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Abstract 

To integrate driver experience and heterogeneous vehicle platform characteristics in a motion-planning algorithm, 
based on the driver-behavior-based transferable motion primitives (MPs), a general motion-planning framework for 
offline generation and online selection of MPs is proposed. Optimal control theory is applied to solve the boundary 
value problems in the process of generating MPs, where the driver behaviors and the vehicle motion characteristics 
are integrated into the optimization in the form of constraints. Moreover, a layered, unequal-weighted MP selection 
framework is proposed that utilizes a combination of environmental constraints, nonholonomic vehicle constraints, 
trajectory smoothness, and collision risk as the single-step extension evaluation index. The library of MPs generated 
offline demonstrates that the proposed generation method realizes the effective expansion of MP types and achieves 
diverse generation of MPs with various velocity attributes and platform types. We also present how the MP selec-
tion algorithm utilizes a unique MP library to achieve online extension of MP sequences. The results show that the 
proposed motion-planning framework can not only improve the efficiency and rationality of the algorithm based on 
driving experience but can also transfer between heterogeneous vehicle platforms and highlight the unique motion 
characteristics of the platform.
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1  Introduction
The ever-increasing advancement of unmanned vehicle 
technology, especially multivehicle cooperative technol-
ogy, will significantly promote the development of future 
intelligent transportation systems and unmanned combat 
systems and will affect future travel modes and combat 
patterns [1–3]. Motion planning is a crucial component 
in the unmanned vehicle system framework. Its main 
function is to generate a reference trajectory that satisfies 
the constraints of the environment and the vehicle itself 
[4–6]. Building a unified motion-planning algorithm 

for heterogeneous vehicle platforms and using the driv-
ing experience to guide and accelerate the completion 
of planning tasks is a fundamental task for the further 
development of unmanned vehicle motion-planning 
algorithms. In both the motion-planning algorithm 
and the driving behavior representation algorithm, the 
decomposition of complex motion into motion primi-
tives (MPs) can effectively improve the efficiency of the 
algorithm [7–10].

The essence of MP generation is to solve a set of 
boundary value problems, that is, to generate a set of 
paths connecting different target states [11]. The diffi-
culty in solving the above problems lies in the segmen-
tation strategy of the state space and the form of the 
curve connecting the start and end states. Graph search-
based motion-planning algorithms, such as the typical 
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A* [12, 13], D* [14, 15], and state lattice [16, 17], divide 
the environment space into basic grids and then generate 
MPs based on center points, corner points, or edges. To 
overcome the disadvantages of a grid-based MP genera-
tion method that cannot consider nonholonomic vehicle 
constraints, the Hybrid A* algorithm completes the gen-
eration of MPs based on the vehicle kinematic model [7, 
18]. Each primitive used in the Hybrid A* algorithm is 
an arc generated with a fixed time scale and a fixed front 
wheel angle. The discrete optimization-based method 
uses spline curves or polynomial curves to generate MP 
candidate sets based on the offset points of the road 
centerline, which effectively limits the search space and 
improves the overall efficiency of the algorithm [19–21]. 
In addition, some methods use numerical optimization 
to realize the generation of MPs while considering vehi-
cle dynamic constraints [22–24]. Although the MPs gen-
erated by using the above methods can meet the needs 
of a complex driving environment, they fail to integrate 
the driver’s behavior information into the MP generation 
algorithm. Moreover, these methods generally lack con-
sideration of the differences and connections of the het-
erogeneous platform motion characteristics.

The quality of the final path generated by the motion-
planning algorithm depends not only on the quality of 
the MP itself but also on the rationality of the MP selec-
tion and connection [25]. The selection of MPs is the pro-
cess of first considering the cost function represented by 
different constraints, then combining the cost according 
to a particular weight factor, and finally selecting the MP 
with the minimum cost [26]. The Dijkstra algorithm takes 
the shortest path as the extension cost of the MP [27]. 
The A* algorithm and its variants add heuristics based 
on the target state and Voronoi diagram to the original 
Dijkstra algorithm [28]. The sampling-based RRT path 
planning algorithm [29], on the one hand, takes the target 
point as a guide to the selection and extension of MPs; on 
the other hand, it randomly extends in any direction with 
a certain probability to achieve a comprehensive search of 
accessible areas. The discrete optimization-based method 
[19] utilizes the linear combination of the three exten-
sion cost values by considering static obstacles, dynamic 
obstacles, and path smoothness as the basis for the selec-
tion of MPs. Although the MP selection and extension 
method mentioned above can generate the desired driv-
ing trajectory, no attention is paid to the guiding role of 
the driver’s experience.

The learning and generalization of the driving expe-
rience and characteristics have attracted the attention 
of many researchers in recent years [30–32]. Specific 
to trajectory-level driving behavior research, Guo et al. 
[33] researched the generation of human-like trajec-
tories with the leader vehicle as an attractive force. 

