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Multi‑objective Trajectory Planning Method 
based on the Improved Elitist Non‑dominated 
Sorting Genetic Algorithm
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Abstract 

Robot manipulators perform a point-point task under kinematic and dynamic constraints. Due to multi-degree-
of-freedom coupling characteristics, it is difficult to find a better desired trajectory. In this paper, a multi-objective 
trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm (INSGA-II) is 
proposed. Trajectory function is planned with a new composite polynomial that by combining of quintic polynomi-
als with cubic Bezier curves. Then, an INSGA-II, by introducing three genetic operators: ranking group selection (RGS), 
direction-based crossover (DBX) and adaptive precision-controllable mutation (APCM), is developed to optimize trav-
elling time and torque fluctuation. Inverted generational distance, hypervolume and optimizer overhead are selected 
to evaluate the convergence, diversity and computational effort of algorithms. The optimal solution is determined 
via fuzzy comprehensive evaluation to obtain the optimal trajectory. Taking a serial-parallel hybrid manipulator as 
instance, the velocity and acceleration profiles obtained using this composite polynomial are compared with those 
obtained using a quintic B-spline method. The effectiveness and practicability of the proposed method are verified 
by simulation results. This research proposes a trajectory optimization method which can offer a better solution with 
efficiency and stability for a point-to-point task of robot manipulators.

Keywords:  Hybrid manipulator, Bezier curve, Improved optimization algorithm, Trajectory planning, Multi-objective 
optimization
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1  Introduction
With the advancement of the times, robotics technol-
ogy is also developing rapidly, which makes manipula-
tors widely applied in industrial filed. Responding to 
many practical robotic applications (such as palletizing, 
labeling, spot welding), the trajectory planning of the 
manipulator is very importance for accomplishing tasks, 
which generally involves two key problems, namely tra-
jectory generation and trajectory optimization. The 
former provides the precondition for the trajectory plan-
ning. Meanwhile, the latter is an efficient way to improve 

the performance of the trajectory and get the most of the 
manipulator [1].

Trajectory generation is usually to establish a smooth 
trajectory of a manipulator by means of interpolating 
between any two given poses. Common interpolation 
functions include polynomial, spline, Bezier, and NURBS, 
etc. The joint motion of an industrial robot was divided 
into accelerated part, constant velocity part and deceler-
ated part, where the accelerated and decelerated trajecto-
ries were planned with fourth-order polynomials formed 
with the property of the root multiplicity [2]. In Ref. [3], 
the trajectory must pass through a number of given dis-
crete characteristic points. The time-optimal and jerk-
continuous trajectory planning has been implemented 
under kinematic constraints by combining cubic splines 
in Cartesian space and septuple B-splines in joint space. 
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Shi et  al. [4] adopted a quintic non-uniform rational 
B-spline (NURBS) to construct a flexible trajectory of a 
6-degree-of-freedom (DOF) robot, which can guaran-
tee jerk continuous, and also velocity and acceleration of 
initial and final point both can be specified. Dinçer and 
Çevik [5] designed a composite polynomial composed 
of quadratic Bezier curves and cubic polynomials for 
the trajectory planning of a 2-DOF parallel mechanism. 
The composite polynomials provide a smoother transi-
tion at the starting and ending points compared to Bezier 
curves, namely, velocities are zero at the endpoints. 
Motivated by Ref. [5], a composite polynomial, combined 
quintic polynomials with cubic Bezier curves, is devel-
oped in this article. By the polynomial part, the veloci-
ties and accelerations of the actuators at initial and final 
instance are zero to achieve the stability of start and stop. 
The better index performance is obtained by adjusting 
the trajectory constructed by the Bezier curve through 
optimization algorithm.

In the processing of trajectory optimization, many dif-
ferent technical criteria have been defined to meet the 
requirements of the task [6–8]. For instance, the execu-
tion time and jerk are intended for improving the pro-
ductivity and keeping the trajectories smooth. The energy 
and torque are aimed at reducing the energy consump-
tion and the load on the actuator of the robot. In addi-
tion, with respect to trajectory optimization techniques, 
evolutionary algorithms, which offer high efficiency, 
robustness and adaptability, have been widely applied 
to resolve minimization problems for objective trajec-
tory functions. In Ref. [9], genetic algorithm (GA) was 
applied to the trajectory planning problem with nonlin-
ear constraints and obstacles to minimize the joint rota-
tion angles of a 2-DOF robot. Lin [10] employed particle 
swarm optimization (PSO) with K-means clustering to 
solve the near optimal solution of a minimum-jerk joint 
trajectory. Only considering a single-objective function 
may not be suitable for meeting multiple requirements 
in real-world applications. Currently, in terms of the 
multi-objective optimization, multi-objective evolution-
ary algorithms (MOEA) typically utilize non-dominated 
sorting to provide a number of Pareto solutions for deci-
sion-makers rather than converting all objectives into a 
single-objective function. Thus, this optimization tech-
nique has become more popular with researchers. In 
Ref. [11], the time-jerk trajectory of a robotic manipula-
tor was interpolated in the joint space by means of 5th-
order B-splines and then optimized by NSGA-II. In Ref. 
[12], a multi-objective function, including motion time, 
dynamic disturbance, and jerk, was addressed by using 
multi-objective particle swarm optimization (MOPSO) to 

obtain the high efficiency and safe motion trajectory of a 
space robot. Marcos et al. [13] combined the closed-loop 
pseudoinverse method with a multi-objective genetic 
algorithm (MOGA) to minimize the joint displacement 
and the positional error of the end-effector. Ramaba-
lan et  al. [14] adopted B-spline functions to define the 
trajectory of a robot manipulator, and the trajectories 
optimized by NSGA-II and multi-objective differential 
evolution (MODE) were compared. The results showed 
that the efficiency obtained by the MODE technique was 
higher, while the richer the diversity of the Pareto solu-
tion was got by NSGA-II.

