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Abstract 

Many surveys on vehicle traffic safety have shown that the tire road friction coefficient (TRFC) is correlated with the 
probability of an accident. The probability of road accidents increases sharply on slippery road surfaces. Therefore, 
accurate knowledge of TRFC contributes to the optimization of driver maneuvers for further improving the safety of 
intelligent vehicles. A large number of researchers have employed different tools and proposed different algorithms 
to obtain TRFC. This work investigates these different methods that have been widely utilized to estimate TRFC. These 
methods are divided into three main categories: off-board sensors-based, vehicle dynamics-based, and data-driven-
based methods. This review provides a comparative analysis of these methods and describes their strengths and 
weaknesses. Moreover, some future research directions regarding TRFC estimation are presented.
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1  Introduction
Traffic accidents are one of the leading causes of inju-
ries and death in China and abroad. According to the 
National Bureau of Statistics of China, in 2019, there 
were 247646 traffic accidents, which resulted in 62763 
fatalities, 256101 injuries, and a direct economic loss 
of 1346.18 million yuan. Therefore, both industry and 
academia have made great efforts to develop new tech-
nologies to reduce or even avoid traffic accidents. Active 
safety systems are the most representative of these new 
technologies, which include antilock braking systems [1], 
electronic stability control systems [2, 3], active collision 
avoidance systems [4], etc.

The main function of antilock braking systems is to 
prevent the wheel lock during heavy braking and to 
maintain the traction between the tires and the road at 
an optimal value. The magnitude of this optimal traction 

is usually determined based on the tire road friction coef-
ficient (TRFC). The electronic stability control systems 
generate a yaw moment based on the desired yaw rate to 
ensure the lateral stability of the vehicle. The desired yaw 
rate normally shows a positive correlation with TRFC. 
The active collision avoidance systems use a variety of 
sensors to obtain information about the surrounding 
environment of the vehicle to reduce the risk of acci-
dents. Active collision avoidance systems will work when 
the relative distance between the vehicle and the obsta-
cle is lower than the safety distance. This safety distance 
is negatively correlated with TRFC. The above analysis 
shows that accurate TRFC information is essential to 
improve the performance of active safety systems. Unfor-
tunately, TRFC cannot be measured by on-board sen-
sors. To this end, researchers have successively proposed 
various approaches to address the challenge. Refs. [5–7] 
also provide a review of the models and methods used 
for TRFC estimation. However, few types of research 
have systematically discussed the acquisition of TRFC 
from the perspective of off-board sensors-based, vehicle 
dynamics-based, data- driven-based.
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This article systematically reviews the recent devel-
opments on TRFC estimation from different research 
directions. It contains a comparative analysis of exist-
ing methods and describes their strengths and weak-
nesses. Also, some future research directions regarding 
TRFC estimation are presented. Based on this, we believe 
this work will help the researcher or vehicle engineer to 
choose a suitable approach for TRFC estimation.

To give some details of the analysis, the rest of this 
article is organized as follows. In Section  2, the differ-
ent types of TRFC estimation methods are presented. In 
addition, the advantages and shortcomings of these exist-
ing methods are briefly elaborated. The conclusion and 
some promising prospects regarding TRFC estimation 
are given in Section 3.

2 � TRFC Estimation Methods
There are three main directions of existing research 
on TRFC estimation including identification methods 
based on off-board sensors, vehicle dynamics-based 
approaches, and data-driven prediction methods. These 
estimation methods are divided into three groups accord-
ing to different categories as shown in Figure 1.

2.1 � Off‑board Sensors‑based Methods
Studies have shown that changes in micro/macro-texture 
of road surfaces affect TRFC [8], which has prompted 
many scholars to use this knowledge to obtain TRFC. 
Estimation methods based on this principle usually 
require the use of a camera to acquire a certain amount 
of road images and subsequently utilize some algorithms 
to obtain the TRFC. Baffet et  al. [9] used multiple lin-
ear regression analysis and the fuzzy logic method to 
estimate the TRFC. Du et al. [10] proposed a deep neu-
ral network based on domain knowledge for estimating 
TRFC. Leng et  al. [11] developed a fusion strategy of a 
dynamic estimator and visual estimator to identify TRFC. 
Yu et al. [12] made use of a backpropagation (BP) neural 
network to predict TRFC. This method usually has bet-
ter estimation accuracy in high visibility environments 
while the prediction performance decreases significantly 
in night driving environments.