Although this method can cope with complex dynamic 
environments, the learning object of its behavior is the 
guide vehicle; that is, it is a follow-up human-like tra-
jectory-generation method. Regarding the representa-
tion of human-like trajectories that target the behavior 
of the ego vehicle, Schnelle et  al. [34] proposed a per-
sonalized trajectory optimization generation method 
in two scenarios: one with a single lane change and 
another with a double lane change. Zhao et  al. also 
conducted a series of studies on lane-change scenes. 
First, they used the support vector machine algorithm 
to extract lane-change primitives from the lane-change 
trajectory data of surrounding vehicles [35, 36]. Sub-
sequently, using the principle of trajectory match-
ing, the generated human-like lane-change trajectory 
was integrated into a real-time motion-planning sys-
tem [37, 38]. However, the aforementioned research 
has limitations in the application of scenes. It is often 
aimed at a specific scene, and there is no further study 
on how to combine multiple driving behaviors with the 
vehicle motion-planning system in a general driving 
environment.

In this paper, for the two heterogeneous platforms of 
wheeled Ackermann-steering vehicles and tracked skid-
steering vehicles, a unified vehicle motion differential 
constraint is proposed. In addition, five types of equality 
constraints for typical driving behaviors and inequality 
constraints for vehicle platform characteristics are set, 
and an offline optimization method for driver-behavior-
based transferable motion primitive (DBTMP) generation 
is formed. Based on the unique MP library established 
for different vehicle platforms, research on the selection 
of MPs was conducted under the Hybrid A* algorithm 
framework. However, there are two significant differ-
ences in the construction of the selection framework 
owing to the large difference between the offline gener-
ated MP library and the online generated MP library used 
by the Hybrid A* algorithm. First, the MP library gener-
ated offline is a collection of multiple MP sets containing 
the entire speed interval; therefore, a hierarchical struc-
ture is applied to restrict the MP candidate set. Second, 
because each candidate set contains both behavior primi-
tives and general primitives, different weight coefficients 
are applied to the above two types of primitives when 
selecting and evaluating a single extended MP. Finally, a 
motion-planning algorithm based on offline generation 
and online selection of the MP library is proposed.

The main contributions of this study are the following:

•	 A unified motion-planning algorithm framework 
is proposed to complete the motion-planning tasks 
of heterogeneous platforms, achieving a balance 
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between the general solution framework and the 
characteristics of heterogeneous vehicle platforms.

•	 An offline MP generation method combining discrete 
driving behaviors and a vehicle kinematics model is 
proposed, and the guiding role of behavior primitives 
in the online selection layer of the motion-planning 
algorithm is highlighted.

The remainder of this paper is organized as follows. 
Section 1 details the problems to be solved in this study 
and explains the main parameters. Section 2 introduces 
the offline generation method for the MP library. Sec-
tion  3 introduces an online selection framework for 
MPs. Section  4 demonstrates the unique MP libraries 
of two heterogeneous vehicle platforms and the results 
of motion planning in two typical scenarios. Finally, the 
conclusions and future work are presented in Section 5.

2 � Problem Statement
The offline MP generation solves the optimization prob-
lem with driver behavior B and platform motion charac-
teristics as constraints and trajectory smoothness as the 
objective function g. The selection of MPs is first to select 
the MP set from the MP library based on the passable 
area and velocity connection, and then utilize the cost 
function J as the evaluation index to choose the corre-
sponding single extended MP from the MP set.

The definitions and explanations of the main param-
eters used in this study are as follows:

•	 s(t) = [x(t), y(t), θ(t)]T ∈ R3×1 is the unified state 
parameter set of each heterogeneous platform at time 
t, where x(t) and y(t) are the coordinate positions of 
the x and y axes, respectively, and θ(t) is the course 
angle. The defined coordinate system is the geodetic 
coordinate system xoy.

•	 u(t) = [vx(t), vy(t),ωz(t)]T ∈ R3×1 is the unified 
control variable set of each heterogeneous platform 
at time t, where vx(t) and vy(t) are the velocities of 
the platform along the x and y axes, respectively, and 
ωz(t) is the yaw rate around the z axis. The defined 
coordinate system is the vehicle body coordinate sys-
tem xaoya or xtoyt.

•	 ua(t) = [vwx (t),α(t)]T ∈ R2×1 is the unique control 
variable set of the wheeled Ackermann-steering vehi-
cle at time t, where vwx (t) is the velocity of the rear 
axle along the xa axis and α(t) is the front wheel angle 
of the vehicle. The defined coordinate system is the 
vehicle body coordinate system xaoya.

•	 ut(t) = [vlx (t), vrx (t)]T ∈ R2×1 is the unique con-
trol variable set of the tracked skid-steering vehicle 
at time t, where vlx (t) and vrx (t) are the velocities of 
the left and right tracks, respectively, along the x axis. 

The defined coordinate system is the vehicle body 
coordinate system xtoyt.