The main differences among the above trajectory plan-
ning methods lie in the processing of the interpolation 
functions and trajectory optimization models, as well as 
the selection of interpolation functions and optimization 
algorithms [15]. Due to the complexity of the trajectory 
problem of manipulators, it still has improvement space 
in the accuracy and efficiency of the solution method. 
Therefore, the proposed composite polynomial is first 
adopted to construct a point-to-point trajectory in this 
study. Then, to improve the convergence and diversity of 
the Pareto optimal front and also the computational effi-
ciency of the traditional NSGA-II, an INSGA-II to obtain 
the time and torque fluctuation optimal trajectories is 
proposed.

This article is organized as follows. In Section 2, a com-
posite polynomial curve, by combining cubic Bezier with 
quintic polynomial, is presented for establishing trajec-
tory optimization model. The three improved genetic 
operators and INSGA-II are proposed in Section  3. In 
Section 4, two performance measures are delineated for 
the Pareto front and the computational efficiency of the 
algorithms in detail. The numerical simulations are pre-
sented with relevant discussion in Section 5. Finally, the 
main conclusions are outlined in Section 6.

2 � Trajectory Optimization Modelling
The trajectory planning is generally carried out in operat-
ing space and in joint space. In terms of the trajectory plan-
ning in joint space, it can avoid singular configurations for 
the robotic arm, but its application has been limited due 
to the nonlinear relationship between operating space and 
joint space [16, 17]. Moreover, the analytical expressions 
for forward kinematic solutions of most parallel mecha-
nisms are hard to obtain, and only the numerical solutions 
can be found. Another method is to perform the trajec-
tory planning in operating space. It is intuitive to avoid 
obstacles and easy to track the end-effector position and 
posture [18, 19], but the problem of kinematic singularity 
is difficult to address using such a method. Hence, for the 
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serial mechanism, trajectory planning can be carried out in 
the joint space if there is no need for obstacle avoidance. 
In light of parallel and hybrid mechanisms, the trajectory 
planning problem is handled in the operating space to facil-
itate analyzing the dynamic performances.

2.1 � Objective Function
In light of the manipulator, it is expected that the joint tra-
jectory is smooth enough to avoid overlarge mechanical 
vibration, and reduce travelling time as much as possible 
to improve productivity. In Refs. [11, 20], the time inte-
gral was set to be a term of the objective function. Li and 
Wang [21, 22] further took the minimum absolute value of 
torque fluctuation into account. In this study, two objective 
functions are involved, namely, the travelling time and the 
torque fluctuation. The objective functions can be math-
ematically defined as follows.

Minimize:

where f1 denotes the total travelling time, f2 is the vari-
ance of the actuator torque, which is to ensure the sta-
bility of the manipulator. τi(t) and τi(t − 1) denote the 
torque of the actuator at former and current instance, 
respectively. n denotes the number of the robotic joint.

It is obvious that the two objective functions constrain 
each other because of the opposite effects. The reduction 
in travelling time would lead to the larger torque fluctua-
tion and less smooth trajectory, while reducing the torque 
fluctuation would result into the longer execution time and 
lower work efficiency. The trajectory planning inevitably 
encounters a trade-off between these two objective func-
tions. Therefore, by solving the optimization problem with 
a multi-objective optimization technique, a set of Pareto 
solutions can be obtained and provided for decision-mak-
ers to select. It should be noted that objective functions can 
be established for different actual needs.

2.2 � Constraint Conditions
The kinematic constraints include the limits of angular 
velocity and acceleration, and the dynamic constraint is 
mainly the actuator torque. To guarantee the starting and 
stopping stability of the manipulator, the velocity and accel-
eration of the actuator are identical zero at the endpoints. 
The expression in mathematical terms can be written as

(1)
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f1(t) = T =
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dt,

f2(t) =

n
�

i=1

� T

0

|τi(t)− τi(t − 1)|dt,

where sup|·| denotes supremum of parameter. t0 and 
tf represent initial and final moment. cd, cv, ca, and cm 
denote the maximum angle, angular velocity, angu-
lar acceleration and torque of each actuator during the 
entire motion. The equalities describe the initial and final 
state required for the manipulator, and the inequalities 
describe the performance of each actuator.

The maximum value of velocity and acceleration in Eq. 
(2) can be satisfied through determination of the travelling 
time by the following formula

where ψ̇ = dψ/dt , ψ̇ denotes the joint velocity. ψ̈ is the 
joint acceleration, ψ̈ = dψ̇/dt.