To make the estimation algorithm work in a night driv-
ing environment, several estimation methods based on 
the physical deformation of the tire have been proposed 
successively. Some scholars found that tire deforma-
tion and vibration are also related to TRFC. Some sen-
sors such as accelerometers are installed inside the tires 
(see Figure 2) to measure some key information to obtain 
TRFC.

Singh et  al. [14] proposed a method to predict TRFC 
using the frequency response of tire vibration. A method 
of using acceleration information from intelligent tires 

was presented in Refs. [13, 15, 16], and experimental 
results proved the effectiveness of this approach. How-
ever, due to the complex working conditions of tires, 
the sensors inside the tires are easily dislodged or dam-
aged, which limits the further practical application of 
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Figure 1  Classification of the TRFC estimation methods

Figure 2  Using accelerometers to identify TRFC [13]
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such methods. Furthermore, some estimation methods 
based on ultrasonic sensors[17], laser profilometer [18], 
wireless piezoelectric tire sensor [19], and magnetometer 
[20] have also been reported. The advantages of these off-
board sensor-based methods are that they require fewer 
measurement variables, are insensitive to the vehicle’s 
dynamic response, and do not require specific excita-
tion inputs. Obviously, these off-board sensors need to be 
additionally assembled on series production cars. Also, 
the off-board sensor-based method can only obtain the 
approximate range of the TRFC and the measurement 
accuracy is sensitive to the interference of the external 
environment. For these reasons, vehicle dynamics-based 
methods have received increasing attention in recent 
years.

2.2 � Vehicle Dynamics‑based Approaches
The vehicle dynamics-based method identifies TRFC 
according to the dynamic response of the vehicle on 
different road surfaces. The vehicle dynamics-based 
approaches can be divided into three categories: longitu-
dinal dynamics-based, lateral dynamics-based, and cou-
pled dynamics-based methods.

2.2.1 � Longitudinal Dynamics‑based Methods
Longitudinal dynamics-based estimation methods typi-
cally have high estimation accuracy for acceleration and 
braking conditions. The principle underlying most of 
these estimation methods is the relationship between 
longitudinal slip and TRFC.

Figure 3 shows the relationship between the TRFC and 
the longitudinal slip for a variety of road surfaces. From 
Figure 3, we can see that TRFC is an increasing function 
of slip. As the slip increases, TRFC will reach a maxi-
mum value and then decrease slightly. Gustafsson et  al. 
[21] first proposed a classical approach to estimate TRFC 
utilizing the longitudinal slip slope. In Refs. [21, 22], an 

adaptive filter based on Kalman filter theory by using a 
magic formula (MF) tire model is proposed to estimate 
TRFC. Similarly, Yi et al. [23, 24] supplied more experi-
mental data to sustain Gustafsson’s view. Based on Gus-
tafsson’s idea, Rajamani et  al. [25, 26] further extended 
the applicability of the method by adding global posi-
tioning system (GPS) signals. In addition, a rule-based 
TRFC estimation method was also proposed in Ref. [27], 
which can still have a good estimation accuracy when the 
wheels reach the limit of adhesion. Since TRFC varies not 
only with road conditions but also with tires, the exper-
iment-based real-time TRFC estimation method can 
further improve the accuracy of TRFC estimation under 
different driving conditions [28]. Although the slip-based 
TRFC estimation method requires few sensors and shows 
promising results, it has major problems in terms of 
robustness and calibration. Accordingly, nonlinear curve 
fitting techniques were presented to address this prob-
lem [29–33]. In addition, another mainstream estima-
tion method is to determine the TRFC from the obtained 
tire force. Some multiple analytical models were used to 
identify the TRFC in Refs. [34–40]. State observers and 
recursive least squares (RLS) are also used for TRFC esti-
mation. For example, state observers based on the LuGre 
dynamic model [41–43], the Burckhardt model [44–47], 
the Magic Formula model [48, 49], the quarter wheel 
model [50], and the tire torsion model [51] were designed 
to identify the TRFC. RLS methods, which are mainly 
based on  the brush  model [37],  the Burckhardt model 
[52, 53], longitudinal vehicle model [54–58], single-wheel 
model [59] and six-degree-of-freedom (DOF) vehicle 
model [60], have been extensively studied in recent years. 
It is well known that the RLS usually has only one degree 
of freedom to adjust the adaptivity of the filter, which 
may limit its application.