•	 D = Ds ·Da/t represents the mapping relationship 
between the platform state parameters and control 
variables, where Ds is the correlation between the 
unified state parameter set s and control variable set 
u. Da/t is the correlation between u and the unique 
control variable set ua/t.

•	 B = {BSD,BLC,BUT,BRT,BTA} are the five defined 
types of driving behavior constraints: straight driving 
behavior BSD , lane-changing behavior BLC , U-shaped 
turn behavior BUT , right-angle turn behavior BRT , 
and turn-around behavior BTA.

•	 U is the inequality constraint condition set according 
to the motion limit of the platform. Ua and Ut are for 
wheeled Ackermann-steering vehicles and tracked 
skid-steering vehicles, respectively.

•	 J = {Je, Jn, Js, Jc} is the cost function when selecting 
a single MP, where Je is the environmental constraint 
heuristic, Jn is the nonholonomic vehicle constraint 
heuristic, Js is the evaluation function considering 
the smoothness of the curve, and Jc is the evaluation 
function considering the collision risk.

The method proposed in this study is dedicated to solv-
ing the following two challenges: (1) determining how to 
generate an MP library that can be transferred between 
heterogeneous platforms, considering the overall versa-
tility and highlighting the specificity of the vehicle plat-
form, and (2) integrating the driving behavior factors 
into the generation and selection algorithm of the MPs 
and then realizing the guidance of the driver’s experience 
with the motion-planning algorithm.

Figure 1  MP offline generation algorithm flow
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3 � Generation of MPs
The generation process of the MP library is shown in Fig-
ure 1. The entire processing flow can be decomposed into 
two main components: (1) the creation and solution of 
optimal control problems and (2) the rotation transfor-
mation and velocity expansion of a single MP cluster. The 
definition of the optimal control problem for a single MP 
generation lies at the core of the generation method.

The specific form of the optimal control problem is as 
follows:

where g(s,u) is the objective function of the trajec-
tory smoothness optimization based on the state and 
control variables; s(t) = B is the constraint condi-
tion of the vehicle state based on the driving behavior; 
ṡ(t) = f (s(t),u(t)) is the motion differential constraint 
describing the relationship between the control vari-
ables and the state parameters of the vehicle platform; 
U(t) ∈ U  is the inequality constraint condition set, and 
t1 and tg are the start and end times of the MP generation, 
respectively.

3.1 � Vehicle Motion Differential Constraint
In this study, we ignore the impact of the suspension sys-
tem on the vehicle motion response and regard the vehi-
cle platform as a rigid body moving in a two-dimensional 
plane. The relationship between the unified state param-
eter set s and the unified control variable set u in a two-
dimensional space is

According to the characteristics of heterogeneous 
platform actuators, the following mapping relationship 
between the unique control variable set ua/t and the uni-
fied control variable set u of different types of platforms 
can be established:

The relationship between the control variable ua of a 
typical wheeled Ackermann-steering vehicle and the uni-
fied state parameter set s is

(1)

min
ua/t

:g(s,u)

subject to:










s(t) = B, t ∈ [t1, tg],
ṡ(t) = f (s(t),u(t)),t ∈ [t1, tg],
U(t) ∈ U , t ∈ [t1, tg],

(2)

ṡ(t) = Ds · u(t) =





cos θ(t) − sin θ(t) 0
sin θ(t) cos θ(t) 0

0 0 1









vx(t)
vy(t)
ωz(t)



.

(3)u(t) = Da/t · ua/t(t).

where L is the distance between the front and rear axles 
of the vehicle. The related coordinate system and simpli-
fied model of the wheeled vehicle platform are shown in 
Figure 2.

The relationship between the control variable ut of a 
typical tracked vehicle and the unified state parameter set 
s is

(4)ṡ(t) = Ds ·Da · ua(t) =





vwx (t) cos θ(t)

vwx (t) sin θ(t)

vwx (t) tan α(t)/L



,

(5)

ṡ(t) = Ds ·Dt · ut(t) =





(vlx (t)+ vrx (t)) cos θ(t)/2
(vlx (t)+ vrx (t)) sin θ(t)/2

(vrx (t)− vlx (t))/B



,

Figure 2  Wheeled Ackerman-steering vehicle

Figure 3  Tracked skid-steering vehicle
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where B is the distance between the two tracks. The 
related coordinate system and simplified model of the 
tracked vehicle platform are shown in Figure 3.

3.2 � Equality Constraints of Driving Behavior
This study defines five typical driving behaviors, as 
shown in Figure 4. These five behaviors can be classified 
into two main types: behaviors related to typical road 
structures (BSD, BUT, and BRT) and behaviors related 
to typical driving behavior patterns (BLC and BTA). The 
MPs related to the road structure highlight the restraint 
effect of typical road structure factors on behavior, and 
the MPs related to the driving pattern highlight the 
restraint effect of the driver’s behavior preferences. 
The remaining general MPs in the library are used as a 
supplement to the behavior primitives to improve the 
planning algorithm’s adaptability to different driving 
environments. By increasing the priority of behavior 
primitives in the subsequent selection logic, we hope to 
better adapt to road structures and driving habits.