2.3 � Composite Curve
In Ref. [5], a new composite polynomial is generated by 
combining cubic polynomials with Bezier curves based 
on quadratic Bernstein polynomials. This trajectory plan-
ning provides a much lower jerky motion that decreases 
unwanted vibration. However, the acceleration of the 
mechanism is not zero at initial and final points by apply-
ing the composite polynomial into constructing trajectory, 
which is unfavorable for the start and stop of the manipula-
tor. Therefore, we develop a new composite polynomial by 
combining quintic polynomials with Bezier curves based 
on cubic Bernstein polynomials. The better index perfor-
mance is obtained by adjusting the trajectory constructed 
by the Bezier curve through optimization algorithm. By 
the polynomial part, the velocities and accelerations of the 
actuators at initial and final movement are zero to improve 
the stability of start and stop.

A Bezier curve of degree n can be defined in parametric 
form as
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y(x) =

n
∑

i=0

Bn
i (x)Pi =

n
∑

i=0

(

n
i

)

xi(1− x)n−iPi, x ∈ [0, 1],
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where the polynomials Bn
i (x) are known as Bernstein 

basis polynomial of order n, 
(

n
i

)

 is a binomial coeffi-

cient. Pi is the given control point to construct the Bezier 
curve.

To further improve the start-stop stability of the 
manipulator, the quintic polynomial can be designed as

Hereupon, the composite polynomial can be obtained 
by substituting the quintic polynomials into Eq. (5) such 
that x = g (λ). It can be expressed as

In Eq. (6), λ denotes the normalized time, for the travel-
ling time T = tf − ts, if we define t = λ·T, the trajectory of 
the OAJ can be expressed as

The trajectory of each actuator can be obtained by 
applying the inverse kinematics transformation into Eq. 
(7).

The Bezier curve of Eq. (4) provides a better conver-
gence to the starting and ending points, while the poly-
nomial of Eq. (5) provides a smooth transition in the 
vicinity of the endpoints. By this method, we tried to 
exploit the advantages of each polynomial, and the cor-
responding results would be presented in Section 4.

3 � Proposed Method
The non-dominated sorting genetic algorithm has been 
established itself as a benchmark algorithm for multi-
objective optimization, which was first proposed by Deb 
et al. [23]. The main contribution is to obtain the Pareto 
solutions by sorting the dominated relationship among 
individuals. However, the basic algorithm suffers from a 
high order of complexity and highly depends on shared 
parameters. Hereto, in the iterative processing of NSGA-
II [24], the shared parameters are replaced with the 
crowding degree, while the elite strategy is introduced to 
retain the excellent individuals. It, adopting the fast non-
dominant sorting method to reduce the computational 
complexity, has been demonstrated the ability to find a 
good spread of solutions and converge close to the true 
Pareto-optimal front. Subsequently, to solve the insuf-
ficiency of NSGA-II in dealing with the four or more 
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objectives optimization problems, the reference point 
method of the NSGA-III [25] was utilized to substitute 
the crowding degree method in the replace operation, 
which can perform better in balancing the diversity and 
convergence of the algorithm.

There are only two objective functions in the trajec-
tory optimization problem of this article, so we consider 
NSGA-II as the benchmark algorithm. However, the 
selection, crossover and mutation operators of traditional 
GA are adopted in NSGA-II, which leads to the loss of 
population diversity and the poor search ability of the 
algorithm [26]. Moreover, the manipulator is a nonlinear 
multivariable and strong-coupling system with extremely 
complex kinematic and dynamic models. To avoid prob-
lems such as premature convergence and low conver-
gence speed in the processing of trajectory optimization 
of the manipulator using the conventional NSGA-II, 
INSGA-II, integrating three specially designed operators, 
is proposed to quickly and accurately obtain the optimal 
trajectory.

3.1 � Ranking Group Selection
The roulette wheel selection and tournament selection 
are generally used as GA selection operators. Although 
their operation mechanism is simple, the process is com-
plicated and requires repeated comparison of the fitness 
[24, 26]. Motivated by Ref. [26], a ranking group selection 
is used to replace the conventional selection.

The procedure of the RGS is shown in Figure 1. First, 
the parent population P0 of size N is randomly initialized 
based on the constraints of the designed variables, where 
N is set to a multiple of four. Then the initialized popula-
tion is sorted into several ranks based on the non-domi-
nation sorting. The solutions are assigned fitness equal to 
the corresponding non-domination levels. Individuals in 
the first front are assigned fitness value of 1, and individ-
uals in second are given a fitness value 2 and so on. After-
ward, the sorted population is uniformly divided into 4 
elements in sequence, namely X1, X2, X3, and X4. Using 
the basic concept of combinatorics, there are six cases in 
which two elements are selected from four elements for 
pairing, including (X1, X2), (X1, X3), (X1, X4), (X2, X3), (X2, 
X4), and (X3, X4). The paired groups of individuals formed 
by RGS are IA = (X1, X1, X1, X2, X2, X3) and IB = (X2, X3, 
X4, X3, X4, X4). In the iterative process, IA is responsible 
for guiding the population towards the optimal region 
while IB is responsible for increasing the population 
diversity.

In Figure 1, Pt and Qt represent parent population and 
offspring population, and Pt+1 represents the parent pop-
ulation in next generation. F1, F2 and F3 denote the differ-
ent ranks of the population.
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The individuals in IA and IB that are paired in turn to 
participate in the crossover can improve the gene diver-
sity of the population and avoid inbreeding, which can 
promote the generation of high-quality individuals in 
the procession of gene recombination. Additionally, the 
RGS is a way to directly calculate the values of the objec-
tive functions instead of contrasting looping manner, so 
the time complexity of the method is small and such the 
method is easy to implement.