To fill the gap, Kalman filter-based methods are 
attracting more and more attention. Krisztian et al. [61] 
made use of extended Kalman filter for TRFC estima-
tion. Castillo et  al. [62] developed a TRFC estimation 
method incorporating fuzzy logic and a Kalman filter. 
In addition to the common methods mentioned above, 
some interesting estimation methods have been pro-
posed by scholars. TRFC prediction method based on 
tire force information using conditional probability the-
ory was presented in Ref. [63]. Resonance frequency-
based TRFC estimation methods were developed in 
Refs. [64, 65]. A fuzzy logic-based TRFC identification 
method was presented in Ref. [66]. Also, the transfor-
mation of the TRFC estimation problem into an opti-
mization problem is an interesting research direction 
[67]. To compare the various methods more clearly, 
the estimation methods based on vehicle longitudinal 
dynamics are presented in Table 1.Figure 3  Longitudinal slip versus TRFC
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2.2.2 � Lateral Dynamics‑based Methods
Estimation approaches that consider vehicle longitudi-
nal dynamics commonly require larger excitation, while 
methods based on vehicle lateral dynamics may also yield 
better estimation results when the excitation is relatively 
small. The general framework of TRFC estimation based 
on vehicle lateral dynamics is shown in Figure 4. When 
the driver applies a steering maneuver to the vehicle, sev-
eral key state variables are first measured by on-board 
sensors. Then, after obtaining measurement signals, the 
lateral force of the tire is estimated by some advanced 
algorithms. Finally, the tire model and tire lateral force 
are used to predict TRFC.

Based on this general framework, some interesting 
estimation algorithms have been proposed to estimate 
TRFC. An analytical model based on lateral acceleration 

to estimate TRFC was presented in Refs. [68, 69], and the 
method has good estimation results in the linear range of 
the tire. To further extend the scope of application of this 

Table 1  Summary of estimation methods based on vehicle longitudinal dynamics

Number Models Methodology References

1 Torque-to-force transfer function Analytical model [34–36, 39, 40]

2 Anisotropic brush model Least square method [37]

3 Magic formula model Kalman filter [21, 22]

4 Eight DOF vehicle model Extended Kalman–Bucy filtering [63]

5 Magic formula model Reduced order observer [23, 24]

6 Magic formula model Analytical model [38]

7 Torque-to-force transfer function State observer [28]

8 LuGre dynamic model State observer [41, 42]

9 Magic formula model RLS [25, 26]

10 Magic formula model Nonlinear curve fitting technique [29]

11 Pseudostatic lugre model Sliding mode observer [43]

12 Burckhardt model Recursive least squares [52]

13 Tire torsion model Sliding mode observer [51]

14 Longitudinal vehicle model Nonlinear curve fitting technique [30, 32, 33]

15 Burckhardt model Nonlinear curve fitting technique [44, 45]

16 Longitudinal vehicle model RLS [54, 56–58]

17 Single wheel model RLS [59]

18 Magic formula model Improved nonlinear observer [48]

19 Burckhardt model Sliding mode observer [46]

20 Six DOF vehicle model RLS [60]

21 Three DOF vehicle model Extended Kalman filter [61]

22 Longitudinal vehicle model Proportional integral observer [55]

23 Quarter wheel model Nonlinear Lipschitz observer [50]

24 Four wheel vehicle model Fuzzy logic and Kalman filter [62]

25 Frequency response function Analytical model [64, 65]

26 Modified Burckhardt tire model Nonlinear estimator [47]

27 Magic formula model Genetic algorithm [67]

28 Novel TRFC slip curve Nonlinear curve fitting technique [31]

29 Longitudinal vehicle model Fuzzy logic [66]

30 Magic formula model Linear extended state observer [49]

31 Longitudinal vehicle model Rules-based method [27]

32 Lugre and Burckhardt models T–S fuzzy and RLS [53]
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Figure 4  The general framework of TRFC estimation based on 
vehicle lateral dynamics.
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method, an analytical model based on cornering stiff-
ness coefficient to identify TRFC at large slip angles was 
developed in Ref. [70]. The use of yaw rate and aligning 
torque information to estimate TRFC was also presented 
in Refs. [71–73] respectively.