Among the above behavior primitives, BSD and BLC 
exist throughout the velocity range, and BUT, BRT, and 
BTA exist only in the low-velocity range. Owing to the 
specificity of the vehicle structure, BTA can be sub-
divided into BTAa for wheeled vehicles and BTAt for 
tracked vehicles.

For straight driving behavior BSD, U-shaped turn 
behavior BUT, and right-angle turn behavior BRT, only 
the course angle change between the start state t1 and 
the end state tg is constrained:

(6)BSD = θ(tg)− θ(t1) = 0,

For lane-changing behavior BLC, in addition to 
restraining the course angle change deviation, the 
lateral distance change deviation d should also be 
constrained:

For the turn-around behavior BTAa of a wheeled vehicle, 
it is necessary to restrict not only the beginning and end 
states but also the intermediate states accordingly:

Because the tracked vehicle can complete the task of 
turning around through the pivot turn movement, its con-
straint relationship BTAt is as follows:

3.3 � Inequality Constraints of Vehicle Platform 
Characteristics

The constraints of vehicle platform characteristics mainly 
include four aspects (the input range of control variable u, 
the limitation of yaw rate ωz , the limitation of lateral accel-
eration ay, and the limitation of the current generated MP 
velocity attribute v):

The inequality constraint relationship Ua of the wheeled 
Ackermann-steering vehicle is

where αmax is the maximum front wheel angle of the 
vehicle platform.

(7)BUT = θ(tg)− θ(t1) = π,

(8)BRT = θ(tg)− θ(t1) = π/2.

(9)

BLC =
[

θ(tg)− θ(t1)

[cos θ(tg), sin θ(tg)][x(tg), y(tg)]T − d

]

= 0.

(10)BTAa
=





θ(tg/3)− θ(t1)− π/3
θ(2tg/3)− θ(tg/3)+ 2π/3
θ(tg)− θ(2tg/3)− π/3



 = 0.

(11)BTAt
=





x(tg)− x(t1)
y(tg)− y(t1)

θ(tg)− θ(t1)− π



 = 0.

(12)U =



















u ∈ [−umax,umax],
ωz ≤ 0.8,

ay ≤ 0.4g ,

v ∈
�

vlow, vup
�

.

(13)U a=























α ∈ [−αmax,αmax],

vωx tan α/L ≤ 0.8,

v2
ωx

tan α/L ≤ 0.4g ,

vwx ∈
�

vlow, vup
�

,

Figure 4  Driver behavior MPs
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The inequality constraint relationship Ut of the tracked 
skid-steering vehicle is

where vlx−max
 and vrx−max are the maximum speed limits of 

the left and right driving wheels, respectively.

3.4 � Objective Function and Optimization Problem Solving
The objective function g mainly reflects the smoothness 
requirements of MP generation and includes the steering 
control input cs and yaw rate of the vehicle platform ωz:

These two parameters should be as small as possible 
because they correspond to the curvature of the gener-
ated curve and its rate of change, which directly affects 
the smoothness of the curve.

According to the difference in platform characteristics, 
the objective function ga for the wheeled Ackermann-
steering platform is given by

and the objective function gt for the tracked skid-steering 
vehicle platform is given by

In this study, the IPOPT [39] and CVODES [40] were 
applied to solve the optimal control problem.

3.5 � Generation of the MP Library
Owing to the complexity of the real driving environment, 
having only the defined driving behavior MPs cannot 
fully satisfy the motion-planning problem in a complex 
environment. Therefore, to improve the applicability of 
the MP library, general MPs are generated as a supple-
ment with the target course angle uniformly distributed 
on [0, 2π] as the constraint.

In addition, in the online MP extension process, it is 
necessary to make the final heading of the MP selected 
in the previous MP cluster consistent with the heading of 

(14)U t =



































vlx ∈
�

−vlx_max, vlx_max

�

,

vrx ∈
�

−vrx_max, vrx_max

�

,
�

�vlx − vrx
�

�/B ≤ 0.8,
�

�

�
v2lx − v2rx

�

�

�
/2B ≤ 0.4g ,

(vlx + vrx )/2 ∈
�

vlow, vup
�

,

(15)g =
∫ tg

0
(c2s+ω2

z )dt.

(16)ga =
∫ tg

0
α2(t)+ (vwx (t)

tan α(t)

L
)2dt,

(17)

gt =
∫ tg

0
(
2(vlx (t)− vrx (t))

vlx (t)+ vrx (t)
)2 + (

vlx (t)− vrx (t)

B
)2dt. the straight driving behavior primitive in the next primi-

tive cluster. This process can be performed either online 
or offline. To improve the efficiency of the algorithm, 
we used offline generation and online selection to com-
plete the above process. After the MP cluster containing 
behavior primitives and general primitives is generated, 
an MP set covering the entire annular space with 36 
evenly distributed MP clusters is generated by rotation 
transformation. The alignment between the MP clusters 
is completed by selecting the most appropriate angle 
from the MP set during online extension.