3.2 � Direction‑based Crossover
The simulated binary crossover is commonly adopted 
in GA, which uses a random way to carry out the gene 
exchange between individuals. Although the operation 
mechanism is simple, the method causes degree of blind-
ness. Based on the principle that the better the objective 
function is, the closer the individual is to the optimal 
region, and a DBX operator is designed.

Taking two objective functions and two-dimensional 
variables as an example is shown in Figure  2. The dis-
tribution of the Pareto solution set is obtained accord-
ing to Section  3.1, and the corresponding individuals 
are assumed to be X1 and X2. The DBX takes X1 as the 

center and uses the direction vector d11 or d12 as the 
crossover direction to generate new individuals along 
random steps. The DBX operator can be mathematically 
expressed as

where i denotes the ith individual, j denotes the vari-
able dimension, the parameter rij is a unifomly distrib-
uted random number in the interval [− 1, 1]. Different 
from the traditional fixed step crossover, the step size in 
DBX is randomly generated by the parameter rij, which 
expands the search range of the algorithm.

Meanwhile, different rectangular areas are produced 
by different paired individuals, which indicates that the 
difference between paired individuals can increase the 
population diversity to improve the search ability of the 
algorithm and increase the generation probability of 
high-quality individuals. It is noted that if the popula-
tion generated by Eq. (8) crosses the boundary, it will be 
limited to the boundary to ensure the rationality of the 
population genes.

where pit denotes the value of the ith individual in tth 
iteration. pimin and pimax represent the minimum and 
maximum value of designed variables.

3.3 � Adaptive Precision‑Controllable Mutation
The purpose of introducing mutation in GA is twofold: 
One is to make genetic algorithm have local random 
search ability. The second is to maintain population diver-
sity of the algorithm to avoid immature convergence. In 
Ref. [27], a simple and efficient precision-controllable 

(8)

{

X∗
i = IAi + rij × �dij ,

�dij = IAij − IBij i = 1, 2, . . . , 3n/2, j = 1, 2, . . . ,m,

(9)pit =







pimin if pit < pimin,

pimax if pit > pimax,

pit others,

Figure 1  Schematic of the RGS operation

Figure 2  Schematic of the DBX operation
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mutation (PCM) operator is proposed for exploration 
and exploitation. On the basis of the Ref. [27], a self-
adaptive mechanism is incorporated into the PCM to 
improve the convergence speed of the algorithm in this 
article.

The exploration and exploitation of the PCM can be 
expressed as Eqs. (10)–(15) in Ref. [27].

where �α = 1
10Random (p)+1 × (Random(9)+ 1)

where �β = Xi ×�α − Xi

where �γ = Xi ÷�α − Xi.

The variable p is the parameter to control the preci-
sion in decision space. Function Random (p) can gener-
ate a pseudorandom number in the range of 0 to p − 1. 
If the required search precision is 0.001, the parameter p 
can be set to 3. The value of random number Random (3) 
should be in the set of {0, 1, 2}, then the corresponding 
value ranges of �α from 0.001 to 0.9.

Eqs. (10) and (11) are intended for exploitation, while 
Eqs. (12)–(15) are designed for exploration. The opera-
tor can effectively explore and exploit the decision space, 
and its computation process is simple, and precision is 
controllable. However, the mutation operator in Ref. [27] 
has not sufficiently utilized the potential information of 
the contemporary population, which can be used for the 
adaptive selection of exploitation or exploration.

A common adaptive adjustment method is to use the 
information of the objective function value to adjust the 
mutation strategy. For the trajectory planning problem of 
the manipulator, the real Pareto front cannot be obtained 
in reality. Therefore, the distribution value of population 
instead of objective function can be used as a parameter 
to select exploitation and exploration. In this study, the 
ratio of contemporary population space to decision space 
is used to determine the mutation strategy of the individ-
ual, which can promote rapid and stable evolution of the 
population.

In the early iterations, the differences between the indi-
viduals are larger, so the exploration is selected to ensure 
the diversity of the population and avoid the algorithm 

(10)X ′
i = Xi +�α,

(11)X ′
i = Xi −�α,

(12)X ′
i = Xi +�β ,

(13)X ′
i = Xi −�β ,

(14)X ′
i = Xi +�γ ,

(15)X ′
i = Xi −�γ ,

falling into local optimality. In the later iterations, the 
population gradually tends toward the region of the 
optimum, and the differences between the individuals 
are smaller, hence the exploration is selected to keep the 
excellent individuals to improve the search effective. The 
APCM operator can be expressed as

where xCimax and xCimin are maximum and minimum 
value of the individuals in contemporary population, 
ximax − ximin denotes the magnitude of decision space.

Compared with the mutation operator in Ref. [27], 
adding the adaptive adjustment of the mutation operator 
can promote the balance of local search and global explo-
ration capabilities, thereby making the Pareto boundary 
distribution better.

