYC
Reference

AFS

Figure 9  Global path

0 50 100 150 200 250 300 350
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Station ( m )

La
te

ra
l d

ev
ia

tio
n 

( m
 )

AFS+DYC

AFS

Figure 10  Lateral deviation



Page 11 of 15Tian et al. Chinese Journal of Mechanical Engineering            (2022) 35:1 	

the average value (AV abs(e)) reduced by 43.5% for the 
proposed controller compared to the AFS controller, 
and the former has a smaller absolute value of the mean 
square error (MSE abs(e)). For the heading deviation, 
although AV abs(θe) is decreased by 20.0%, Max abs(θe) is 
increased by 4.2%.

Compared with the AFS controller, the peak heading 
angle of the proposed controller appeared later. To avoid 
sudden changes, the yaw moment changed linearly when 
the proposed controller exited, which caused the peak of 
the heading angle deviation to be delayed with a relatively 
larger Max abs(θe) value of 2.74°. Therefore, the proposed 
controller is more effective for path tracking under high-
speed and large-curvature conditions.

As shown in Figures 12, 13, 14, both controllers could 
ensure vehicle stability during path tracking. The maxi-
mum vehicle sideslip angle did not exceed 3°, the yaw 
rate did not exceed 5 rad/s, and the maximum vehicle roll 
angle did not exceed 3°. The proposed controller provides 
better vehicle stability, especially in terms of the peak val-
ues of the vehicle sideslip angle, roll angle and the yaw 
rate.

Figures 15 and 16 show the relationships between the 
external yaw moment (M), tire lateral force (Fy), steady 

state vehicle lateral acceleration multiplied by 1000 
(1000 × assy  ), actual vehicle lateral acceleration multiplied 
by 1000 (1000 × ay), and path (Station). The proposed 
adaptive coordinated control strategy of active front 
wheel steering and direct yaw moment was initiated at 
positions 1 and 2 when the tire lateral force and vehicle 
acceleration satisfied the switching rules. The external 
yaw moment changed linearly at position 3 at the exit of 
the adaptive control strategy.

As shown in Figure  17, the observed value of the tire 
cornering stiffness was zero at the initial moment. This 
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Figure 11  Heading deviation

Table 5  Lateral deviation comparison

Controllers AV abs(e) (m) MSE abs(e) (m) Max abs(e) (m)

AFS 0.23 0.04 0.54

AFS + DYC 0.13 0.03 0.47

Table 6  Heading deviation comparison

Controllers AV abs(θe) (°) MSE abs(θe) (°) Max abs(θe) (°)

AFS 0.80 0.008 2.60

AFS + DYC 0.64 0.01 2.74
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Figure 12  Sideslip angle
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is because the data samples for the recursive matrices 
M and N at the initial moment were small and the ran-
dom error was large, which resulted in large fluctua-
tions in the observation results. The observation output 
value was therefore defined as 0. When the sample data 
reached 100 groups, the matrices M and N were updated. 
Near the curvature peak of the reference path, the tire 

dynamics exhibited strong nonlinear characteristics, and 
the tire cornering stiffness reached its minimum peak 
value and remained stable. As the curvature gradually 
decreased, the observed value gradually converged to the 
equivalent cornering stiffness (constant value) of the lin-
ear tire model.

4.3 � Case 2
To further verify the performance of the adaptive coor-
dinated controller under extreme conditions, the vehicle 
speed was set to 57 km/h and the nominal road adhesion 
coefficient to 0.85. The actual road adhesion coefficient is 
shown in Figure 18. The reference path and its curvature 
are shown in Figures 7 and 8, respectively. The MPC con-
troller (AFS MPC) control input was the lateral force of 
the front tires. The simulation results for AFS MPC are 
represented by black dotted lines, and those for the adap-
tive coordinated controller (AFS + DYC MPC) by blue 
solid lines in Figures 18, 19, 20.

As can be seen from Figures  19 and 20, the absolute 
values of the maximum lateral deviations are 0.25 and 
0.22 for the AFS and the proposed controller, respec-
tively. The absolute value of the maximum value was 
reduced in the latter by 12.0%. The proposed controller 
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Figure 15  Coordinated control switching performance (DYC 
stepped in)

0 50 100 150 200 250 300 350
-5000

-3000

-1000

1000

3000

5000

Station ( m )

Ti
re

 la
te

ra
l f

or
ce

 ( 
To

rq
ue

/L
at

er
al

 a
cc

el
er

at
io

n)

Acceleration 2
Acceleration 1
Lateral force
Torque

3

Figure 16  Coordinated control switching performance (DYC exit 
out)
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exhibited better tracking performance. In particular, the 
superiority of the proposed controller in the areas of the 
road with low adhesion and large curvature are more sig-
nificant when there are uncertainties in the road adhe-
sion coefficient. The peak heading angle of the heading 
deviation appeared later for the proposed controller 
compared to the AFS controller. This is because the yaw 
moment changed linearly at the exit of the proposed con-
troller to avoid sudden changes, which caused the peak 
of the heading angle deviation to be delayed and have a 
relatively large value. Therefore, the proposed controller 
is more effective for path tracking under high-speed and 
large-curvature conditions with uncertain values of the 
road adhesion coefficient.

As shown in Figures 21 and 22, both controllers could 
ensure vehicle stability during path tracking. The maxi-
mum vehicle sideslip angle did not exceed 0.70°, and the 
yaw rate did not exceed 0.35°/s. However, the local sta-
bility performance of the AFS controller was slightly 
better than that of the proposed controller, as shown in 
Figures 21 and 22. This is because when the vehicle was 
on the peak curvature portion of the road, the vehicle 
gradually entered into the turning steady state (the vehi-
cle sideslip angle and yaw rate tended to stabilize) during 

the process of path tracking. At this time, DYC began to 
come into effect, which resulted in changes to the vehi-
cle input and fluctuations in the vehicle stability indica-
tors. To overcome these fluctuations, constraints were 
added to the change in yaw moment constraints at the 
moment of yaw moment intervention and withdrawal 
in this study. During the design process of the AFS and 
proposed controllers, the anti-instability constraints were 
constructed using the vehicle sideslip angle and yaw rate 
to ensure vehicle lateral stability. Therefore, vehicle sta-
bility under both strategies can be guaranteed, as can be 
verified from the results shown in Figures 21 and 22.

5 � Conclusions

(1)	 In this study, the state-space model of the path 
tracking control system was established based 
on the vehicle dynamics, tire dynamics, and path 
tracking error models which are used to predict the 
system states in the prediction horizon.

(2)	 To improve the tracking accuracy and ensure vehi-
cle stability under high-speed and large-curvature 
conditions, an adaptive coordinated path tracking 
control strategy was proposed. Under the strategy, 
the system prediction model is updated through tire 
parameter identification, the weight coefficient of 
the objective cost function is changed using fuzzy 
rules, and adaptive coordination between path 
tracking and DYC is realized.

(3)	 A path tracking controller was designed based on 
linear time-varying model predictive control algo-
rithm that can systematically deal with vehicle sta-
bility constraints and control variable constraints.

(4)	 The results of the joint CarSim and Simulink simu-
lation test showed that the adaptive coordinated 
control strategy is feasible. The control strategy can 
not only improve the path tracking accuracy but 
also ensure vehicle stability. Nevertheless, because 
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parameter uncertainties, model errors, and external 
disturbances were not considered, a robust coor-
dinated control strategy and hardware-in-the-loop 
test will be further studied in the future.
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