A simplified schematic of the MP set generation is 
shown in Figure 5; only a portion of the typical MPs and 
the rotation transformation at three positions are shown 
in the figure. The resulting MP library is a combination 
of multiple MP sets under different MP velocity attribute 
settings.

Figure 5  MP cluster rotation transformation

Figure 6  MP online selection algorithm flow
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4 � Selection of MPs
The MP selection process is shown in Figure 6. The entire 
processing flow can be decomposed into the selection of 
the MP sets, calculation of heuristics and costs, selec-
tion of a single MP, and extension of the MP sequence. 
The selection of MP sets refers to selecting the appropri-
ate MP sets from the MP library based on passable areas 
in the environment map and the velocity attribute of the 
last extended periodic MP set. The heuristics include 
both the environmental constraint heuristic and the non-
holonomic vehicle constraint heuristic. The environmen-
tal constraint heuristic is calculated from the starting and 
target poses in the grid map. The nonholonomic vehicle 
constraint heuristic is calculated based on the final state 
of every MP in the MP set and the target pose set by the 
planning system. The extension costs include the trajec-
tory smoothing cost represented by the curve energy and 
collision risk cost, which is characterized by the distance 
from the obstacle. Finally, the linear combination of heu-
ristics and costs is selected as the basis for single-step MP 
extension, and the selected multiple MPs are combined 
into an MP sequence to complete the motion-planning 
task.

4.1 � Selection of MP Sets
The extraction of the single-step extended passable area 
is shown in Figure 7. The radius of the passable area, rarea, 
was calculated using the closest distance dmin=min{dobs_1, 
dobs_2,…, dobs_n} between the current position and the 
obstacle. The candidate set of MPs must satisfy the essen-
tial condition that the final state of every MP is within the 
passable area.

In addition, by considering the velocity attribute 
association of two adjacent periodic MPs, the MP set 
with a large velocity gap from the previous periodic is 

eliminated from the candidate set. Finally, further nar-
rowing of the candidate set was achieved.

4.2 � Heuristics Considering Environmental 
and Nonholonomic Constraints

The calculation of the environmental constraint heuris-
tic Je takes the target position as the initial point and 
utilizes the breadth-first-search algorithm to realize the 
iterative expansion of the distance cost until it expands 
to the starting position. The specific algorithm flow is 
presented in Algorithm 1. �J  is the distance measure-
ment value during the iterative process. According to 
the difference between the adjacent positions of the 
current grid, �J  has two values: 

{

d,
√
2d

}

 , where d is 
the grid width.

Figure  8 shows the comparison results of the envi-
ronmental constraint heuristics calculated based on 

Figure 7  Single-step extended passable area extraction

(a) Euclidean distance           (b) Breadth first
Figure 8  Comparison of environmental constraint heuristics
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the Euclidean distance and the breadth-first algorithm 
used in this study. It can be observed from Figure 8(a) 
that the calculated heuristics will first guide the MP to 
extend to the obstacle area, as shown by the dotted blue 
arrow in the figure. In contrast, in Figure 8(b), the MP 
is guided to the passable area, as indicated by the solid 
blue arrow in the figure. Therefore, the environmental 
constraint heuristic proposed in this study can avoid 
invalid extended searches and effectively improve the 
efficiency of the algorithm.

We also introduce the vehicle nonholonomic con-
straint heuristic Jn, taking the length of the Reeds-
Shepp curve as the heuristic value:

The Reeds-Shepp curve is composed of 
a fixed curvature arc and a straight line. 
The curve can be defined as a set of poses 
� =

(

xr(t), yr(t), θr(t)
)

⊂ R2 × 0, 2π), t ∈
[

tstart, tgoal
]

 . It 
can quickly generate a curve connecting the start and end 
points while meeting the position and course constraints of 
the two points.

The nonholonomic constraint heuristic introduces the 
evaluation of the target point’s course reachability under 
the premise of considering the vehicle’s motion charac-
teristics, which makes up for the defect in which the envi-
ronmental constraint heuristic only considers the target 
position’s reachability.

Finally, a larger value of the environmental constraint 
heuristic and nonholonomic constraint heuristic is 
selected as the final heuristic value of the grid, that is, 
J1 = max{Je, Jn}.

4.3 � Extension Costs Considering Smoothness and Collision
The extension cost proposed in this study mainly includes 
two aspects: trajectory smoothness and possible collision 
risk.

The extension cost value of smoothness, Js, is calculated 
using the curve energy function as follows:

where N is the number of discrete points of the curve, κi 
is the corresponding curvature of the point, and �si is the 
distance between two adjacent points. The essence of this 
function is the discrete representation of the curvature 
integral on the curve.

The extension cost value of collision risk, Jc, is calculated 
using the function

(18)Jn =
∫ tgoal

tstart

√

ẋr(t)2 + ẏr(t)2dt.