3.4 � Overall Algorithm
The flowchart used the INSGA-II for the trajectory plan-
ning of the manipulator is shown in Figure  3. Initializ-
ing randomly the parameters within the threshold value 
gains the initial trajectory curves (Eq. (7)), and the stor-
age of these trajectory is performed, then calculating 
the objective functions for each chromosome. The first 
generation population performs non-dominated sorting 
to find a set of Pareto front (PF), and the population is 
sorted by the crowding distance. Afterwards, a new par-
ent population is generated by RGS, DBX, and APCM 
operator, and the parents and offspring are combined to 
form a population of N individuals according to the elite 
strategy. It is continuously judged whether it reaches the 
number of iterations, and the objective function of each 
trajectory is compared. Finally, the Pareto solution of the 
objective functions is obtained after the iteration and the 
corresponding designed parameters are output.

Compared with conventional NSGA-II, the com-
bination principle to construct a selection operator 
is used in the proposed INSGA-II, which can avoid 
repeated comparison of the fitness between individu-
als to improve the convergence speed of the algorithm. 

(16)ξi =
xCimax − xCimin

ximax − ximin
,
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DBX can expand the search space and increase the gen-
eration probability of high-quality individuals, thereby 
improving the search ability and convergence speed of 
the algorithm. The local random search ability of the 
APCM can accelerate the convergence to the optimal 
solution, and the exploration strategy of the operator 
can expand the search space to keep the population 
diversity.

4 � Performance Measures for INSGA‑II
Given a set of solutions by Section 3, but in some cases, 
the weight cannot be determined by a decision maker 
due to insufficient information related to the different 
criteria. In that situation, we offer a strategy. First, the 
performances of the INSGA-II are evaluated according 

to the convergence, diversity and computational effi-
ciency, and then the fuzzy comprehensive evaluation of 
the solution set is adopted to determine the optimum 
solution for decision markers.

4.1 � Performance Evaluation Index
As for the performances of the multi-objective optimi-
zation algorithms, inverted generational distance (IGD) 
and hypervolume (HV) are very popular for compre-
hensively measuring the convergence and diversity 
of algorithms [28]. Meanwhile, the proportion rela-
tion between total number of evaluations and total 
CPU time is used to test the algorithm efficiency [29]. 
The three metrics can be mathematically expressed as 
follows

where P* indicates a set of points uniformly sampled over 
the true PF, and S is the set of solutions obtained by an 
MOEA. dist(x, S) denotes the Euclidean distance between 
the closest individual from x to S. |P*| is the cardinality of 
set P*. The smaller IGD value indicates that the set S is 
closer to the entire PF, and thereby the convergence and 
diversity are better.

where r∗ =
(

r∗1 , r
∗
2 , · · · , r

∗
m

)

 is a reference point in the 
objective space that is dominated by all solutions in a PF 
approximation S. VOL(•) is the Lebesgue measure. HV 
metric measures the size of the objective space domi-
nated by the solutions in S and bounded by r∗ . The larger 
the HV value, the closer S is to the entire PF.

where OO stands for the optimizer overhead. TTotal 
denotes the total CPU time taken, and TPFP denotes 
the time taken for pure function evaluations. The lower 
OO metric corresponds to the higher efficiency of the 
algorithm.

It should be noted that in IGD, an average minimum 
distance is calculated from each point in the true PF to 
those obtained by an MOEA. In the processing of cal-
culating IGD, since without any priori PF shape knowl-
edge, all the non-dominated solutions are used as the 
reference points [30].

(18)IGD(S,P∗) =

∑

x∈P∗
dist(x, S)

|P∗|
,

(19)

HV(S) = VOL

(

⋃

x∈S

[f1, r
∗
1 ] × [f2, r

∗
2 ] × · · · × [fm, r

∗
m]

)

,

(20)OO =
TTotal − TPFP

TPFP
,

Figure 3  Flowchart of INSGA-II algorithm
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4.2 � Fitness Evaluation
Fuzzy comprehensive evaluation is one of the effec-
tive decision-making methods for objectives affected 
by various factors, which adopts a fuzzy membership 
function to describe the fitness factor of an objective 
function [11, 29]. For the objective function minimiza-
tion problem, the fuzzy membership function can be 
expressed as

where fi(j) represents the objective function, i denotes the 
number of the objective function, and j denotes the jth 
solution at the PF. fmax and fmin are the the maximum and 
minimum value of the objective function.

According to Ref. [11], the synthetical membership 
value can be written as

The larger synthetical membership value indicates the 
better fitness of the Pareto solution. The highest syntheti-
cal membership value is 1, which can be considered as 
the most satisfactory solution for the decision-maker.

5 � Numerical Example
The purpose of conducting simulation is to verify the 
search capability and convergence speed of the proposed 
INSGA-II as well as validity and competency of the com-
posite polynomial approach for creating trajectory. In 
this section, taking a serial-parallel hybrid manipulator 
as instance [31], as shown in Figure 4, the symbols in the 
figure are given a detailed introduction in the Ref. [32]. 
To facilitate analyzing the dynamic performances of a 
hybrid manipulator, the trajectory planning problem is 
handled in the space of the output angle of joint mov-
ing platform (OAJ) [32]. It is noted that the mapping of 
the trajectory between the joint space and the OAJ space 
can be obtained by applying the inverse kinematics trans-
formation of each joint of the hybrid manipulator, and 
the OAJ space can be transferred to the operating space 
through the forward kinematics analysis.