To reduce reliance on in-vehicle sensor information, 
Rajamani et  al. [74] only used a differential global posi-
tioning system (DGPS) to identify TRFC. Erdogan et al. 
[75] utilized a new tire force measurement device to esti-
mate TRFC without using information from the braking 
system. Although using less sensor information to esti-
mate TRFC can help reduce costs in some normal driv-
ing conditions, the accuracy of TRFC estimation may be 
decreased in some complex driving situations. An inte-
grated TRFC estimation strategy [76–78] was proposed 
using sensor fusion techniques to address this problem.

In addition, due to the coupling relationship between 
the vehicle state and TRFC, some scholars usually carry 
out the identification of sideslip angle and TRFC simul-
taneously to improve the estimation accuracy. An RLS 
algorithm for estimating the vehicle sideslip angle and 
TRFC was developed in Refs. [79, 80]. The Kalman filter 
as a special form of RLS has obvious advantages in deal-
ing with estimation problems with measurement noise. 
Considering the sensor measurement noise interference 
and the nonlinearity of vehicle dynamics, an estima-
tion method based on the double extended Kalman fil-
ter (EKF) was presented in Refs. [81, 82]. The unscented 
Kalman filter avoids solving the Jacobian matrix and can 

obtain higher estimation accuracy than EKF. Hence, the 
UKF was used for the estimation of TRFC [83]. However, 
these Kalman-based methods are only valid for Gauss-
ian-distributed noise. For non-Gaussian and nonlinear 
systems, particle filters have high estimation accuracy. 
Liu et al. [84] proposed a prediction method combining 
auxiliary particle filter and iterative estimator and veri-
fied the effectiveness of the algorithm by real vehicle test.

On the other hand, methods using state observers are 
often reported such as extended Luenberger observer 
[85], online gradient descent algorithm [86], nonlinear 
observer [87, 88], high-order sliding mode observer [89], 
etc. The observer-based approach usually has a certain 
range of applicability, and an adaptive observer [90, 91] 
for all road conditions was proposed to solve this prob-
lem. To compare the various methods more clearly, the 
estimation methods based on vehicle lateral dynamics are 
presented in Table 2.

2.2.3 � Coupled Dynamics‑based Methods
The above studies only considered vehicle longitudinal or 
lateral dynamics, which may result in a serious underesti-
mation of the TRFC [92]. To increase the estimator work-
ing range, hybrid estimators began to be proposed one 
after another. The general framework of hybrid estima-
tors is shown in Figure 5. This hybrid estimator improves 
the estimation accuracy by designing some hybrid algo-
rithms to weigh the estimation results from different 
modules. Shim et  al. [93] proposed a fusion method 

Table 2  Summary of estimation methods based on vehicle lateral dynamics

Number Models Methodology References

1 Single-track vehicle model Analytical model [71]

2 Brush model Analytical model [68]

3 Single-track vehicle model Parameter identification algorithm [74]

4 Lateral tire forces Analytical model [75]

5 Seven DOF vehicle model Multi-sensor signal fusion method [76–78]

6 Single-track vehicle model RLS [79, 80]

7 Single-track vehicle model Analytical model [69]

8 Brush model Analytical model [72]

9 Three DOF vehicle model Dual extended Kalman filter [81, 82]

10 Nonlinear vehicle model Switched multiple nonlinear observer [90]

11 Single-track vehicle model Analytical model [70]

12 Random-walk model Extended Luenberger observer [85]

13 Single-track vehicle model Iteration estimator [84]

14 Seven DOF vehicle model Online gradient descent algorithm [86]

15 Single-track vehicle model Nonlinear observer [87, 88]

16 Single-track vehicle model Nonlinear adaptive observer [91]

17 Hypothetical brush model Direct model inversion [73]

18 Single-track vehicle model High-order sliding mode differentiator. [89]

19 Single-track vehicle model Unscented Kalman filter [83]
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based on steering angle information to estimate TRFC. 
Villagra et al. [94] used new algebraic filtering techniques 
to consecutively estimate tire forces and TRFC. Ahn et al. 
[95] developed an integration logic to switch among the 
developed algorithms based on the nature and level of 
excitations. Ren et al. [96] designed an integrated estima-
tor to predict TRFC on basis of information about longi-
tudinal, lateral, and yaw motions.