(19)Js =
N
∑

i=2

(κ2i−1 + κ2i )�si

2
,

where dobs_i is the distance from the center of each cov-
erage circle to the nearest obstacle and ri is the radius 
of each coverage circle. The vehicle platform is approxi-
mated by the six coverage circles shown in Figure 9 dur-
ing the calculation process.

The above extension costs Js and Jc are given different 
weights ωs and ωc . The linear combination after weighting 
is the final extension value:

The weighting coefficient ωs is differentiated according 
to the type of MP as follows:

In principle, the relationships among the weight values 
of behavior MPs ωsB , general MPs ωsG , and MPs in reverse 
direction, ωsD , is ωsB < ωsG ≪ ωsD.

4.4 � Evaluation Function of MP Selection
The total cost of selecting a single MP mpi in the MP can-
didate set should be the sum of the corresponding heuris-
tic and extension costs:

where Np is the number of independent MPs in the MP 
candidate set. In the MP extension process at each step, 
the MP with the lowest total cost in the MP candidate set 
is selected as an extension. Finally, the desired trajectory 
generation from the start position to the end position in 
the environment map can be realized.

(20)
Jc =

6
∑

i=1

(dobs_i − ri)

6
,

(21)J2 = ωsJs + ωcJc.

(22)ωs=







ωsB if mpi = = Behavior MP,

ωsG if mpi = = General MP,

ωsD if mpi = = Reverse Direction.

(23)J (mpi) = J1(mpi)+ J2(mpi), i ∈ [0,Np],

Figure 9  Six covered circles of the vehicle platform
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5 � Experimental Results and Discussion
To verify the effect of the DBTMP A* motion-planning 
algorithm proposed in this study, the wheeled Acker-
mann-steering vehicle and tracked skid-steering vehi-
cle were chosen, and the corresponding tests were 
conducted in both the simulation environment and the 
real environment. In the simulation environment, we 
conducted an in-depth comparative analysis of the algo-
rithm performance in low-speed and high-speed scenes. 
In the real environment, we mainly focused on the appli-
cability of the algorithm in real situations, especially the 
compatibility with the platform and the correspond-
ing autonomous driving module. In addition, the classic 
Hybrid A* method was selected for comparison. The spe-
cific platform parameters are listed in Table 1, where Pa 
represents the wheeled Ackerman-steering platform and 
Pt represents the tracked skid-steering platform.

5.1 � MP Library Offline Generation
The MP libraries for both platforms used a unified opti-
mization framework during the generation process, and 
only the details of the vehicle characteristic constraints 
were changed during the platform transformation 
process.

The overall situation of the two platform MP libraries is 
given in Table 2, where vm (m/s) is the velocity attribute 
of the MP cluster, dm (m/s) is the longest distance cov-
ered by the MP cluster, NB is the number of behavioral 

Table 1  Platform geometric parameters and actuator constraints

Type L
(m)

B
(m)

αmax

(°)
vlx_max

(m/s)
vrx_max

(m/s)

Pa 4.3 1.9 π/6 – –

Pt 5.2 3.3 – 16 16

Table 2  Generated MP library

Platform Vm (m/s) dm (m/s) NB Nm Js

Pa 5 20 16 64 0.0643

Pa 10 25 23 20 0.1099

Pa 12 30 25 20 0.1748

Pa 14 35 25 20 0.1473

Pa 16 40 25 20 0.1242

Pa 18 40 9 8 0.1067

Pa 22 40 9 6 0.0933

Pa 26 40 9 6 0.0824

Pa 30 40 9 6 0.0784

Pt 5 15 18 64 1.3136

Pt 10 25 23 20 0.2426

Pt 12 30 25 20 0.1694

Pt 14 35 9 8 0.1307

Pt 16 40 9 8 0.1065

Hybrid – Online adjustment – 37 0.2095

(a) 5 m/s wheeled Ackerman-steering platform

(b) 18 m/s wheeled Ackerman-steering platform

(c) 5 m/s tracked skid-steering platform

16 m/s tracked skid-steering platform

Hybrid A*

(d)

(e)
Figure 10  Comparison of MP cluster generation results
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primitives in the MP cluster, Nm is the number of gen-
eral primitives in the MP cluster, and J s is the average 
curve energy value of each MP in the cluster. At the end 
of Table  2, the overall situation of the MP library used 
by the Hybrid A* method, which does not distinguish 
between vehicle platforms and velocity attributes, is pre-
sented. In Table 2, listed are the composition structures 
of the MP library generated offline for the wheeled Ack-
ermann-steering platform and tracked skid-steering plat-
form. The structure of the online generated MP library 
used by the Hybrid A* algorithm is also introduced as a 
comparison reference.

To show the generated MP clusters more intuitively, 
Figure 10 presents low-speed and high-speed typical MP 
clusters with wheeled platform velocity attributes of 5 
and 18 m/s and tracked platform velocity attributes of 5 
and 16 m/s. It also includes the MP cluster used by the 
Hybrid A* method.