The maximum value of each OAJ velocity and accelera-
tion can be obtained based on the search method [33] by 
combining the actuator velocity and acceleration bound-
aries in Eq. (2) with the workspace of the manipulator 
[21].

where ψ , ψ̇ , ψ̈ ∈ Rn , ψ denotes the n-vector of OAJ, n is 
the number of DOF of OAJ, j denotes each OAJ. J omax 

(21)ηi
(

j
)

=
(

fimax − fi
(

j
))

/
(

fimax − fimin

)

,

(22)ηsyn = (η1 + η2)/max (η1 + η2).

(23)

{

ψ̇ jmax = J omax θ̇ imax,

ψ̈ jmax = J omax θ̈ imax + J̇ omax θ̇ imax,

represents Jacobian matrix of the manipulator corre-
sponding to the maximum value of each OAJ velocity.

Then, we start by analyzing the performance of the 
several algorithms for the trajectory optimization of a 
point-point motion, including the proposed INSGA-
II, MO-INSGA-II [34], success history-based adap-
tive multi-objective differential evolution with whale 
optimization (SHAMODE-WO) [35], IMOPSO [36], 
many-objective evolutionary algorithm based on decom-
position with random and adaptive weights (MOEA/
D-URAW) [37] and IMODE [38]. In a second phase, 
the composite polynomial with the quintic B-splines 
approach are compared to evaluate its effectiveness.

5.1 � Comparison with MO‑NSGA‑II, SHAMODE‑WO, 
IMOPSO, MOEA/D‑URAW and IMODE

Given position and posture of the hand at initial and final 
instance, including one starting point and eight ending 
points, the OAJ trajectories are parameterized here by 
composite polynomial functions with four nodes uni-
formly distributed along time scale (Figure  5). There 
are sixteen unknown parameters, where two interme-
diate adjustable nodes contain fourteen, ending point 
only includes one by applying inverse kinematics trans-
formation, and the travelling time is one of them. These 

Figure 4  Schematic configuration of the serial-parallel hybrid 
manipulator
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parameters are optimized by multi-objective algorithm 
until non-dominated solutions satisfying constraints 
have been reached. In Figure  5, the boundary value of 
the designed parameter ψ can be obtained by considering 
the equality and inequality constraints in Eq. (2) and the 
workspace limitation of the manipulator.

The initial position and posture of the end-effector 
is [x0 y0 z0 α0 β0 γ0] = [0 0 − 0.83 π/2 0 − π], and the 
final positions and postures of the hand (FPH) are set 
as follow.

To validate the superiority of the proposed INSGA-II, 
its performances with some state-of-the-art represent-
atives are compared from different categories of multi-
objective algorithms. All non-dominated solutions of 
the trajectory optimizations, from the starting point to 
the eight ending points, offered by INSGA-II over 100 
runs, are compared to that of MO-NSGA-II, SHAM-
ODE-WO, IMOPSO, MOEA/D-URAW and IMODE in 
terms of IGD, HV and OO, and then these experiment 
results are gathered for statistical analysis. It is noted 
that all objective functions are normalized by adopting 
the min-max standardization method to have a same 
range, which can avoid the function with largest range 
would dominate selection.

The initialization parameters for NSGA-II are as fol-
lows: the population size is 100, the generation number 
is 80. Mutation probability is 1/16, which is selected as 

(24)























































FPH1 = [−0.02, 0.02, −0.77, 5π/12, −π/12, −8π/9],

FPH2 = [−0.03, 0.03, −0.75, 5π/13, −π/13, −8π/10],

FPH3 = [−0.04, 0.04, −0.73, 5π/14, −π/14, −8π/11],

FPH4 = [−0.05, 0.05, −0.71, 5π/15, −π/15, −8π/12],

FPH5 = [−0.06, 0.06, −0.69, 5π/16, −π/16, −8π/13],

FPH6 = [−0.07, 0.07, −0.67, 5π/17, −π/17, −8π/14],

FPH7 = [−0.08, 0.08, −0.65, 5π/18, −π/18, −8π/15],

FPH8 = [−0.09, 0.09, −0.63, 5π/19, −π/19, −8π/16].

1/n (where n represents the number of variables) pro-
posed by Deb [25]. For constraint-optimization prob-
lems, the distribution indexes for real coded crossover 
and mutation operators are 20 and 100, respectively. 
The values of the parameter that have been used in 
SHAMODE-WO technique are as follow: the popula-
tion size is 100, the generation number is 80, the his-
torical memory of scaling factor is 0.5, the historical 
memory of crossover ratio is 0.5, the memory index is 1 
and the memory size is 5. In overall tested experiments, 
IMOPSO was run using the parameters as follows: the 
population size is 100, the generation number is 80, the 
jump improved operation mechanism number is 100, 
the disturbance rate range is [0.1, 0.3]. For MOEA/D-
URAW, the population size is 100, the generation 
number is 80, the historical memory of scaling factor 
is 0.5, the historical memory of crossover ratio is 0.5, 
the memory index is 1 and the memory size is 5. For 
IMODE, the population size is 100, the maximum num-
ber of iterations is 80, the crossover probability is 0.1, 
the scaling factor is 0.5, the size of initial Pareto front 
approximation is 100, the number of points desired by 
the decision maker is 100 and the selection parameter 
is 0.1.

