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Abstract 

Variational mode decomposition (VMD) has been proved to be useful for extraction of fault-induced transients of 
rolling bearings. Multi-bandwidth mode manifold (Triple M, TM) is one variation of the VMD, which units multiple 
fault-related modes with different bandwidths by a nonlinear manifold learning algorithm named local tangent space 
alignment (LTSA). The merit of the TM method is that the bearing fault-induced transients extracted contain low level 
of in-band noise without optimization of the VMD parameters. However, the determination of the neighborhood size 
of the LTSA is time-consuming, and the extracted fault-induced transients may have the problem of asymmetry in 
the up-and-down direction. This paper aims to improve the efficiency and waveform symmetry of the TM method. 
Specifically, the multi-bandwidth modes consisting of the fault-related modes with different bandwidths are first 
obtained by repeating the recycling VMD (RVMD) method with different bandwidth balance parameters. Then, the 
LTSA algorithm is performed on the multi-bandwidth modes to extract their inherent manifold structure, in which 
the natural nearest neighbor (Triple N, TN) algorithm is adopted to efficiently and reasonably select the neighbors of 
each data point in the multi-bandwidth modes. Finally, a weight-based feature compensation strategy is designed to 
synthesize the low-dimensional manifold features to alleviate the asymmetry problem, resulting in a symmetric TM 
feature that can represent the real fault transient components. The major contribution of the improved TM method 
for bearing fault diagnosis is that the pure fault-induced transients are extracted efficiently and are symmetrical as 
the real. One simulation analysis and two experimental applications in bearing fault diagnosis validate the enhanced 
performance of the improved TM method over the traditional methods. This research proposes a bearing fault diag-
nosis method which has the advantages of high efficiency, good waveform symmetry and enhanced in-band noise 
removal capability.
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1  Introduction
With the continuous development of industrial mod-
ernization and manufacturing informationization, the 
integration of mechanical equipment and the scale of the 
system have developed rapidly, posing more severe chal-
lenges to fault diagnosis of mechanical equipment. Any 
glitches or misalignment of single component may affect 
the normal operation of the entire system and eventu-
ally lead to serious accidents. As a key component of the 

mechanical transmission system, rolling bearings often 
operate under high-speed and heavy-load conditions and 
are easily damaged. Therefore, fault diagnosis of rolling 
bearings is important to avoid catastrophes and reduce 
economic losses [1–4]. Vibration signals collected from 
faulty bearings contain periodic transient impulse com-
ponents that can be used for fault diagnosis. Therefore, 
extracting the transient components for period calcula-
tion is essential for bearing fault diagnosis [5]. However, 
the vibration signals collected from mechanical equip-
ment often have the properties of nonlinearity and non-
stationarity, and contain a large number of narrow-band 
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pulse interference and background noise, leading to great 
challenges for bearing fault detection [6].

A great amount of recent research efforts have been 
made to explore the fault feature extraction of rolling 
bearings based on signal processing methods to over-
come the challenges of bearing fault diagnosis. As an 
important technique to deal with non-stationary sig-
nals, time-frequency signal decomposition methods can 
decompose a complex signal into several regular simple 
modes that can be easily analyzed in the time and fre-
quency domain [7]. Wavelet transform (WT), empiri-
cal mode decomposition (EMD) and empirical wavelet 
transform (EWT) are typically advanced time-frequency 
signal processing methods that are widely applied to 
the field of rotating machinery fault diagnosis. The WT 
translates the original signal by a series of wavelets, each 
covering a specific frequency sub-band [8]. Neverthe-
less, the performance of the WT depends on the selected 
mother wavelet; only the features that are closely related 
to the mother wavelet could gain relatively high coef-
ficient results, whereas the features that are not similar 
to the mother wavelet may be ignored [9, 10]. The EMD 
and some of its variants, such as ensemble EMD (EEMD) 
and local mean decomposition (LMD), generate a series 
of complete and almost orthogonal intrinsic mode func-
tions (IMFs) which could imply failure information 
[11]. However, these methods are all based on recur-
sive decompositions, during which the decomposition 
errors may be accumulated step by step [12]. The EWT 
can design a suitable wavelet filter bank according to the 
processed signal, which overcomes the influence caused 
by fixed basis functions [13]. However, heavy noise in 
real applications may weaken the matching capability 
between the signal and the basis function, and the mode 
number needs to be preset, leading to the lack of robust-
ness and practicality of the EWT [14].