The offline generation result of the MP library demon-
strated that, regardless of the type of vehicle platform, 
the number of MPs gradually decreased with an increase 
in velocity. This is because the vehicle can achieve more 
diversified steering movements at low speeds, but the 
number of MPs at high speeds is greatly reduced owing 
to the weakening of the steering ability. Because the MPs 
are defined in discrete velocity ranges, an additional 
velocity-planning algorithm needs to be introduced in 
the actual application process to achieve a smooth veloc-
ity level transition.

In addition, when the velocity is 5  m/s, the MP clus-
ter composition is significantly different from the com-
position at other velocities. The number of behavior 
primitives, NB, is reduced, while the number of general 
primitives, Nm, is significantly increased (including 
reverse primitives). When the vehicle speed is low, it is 
often necessary to address a more complicated environ-
ment, and general primitives can effectively improve the 
success rate of the planning algorithm in the correspond-
ing situation.

Table 2 indicates that the average energy of the wheeled 
platform MPs in the low-speed range was lower than 
that of the tracked platform. Although the trajectory of 
the wheeled platform is smoother, and the adjustment 
of the course is gentle, the tracked platform has stronger 
and more aggressive steering adjustment ability at low 
speeds. In the high-speed range, the average energy of 
the MPs of the two platforms was basically the same, and 
the steering adjustment tended to be the same.

Hybrid A* utilized a circular arc generated by a fixed 
curvature as the basic MP. It realized neither the differen-
tiation of the characteristics of heterogeneous platforms 
nor the separation of different speed intervals. In general, 
the types of MPs are relatively limited and do not have 

the diversity of MPs in the MP library proposed in this 
study.

Figure 11  Comparison of motion-planning results in low-speed 
scenes: (a) Comparison of the three motion-planning algorithms 
under the same initial and final state conditions (The blue and 
purple arrows indicate the position and heading of the initial and 
end conditions separately), (b)–(d) Details of the MP extension of the 
three motion-planning methods (The final selected single MP in the 
MP cluster is represented by a thick solid line)

Table 3  Comparison of MP online selection results in a low-
speed scene

Method J̄s Nbe/Ne T

Hybrid A* 1.9371 0/23 132.43

DBTMP A*-Pa 0.0602 12/16 44.38

DBTMP A*-Pt 0.0578 17/18 48.15
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5.2 � Comparative Analysis of Online Selection of MPs 
in the Simulation Environment

To demonstrate the performance of the MP online 
selection algorithm proposed in this study, a low-speed 
scene and a high-speed scene were designed to evalu-
ate the motion-planning algorithm. In each scene, the 
motion-planning results of Hybrid A*, DBTMP A*-Pa, 
and DBTMP A*-Pt were compared. The planning results 
were solved using a laptop Lenovo IdeaPad Y700-15ISK 
with 16 gigabytes of memory and an eight-core Intel 
Core i7-6700 operating at 2.6 GHz, running under 64-bit 
Ubuntu 16.04. The entire motion-planning algorithm was 
written in C++ in the ROS system.

Figure 11 shows the results of motion planning in low-
speed scenes. Table 3 presents the comparison results of 
the corresponding evaluation indicators, including the 
average curve energy J̄s , total number of MP extensions, 
Ne, number of behavior primitives during extension, Nbe, 
and the solution time of the corresponding motion-plan-
ning algorithm, T (ms).

From the perspective of the smoothness of the motion-
planning results, regardless of the platform used, the 
trajectory generated by the DBTMP A* algorithm is 
smoother. One of the reasons for this is that the overall 
MP library used by the DBTMP A* algorithm is smoother 
than that of the Hybrid A* method. Another reason is 
that the straight driving behavior primitives and gen-
eral primitives use different weighting coefficients in the 
evaluation (as shown in Eq. (22)); therefore, the straight 
driving behavior primitives occupy a larger proportion of 
the entire trajectory, which makes the evaluation index of 
smoothness significantly lower than that of the Hybrid A* 
algorithm.

From the perspective of the extension times of MPs, 
the extension times of DBTMP A*-Pa and DBTMP A*-Pt 
were only 69.56% and 78.26%, respectively, of that of the 
Hybrid A* method. This is mainly because the introduc-
tion of behavior primitives increases the extension cat-
egory of a single MP and improves its adaptability to the 
environment so that it can complete the trajectory-plan-
ning task with fewer MP combinations. This is most evi-
dent in the local scene of the parking scene. Regardless of 
the vehicle platform, the DBTMP A* algorithm used only 
one MP to complete the planning task, whereas Hybrid 
A* achieved the task by joining five independent MPs and 
did not highlight the characteristics of the two platforms.