The mean and standard deviation values (SD) of all the 
instances are shown in Table 1 (The best results for each 
index are marked in bold). Demonstrated in mean and 
SD of the IGD evaluation results, INSGA-II finds better 
solutions, which has superior values in all test problems 
when compared to related works while its IGD remains 
approximate to zero. In most of the test problems, the 
INSGA-II performs better than other related methods 
in the HV evaluation results. The two evaluation results 
indicate that the convergence and diversity of the non-
dominated solutions obtained by INSGA-II performs 
better than that of other related methods. However, the 
experiment results of the INSGA-II are not satisfactory in 
the OO evaluation. As for the OO evaluation results, the 
calculation efficiency of all the test instances addressed 
by IMODE is the best.

In order to intuitively reflect the performance of each 
algorithm, the corresponding boxplots (Figure  6) is 
drawn by synthesizing the results in Table  1. The IGD 
and HV evaluation results clearly show that the INSGA-
II can perform exceptionally in solving the problem of 
manipulator’s trajectory planning, which demonstrates 
its convergence and diversity are better than other algo-
rithms. MO-NSGA-II takes second place in the conver-
gence and diversity performances, but the computational 
efficiency of the INSGA-II and MO-NSGA-II are unde-
sirable. Additionally, although the convergence and 
diversity performance of IMODE technique is not good, 

Figure 5  Composite polynomial curve of joint output angle 
temporal evolution
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it gives minimum OO thereby it is the better one for a 
multicriterion to obtain a best optimal solution trade-off 
very quickly.

5.2 � Comparison of Trajectory Planning Methods
Taking the point-to-point mission with FPH1 as an 
example, to gain the better designed parameters of trajec-
tory optimization, the non-dominated solutions obtained 
by the four algorithms are all taken as candidates for 
decision-makers. As shown in Figure  7, the travelling 
time ranges from 0.513 to 2.96 s while the torque fluctua-
tion ranges from 5.29 to 114.17 N·m. Solution A requires 
the shortest travelling time but the maximum torque 
fluctuation while Solution C has the least torque fluctua-
tion but the maximum travelling time. Other solutions 
are the trade-off between the travelling time and torque 
fluctuation.

Solution B (The orange circle dot in Figure  7) is 
obtained by substituting all non-dominated solutions 

obtained in the Section 5.2 into the Eq. (22), which cor-
responds to a synthetical membership value equal to 
one. The designed parameters matched with Solution 
B are used to verify the validity and competency of the 
composite polynomial in comparison with the veloc-
ity and acceleration of the quintic B-spline approach 
[21]. The result values of the designed parameter are: 
the normalized time λ = 0.809, the intermediate points 
ψa1 = [−0.0925, − 0.0366, 0.194, 0.132, 0.233, − 0.0836, 
− 0.172] rad and ψa2 = [− 0.201, − 0.0905, 0.351, 0.289, 
− 0.257, − 0.0866, 0.234] rad.

In order to be able to compare the results yielded by 
the two trajectory planning methods, the travelling time 
is consistent with the optimized results. In addition, 
the velocity and acceleration of the starting and ending 
points are set as zero. The profiles of velocity and accel-
eration for each actuator created using quintic B-splines 
are shown in Figures 8 and 9.

Likewise, the trajectory of each OAJ created by 
using the composite polynomials can be obtained by 

Table 1  Mean and standard deviation values of GD, SSM and OO between INSGA-II, MO-NSGA-II, SHAMODE-WO, IMOPSO, MOEA/D-
URAW and IMODE over 100 runs on eight given different final points (× 10−2)