To ensure that the estimator can adapt to complex 
and variable working conditions, a moving horizon esti-
mation strategy [97] was proposed to estimate TRFC. 
In addition, time-domain-based signal fusion methods 
[98, 99] have also proven to be effective in dealing with 
the TRFC estimation problem. However, time-domain-
based signal fusion methods usually have degraded esti-
mation performance at small acceleration conditions. 
A frequency-domain data fusion was proposed to esti-
mate the TRFC based on the natural frequencies of the 

steering system and the in-wheel motor driving system 
[100]. RLS-based methods were also proposed to dynam-
ically predict TRFC based on longitudinal and lateral 
tire forces in Refs. [92, 101, 102]. Since Kalman filtering 
has a significant advantage over RLS in dealing with the 
estimation problem with measurement noise. Consider-
ing the nonlinearity of vehicle dynamics, an identification 
method based on the EKF was presented in Refs. [103, 
104]. To reduce the influence of old measurement data 
on the filtering in the EKF algorithm, a limited-memory 
adaptive extended Kalman Filter [105] was proposed to 
solve the problem. Also, UKF [106] can obtain higher 
accuracy when dealing with nonlinear system state esti-
mation, and it has also been used for TRFC estimation in 
recent years. Furthermore, due to the bad adaptability of 
traditional Kalman filters to variable system structure, an 
improved Strong Tracking UKF [107] was constructed to 
identify the TRFC. To reduce the workload required for 
mathematical derivations of the Kalman filtering method, 
a nonlinear state observer was proposed to estimate 
TRFC [108, 109]. In addition to some of the improved 
fusion strategies discussed above, neural network-based 
fusion methods [110] were also an interesting research 
direction. To compare the various methods more clearly, 
the estimation methods based on vehicle coupled dynam-
ics are presented in Table 3. The advantage of the vehicle 
dynamics-based method is that the TRFC can be esti-
mated using on-board sensors; the estimation cost is low, 
and the real-time performance is effective. The estimated 
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Figure 5  The general framework of the hybrid estimator

Table 3  Summary of estimation methods based on vehicle coupled dynamics 

Number Models Methodology References

1 Four wheel vehicle model Analytical model [93]

2 Four wheel vehicle model Unscented Kalman filter [106]

3 Kinematic model Analytical model [94]

4 Single-track vehicle model Analytical model [95]

5 Brushed tire model Linearized RLS [92]

6 Three DOF vehicle model Extended Kalman filter [103]

7 Three DOF vehicle model Integrated estimator [96]

8 Planar vehicle model RLS [102]

9 Three DOF vehicle model Signal fusion method [98]

10 Four-DOF vehicle model Extended Kalman filter [104]

11 Planar vehicle model MSE-weighted fusion method [99]

12 Three DOF vehicle model RLS [101]

13 Fourteen DOF vehicle model Multilayer perceptron neural network [110]

14 Active front steering model Frequency domain data fusion [100]

15 Planar vehicle model Nonlinear observer [108]

16 Three DOF vehicle model Limited-memory adaptive EKF [105]

17 Kinematic model Nonlinear observer [109]

18 Three DOF vehicle model Moving horizon estimation strategy [97]

19 Seven DOF vehicle model Improved strong tracking UKF [107]
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TRFC can meet the needs of advanced chassis control 
with guaranteed vehicle model accuracy. It is well known 
that many assumptions and corresponding mathematical 
simplifications need to be made before building a vehi-
cle dynamics model. Some idealized assumptions will 
increase the inaccuracy of the vehicle model and thus 
affect the accuracy of TRFC estimation, especially for 
some extreme driving conditions.