Variational mode decomposition (VMD) is a com-
pletely non-recursive time-frequency signal decom-
position method, in which the center frequency and 
bandwidth of each exacted mode are obtained through 
searching the optimal solution of constrained variational 
problem circularly, by which different amplitude-mod-
ulated and frequency-modulated (AM-FM) compo-
nents can be effectively separated [15]. The VMD has 
been proved to outperform the EMD and its variants in 
bearing fault diagnosis [16]. However, the success of the 
VMD depends on some preset parameters, including the 
number of decomposition modes K and the bandwidth 
balance parameter α [17, 18]. For the vibration signals 
measured in different environments, proper parameter 
values need to be manually selected to extract the bear-
ing fault transient components with less interference. 
To realize the adaptive setting of the VMD parameters, 

the mainstream practice is to determine the parameters 
based on some intelligent algorithms. In Ref. [19], the 
two parameters K and α in the VMD were optimized syn-
chronously based on the kurtosis index through artificial 
fish swarm algorithm. Yan et al. [20] applied the genetic 
algorithm to accelerate the convergence of iterations in 
the VMD, and implemented a 1.5-dimensional envelope 
spectrum to detect compound fault information of bear-
ings. Particle swarm optimization (PSO) algorithm was 
combined with the VMD to realize adaptive selection 
of the parameters in Ref. [21]. Tang and Wang [22] used 
Shannon entropy as an index to optimize the parameters 
of the VMD by the PSO algorithm, by which the weak 
bearing fault characteristic frequency was extracted suc-
cessfully. The grasshopper optimization algorithm (GOA) 
was applied to optimize the VMD parameters based on 
a measurement index termed weighted kurtosis index, 
which is constructed by using kurtosis index and correla-
tion coefficient [23]. With the parameters optimized by 
the above methods, the bearing fault transient compo-
nents are expected to be extracted with the noise outside 
the band from the vibration signal by the VMD method 
[24, 25]. Nevertheless, the extracted narrow-band fault 
components may ignore some fault-related informa-
tion and must contain some interfering components 
and noise. Moreover, in order to obtain the fault-related 
mode with a high accuracy, the optimization based VMD 
methods must perform plenty of the VMD trials on the 
original signal, which is time-consuming [26]. There-
fore, the optimization based VMD method needs to bal-
ance the accuracy and calculation efficiency in practical 
applications.

Most recently, in order to escape the inefficient param-
eter optimization of the VMD and enable the suppres-
sion of in-band noise in the application of bearing fault 
diagnosis, our group proposed a variation of the VMD, 
called multi-bandwidth mode manifold (Triple M, TM), 
by combining the VMD and nonlinear manifold learning 
[27]. This method units a small number of fault-related 
modes obtained by the recycling VMD (RVMD) with 
different parameters via a manifold learning algorithm 
named local tangent space alignment (LTSA). The TM 
method does not need to optimize the VMD parameters 
and the fused bearing fault-induced transients show low 
level of in-band noise. Some encouraging results were 
achieved in the application to bearing fault diagnosis. 
However, there are still some issues on the TM learning 
technique that remain to be addressed to further enhance 
the performance of the TM method.

The TM method is to learn an inherent manifold 
structure of the bearing fault transient components by 
the LTSA algorithm, from a high-dimensional matrix 
of multi-bandwidth modes that is composed of the 



Page 3 of 13Du et al. Chinese Journal of Mechanical Engineering           (2022) 35:14 	