Final point Performance 
metric

INSGA-II MO-INSGA-II SHAMODE-WO IMOPSO MOEA/D-URAW​ IMODE

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

FPH1 IGD 2.15 0.698 4.02 1.07 6.53 1.62 10.4 3.04 8.25 2.16 20.1 8.27

HV 76.4 3.23 73.3 3.19 67.1 3.59 64.9 5.20 61.7 6.37 60.1 7.62

OO 17.0 2.93 20.9 4.61 16.1 2.18 16.0 2.84 15.9 2.48 10.9 3.22

FPH2 IGD 2.24 0.636 4.17 0.997 6.79 1.82 11.8 4.53 8.31 2.20 19.8 7.92

HV 75.2 3.05 76.7 3.29 67.3 3.50 64.9 5.19 63.9 5.97 60.7 7.02

OO 17.4 2.58 20.4 4.37 15.4 2.12 11.9 2.83 15.9 2.48 11.4 3.01

FPH3 IGD 2.34 0.587 4.32 0.955 6.77 1.78 11.3 4.01 8.34 2.23 19.5 7.58

HV 78.1 2.92 76.1 3.28 67.3 3.45 64.9 5.19 66.1 5.63 61.4 6.57

OO 17.8 2.34 19.9 4.13 15.7 2.17 12.9 2.53 15.9 2.50 11.9 2.83

FPH4 IGD 2.43 0.554 4.47 0.946 6.76 1.73 10.9 3.51 8.38 2.26 19.2 7.24

HV 76.9 2.82 75.4 3.32 67.5 3.45 64.9 5.18 68.3 5.38 62.1 6.30

OO 18.2 2.23 19.4 3.90 15.9 2.25 13.9 2.36 15.9 2.53 12.4 2.68

FPH5 IGD 2.52 0.540 4.62 0.971 6.74 1.69 10.4 3.04 8.42 2.29 18.9 6.90

HV 75.8 2.77 74.8 3.39 67.3 3.51 64.9 5.11 70.6 5.21 62.8 6.23

OO 18.5 2.28 18.9 3.69 16.3 2.35 14.9 2.35 15.9 2.57 12.9 2.57

FPH6 IGD 2.62 0.546 4.76 1.03 6.73 1.65 9.93 2.60 8.45 2.33 18.6 6.57

HV 74.6 2.77 74.2 3.49 67.3 3.63 64.9 5.13 72.8 5.14 63.5 6.39

OO 18.9 2.48 18.5 3.49 16.5 2.47 15.9 2.49 15.9 2.60 13.5 2.51

FPH7 IGD 2.71 0.573 4.91 1.11 6.72 1.61 9.46 2.22 8.49 2.36 18.26 6.24

HV 73.4 2.82 73.5 3.63 67.3 3.79 64.9 5.15 75.0 5.18 64.1 6.73

OO 19.3 2.78 17.9 3.31 16.8 2.61 16.9 2.78 16.0 2.65 13.9 2.48

FPH8 IGD 2.80 0.62 5.06 1.21 6.70 1.58 8.99 1.94 8.53 2.39 17.9 5.91

HV 77.3 2.91 72.9 3.79 67.3 3.98 64.8 5.14 77.2 5.32 64.8 7.25

OO 19.7 3.18 17.5 3.15 17.1 2.77 17.9 3.15 16.1 2.69 14.5 2.51
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Figure 6  Performances of INSGA-II, MO-NSGA-II, SHAMODE-WO, 
IMOPSO, MOEA/D-URAW and IMODE in optimizing the problem of 
HRRA trajectory planning: (a) IGD, (b) HV, (c) OO

Figure 7  Approximate true Pareto front for trajectory planning

Figure 8  The velocity profile of each joint using quintic B-splines
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substituting the optimum results into Eq. (7), and then 
the velocity and acceleration of each actuator can be 
solved. The corresponding velocity and acceleration pro-
files are shown in Figures 10 and 11.

The maximum kinematic values of the profiles in 
Figures  8, 9, 10 and 11 are listed in Table  2, and it can 
be noticed that the results yielded by the approach 
described in this article are better than those provided by 
the approach [21] with respect to the maximum values of 
velocity and acceleration. It is well known that the lower 
maximum velocity provides an advantage because lower 
velocity extends the life of the actuator. Meanwhile, lower 
acceleration profiles decreases the noise in the mecha-
nism and increases the mechanical life by reducing wear.

To further demonstrate the superiorities of the pro-
posed method, the torque fluctuations are calculated by 
the quintic B-spline and composite polynomial approach. 
The reduction of the torque fluctuation is 33.47%, as 

shown in Figure  12. Consequently, the manipulator can 
work with higher stability via the proposed method.

6 � Conclusions
A new methodology for optimal trajectory planning has 
been described in this article. The composite polynomi-
als are adopted to construct the trajectory of each OAJ 
and the trajectory is optimized with INSGA-II tech-
nique. The objective functions take into account both 
the travelling time and the torque fluctuation along the 
whole trajectory.

(1)	 A new composite polynomial is created by combin-
ing quintic polynomials with Bezier curves based 
on cubic Bernstein polynomials. By the Bezier 
curve part, the convergence to the starting and end-

Figure 9  The acceleration profile of each joint using quintic B-splines
Figure 10  The velocity profile of each joint using composite 
polynomials
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ing points and the adjustability of the trajectory are 
improved, while a smooth transition in the vicinity 
of the endpoints is provided by the polynomial part.

(2)	 Three improved genetic operators are adopted 
in INSGA-II: RGS can increase the differences 
between the paired individuals and the diversity of 

the paired genes; DBX can expand the search space 
and improve the probability of individuals with high 
adaptability; APCM can accelerate the convergence 
to the optimal solution by the adaptive mutation 
operator.

(3)	 Given eight different ending points in trajectory 
mission, the convergence, diversity and efficiency 
of INSGA-II, MO-NSGA-II, SHAMODE-WO, 
IMOPSO, MOEA/D-URAW and IMODE are cal-
culated based on IGD, HV and OO. The simula-
tion results demonstrated that well-converged and 
well-diversified non-dominated solutions can be 
obtained by INSGA-II, but the efficiency is lower 
than that of IMODE.

(4)	 Using the synthetical fuzzy membership function to 
obtain a trade-off for decision-users, the trajectory 
of the OAJ constructed by composite polynomi-
als compared in the velocity and acceleration with 
quintic B-splines. The former velocity and accel-
eration are lower, which increases the mechanical 

Figure 11  The acceleration profile of each joint using composite 
polynomials

Table 2  Maximum kinematic values resulting from the trajectory construction approaches

Approach Joint

1 2 3 4 5 6 7

Quintic B-splines

 Vmax 0.768 0.458 1.206 2.001 0.0201 0.0839 0.0513

 Amax 3.757 1.627 6.976 6.808 0.136 0.870 0.565

Composite polynomials

 Vmax 0.815 0.429 1.152 1.929 0.0169 0.0693 0.0397

 Amax 2.602 2.029 4.829 5.659 0.108 0.710 0.449

Figure 12  Comparison chart of torque fluctuation
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life by reducing wear. Moreover, the reduction of 
the torque fluctuation is 33.47%, thereby ensuring 
higher motion stability of the manipulator.

Future work will aim to reduce the time complexity of 
the INSGA-II to improve the calculation efficiency so 
that the optimization method can be used in the real-
time trajectory planning for the manipulator.
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