From the perspective of the solution time of motion-
planning tasks, the DBTMP A* algorithm only accounted 
for 35% of the overall solution time of the Hybrid A* 
algorithm. The main reason for this difference is that 
the MP sets used by the Hybrid A* algorithm are gener-
ated online based on the passable radius, while the MP 

sets selected by the DBTMP A* algorithm are generated 
offline.

The comparison results of motion planning in high-
speed scenes are shown in Figure  12, and Table  4 pre-
sents the corresponding evaluation indicators.

From the motion-planning results of Figure  12 and 
Table 4, one can observe that the algorithm proposed 

Figure 12  Comparison of motion-planning results in high-speed 
scenes

Table 4  Comparison of MP online selection results in a high-
speed scene

Method J̄s Nbe/Ne T

Hybrid A* 0.0498 0/9 94.32

DBTMP A*-Pa 0.0093 4/4 57.28

DBTMP A*-Pt 0.0071 4/4 55.64
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in this study took advantage of the DBTMP library 
to achieve lower curve energy, fewer extension times, 
shorter solution time, and more reasonable planning 
results. This is mainly because the DBTMP library 
restricts and distinguishes the MPs that can be selected 
according to the velocity attribute and introduces the 
standard lane-change driving behavior primitives in 
high-speed scenes as supplements. This enables the 
driving experience to be successfully integrated into 
the MP generation and selection process proposed 
in this study. Although the Hybrid A* algorithm can 
also plan the corresponding collision-free trajectory, 
it does not conform to the driver’s driving experience 
in high-speed scenes. The several imperfections of the 
Hybrid A* algorithm in high-speed scenes are mainly 
due to the composition of primitive clusters, which 
do not distinguish between high-speed and low-speed 
scenes.

5.3 � Applicability of the Algorithm in a Real Environment
The performance of the proposed algorithm in a real 
environment was verified by using two vehicle platforms 
the wheeled Ackermann-steering platform shown in Fig-
ure  13(a) and the tracked skid-steering platform shown 
in Figure 13(b). The two platforms are equipped with the 
same equipment, including a RoboSense 32-lidar system 
and two RoboSense 16-lidar systems, a Simpak982 GNSS 

receiver, an FOSN2 inertial navigation system, an AVT-
1290c camera, and two industrial personal computers.

Before the experiment, we obtained the environmental 
map required for the entire planning task using a mul-
tisource simultaneous localization and mapping algo-
rithm. In the experiment, the fusion positioning system 
provided centimeter-level real-time positioning accuracy 
at a frequency of 50  Hz. Based on an a priori map, the 
environment perception equipment carried by the vehi-
cle added real-time environmental information to the 
map at a frequency of 5 Hz. Model predictive control was 
selected as the vehicle motion control algorithm, and the 
comprehensive tracking error in the off-road environ-
ment was < 0.5 m.

The purpose of the experiment in real scenes is to 
test the performance and efficiency of the algorithm 
under complex environmental conditions. Figure  14 
shows the comparison results of the motion-planning 
algorithm at two time points during unmanned driv-
ing. These two moments were the starting moment of 
planning and the trigger moment of re-planning after 
turning. Because the Hybrid A* algorithm only made 
extremely limited adaptability adjustments for the 
two platforms, only the wheeled Ackermann-steering 
platform was selected as the verification platform. Ti 
represents the initial moment of the planning, and Tr 
represents the moment of replanning. Figure 15 shows 
the efficiency indices of the three motion-planning 
algorithms. Where the single-step extension time refers 
to the time required to select the most appropriate MP 
from the MP library at each MP extension step. 

Judging from the experimental results in real scenes, 
the algorithm proposed in this study can not only be 
applied to unmanned systems in real time but can also 
achieve higher efficiency and more reasonable planning 
results. The experimental conclusions in the real envi-
ronment are consistent with the simulation results.

6 � Conclusions
A unified motion-planning algorithm framework based 
on MP generation and selection for heterogeneous 
vehicle platforms is proposed.

(1)	 An optimized generation method is applied to real-
ize the offline construction of a heterogeneous plat-
form MP library. The generated MP library not only 
distinguishes MPs according to the velocity attrib-
utes and platform characteristics, but it also intro-
duces five types of behavior primitives to expand 
the types of MPs.

(2)	 The layered unequal-weighted MP online selection 
framework makes full use of the characteristics of Figure 13  Unmanned vehicle test platforms
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Figure 14  Comparison results of the three motion-planning algorithms in real environments
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the platform-specific MP library generated offline. 
The velocity connection relationship of the MP set 
is limited, and the selection weight of the single 
extended behavior primitive and general primitive 
is distinguished.

(3)	 The DBTMP A* motion-planning algorithm pro-
posed in this study not only retains the strong envi-
ronmental adaptability of the original Hybrid A* 
algorithms but also highlights the characteristic dif-
ferences between heterogeneous vehicle platforms. 
Moreover, the proposed method effectively utilizes 
the driving experience to complete the reasonable 
guidance of the planning results, improving the tra-
jectory smoothness and significantly reducing the 
required solution time.
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