2.3 � Data Driven‑based Approaches
To compensate for the shortcomings of the vehicle 
dynamics-based method, neural networks were used 
to describe the tire and wheel suspension behavior 
[111]. A genetic algorithm optimized neural network 
is then employed to identify the TRFC. A similar idea 
was also reported in Ref. [112]. Zhang et al. [113] devel-
oped a mapping from input parameters to TRFC using 
general regression neural network, which effectively 
avoids storing complex tire models. Ribeiro et al. [114] 
employed the time-delay neural network to estimate 
TRFC can avoid using the standard tire mathemati-
cal model which makes the estimation method more 
robust. In addition, other neural networks have also 
been applied to the estimation of TRFC such as gated 
recurrent unit (GRU) network [115], deep neural net-
work [116], BP neural network [12], deep convolutional 
neural network [17], etc. Furthermore, the time series 
characteristics of TRFC are not considered in the above 
data-driven estimation method. A long-short term 
memory (LSTM) neural network [117] was developed 
to address this problem. In general, with the enhance-
ment of the computing power of the central processing 

unit, data-driven methods have received more and 
more attention. However, it should be noted that the 
prediction accuracy of such methods relies on the com-
pleteness of the dataset, and a comprehensive dataset 
is usually more difficult to obtain in practice. In addi-
tion, the generalization capability of the data-driven 
approach may further affect its applicability.

3 � Summary and Perspectives
In this article, we review and compare typical TRFC 
estimation approaches. Three types of TRFC estimation 
methods have been systematically assessed and sum-
marized. Although many outcomes have been achieved 
in TRFC estimation, some interesting points should be 
noted for future research. The first and foremost idea 
is to combine the advantages of various methods to 
improve the estimation accuracy of TRFC. Secondly, 
with the advent of the Internet of Things era, intelligent 
connected vehicles are gradually moving from the labo-
ratory to public roads. Vehicles can exchange informa-
tion with various traffic elements to obtain the friction 
coefficient of surrounding roads. In addition, with the 
development of prediction theory, predicting road fric-
tion in the future period is becoming a reality. Based on 
the above discussion, future studies on TRFC estima-
tion are shown in Figure 6.

The development of technology and theory allows 
us to use advanced sensors and algorithms to estimate 
TRFC and gradually improve the estimation accuracy 
from various aspects. Some future research directions 
on TRFC estimation are as follows.

Figure 6  Future research directions on TRFC estimation
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(1)	 Off-board sensors-based estimation methods can 
obtain road friction information without any exci-
tation, the disadvantage is that it is easily disturbed 
by the environment. Although the dynamics-based 
estimation method has strong robustness to envi-
ronmental interference, it needs suitable excita-
tion to obtain the ideal estimation performance. 
Furthermore, in the vehicle dynamics-based 
approaches, the simplification of the model often 
leads to a decrease in the accuracy of TRFC estima-
tion. A data-driven approach can effectively solve 
the problem but its performance is heavily depend-
ent on the integrity of the dataset. Therefore, it is 
necessary to combine different types of estima-
tion methods with well-designed fusion rules to 
obtain good prediction performance. For example, 
the effective integration of vehicle dynamics-based 
approaches with sensing approaches to improve 
estimation accuracy is one of the popular research 
directions.

(2)	 With the development of mobile communication 
technology, vehicles can exchange data with various 
elements in the intelligent transportation system, 
including other vehicles, Internet gateways, and 
transport infrastructure. When some sensors on the 
vehicle fail, it can exchange information with other 
vehicles to obtain TRFC. In addition, the vehicle 
can also modify the estimated value of TRFC by 
exchanging data with the camera on the signal light. 
This means that the road friction of the adjacent 
road of the vehicle can also be obtained, which will 
help the driver to plan the driving route reasonably. 
Therefore, it is a promising research direction to 
integrate multiple information to predict the TRFC 
of local roads in a networked environment.

(3)	 Existing studies on TRFC estimation can only esti-
mate the current road conditions based on the cur-
rent sensor measurements and they cannot predict 
the future road conditions. Accurate prediction of 
TRFC in the next few days allows travelers and road 
managers to rationalize their trips and road mainte-
nance activities, which contributes to the safety and 
efficiency of traffic. Combining historical road con-
dition data with weather forecast data and using a 
data-driven method to estimate long-term TRFC is 
also an interesting research direction.
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