multiple fault-related modes with different bandwidths. 
The effect of in-band noise suppression firmly relies 
on a parameter of the LTSA, i.e., the number of near-
est neighbors k [27–29]. This is because the LTSA is 
based on the idea that the local data distribution of the 
selected neighborhoods for each data is kept from the 
high-dimensional matrix to the low-dimensional mani-
fold. A conceivable way to improve the noise removal 
performance is to search the optimal k within a wide 
range, which is adopted in the original TM method. 
However, the repeat of the LTSA implementation 
to determine the proper neighborhood size is a cost 
of time. In Ref. [30], the local data distributions are 
changed by adding random noise when constructing 
the high-dimensional data to produce the best result of 
the LTSA. Nevertheless, the LTSA algorithm still needs 
to be repeated in Ref. [30]. The neighborhood sizes for 
all the data points are the same in the existing LTSA 
algorithms, which is not sound because the local lin-
earity property and data density between different data 
areas differ from each other. Therefore, the first issue 
that this paper addresses is to select proper neighbor-
hood size for each data point to construct personal-
ized local data distribution for the TM feature learning. 
The natural nearest neighbor (Triple N, TN) algorithm 
[31] is introduced to adaptively determine the optimal 
neighbors of each data point, with which there just 
needs one implementation of the LTSA algorithm. By 
introducing the TN algorithm, the efficiency and per-
formance of the TM method are improved.

The second issue to be addressed in this study is how 
to further improve the performance of the manifold 
feature learned by the TM method to approach the real 
waveform. Due to that the LTSA algorithm is sensitive 
for extraction of impulsive features, the waveform of the 
learned feature would probably be asymmetric in the 
vertical direction, while the real fault-induced transients 
are mostly symmetric in the up-and-down direction. It is 
uncovered that the symmetry of the manifold feature can 
be improved by synthesizing the first two dimensional 
data of the LTSA output. Thus, a weight-based feature 
compensation strategy is designed in this paper to obtain 
a synthetic TM feature that is representative of the real 
fault-induced transients.

By addressing the two issues mentioned above, the 
improved TM method proposed in this paper is expected 
to outperform the original TM method for bearing fault 
diagnosis. The remainder of this paper is outlined as fol-
lows. Section  2 presents the original TM method suc-
cinctly. Section  3 elaborates the improved TM method. 
The enhanced performance of the proposed method 
is verified by one simulation case in Section  4 and two 
experimental cases in Section 5, where the comparisons 

with the traditional VMD methods are also analyzed. 
Finally, the conclusions are drawn in Section 6.

2 � Multi‑Bandwidth Mode Manifold
The multi-bandwidth mode manifold (TM) method aims 
to reveal the intrinsic waveform structure of the fault-
related modes with different bandwidths decomposed 
from the measured signal. It is realized by conducting 
manifold learning on the multi-bandwidth modes con-
structed by the RVMD with different balance parameters. 
The obtained TM feature indicates the merits of low level 
of in-band noise and no requirement of optimization of 
the VMD parameters. The technique of the TM method 
mainly includes three steps, as illustrated in Figure  1. 
The following describes these steps succinctly. For more 
details, please refer to Ref. [27].

Step 1: Decompose the bearing vibration signal x(t) by 
the RVMD with different bandwidth balance parameters. 
The RVMD is to repeatedly recycle the residual modes by 
conducting the VMD with mode number K kept as one, 
where the first residual mode is the original signal. Given 
a balance parameter α, the original signal x(t) is firstly 
decomposed into one extracted mode u1(t) by the VMD 
with K = 1 and one residual mode ur1(t) obtained by:

where ur0(t) = x(t). Then, the residual mode is further 
decomposed into a new extracted mode and a new resid-
ual mode by the same way. After repeating the above 
operations p times, p extracted modes ui(t) (i = 1, 2, …, 
p) and p residual modes uri(t) (i = 1, 2, …, p) are obtained. 
The value of p is set as 5 in the TM method. The initial 
center frequency for the extracted mode ui(t) is the fre-
quency with the largest amplitude in the spectrum of 
the residual mode ur(i−1)(t). It has been proved that the 

(1)ur1(t) = ur0(t)− u1(t),

RVMD with different parameters

Construction of multi-bandwidth modes

TM feature learning

Bearing vibration signal

Bearing fault identification

Figure 1  Flowchart of the TM method
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decomposition efficiency of the RVMD is much higher 
than the traditional VMD when producing the same 
number of extracted modes. By changing the balance 
parameter α and repeating the RVMD on the original sig-
nal, the decomposed modes containing similar frequency 
contents would have different bandwidths. Ten values of 
α are selected equidistantly from the range of [100, 5000] 
in the TM method.

Step 2: Construct the multi-bandwidth modes by select-
ing the fault-related modes from the decomposed modes. 
For a specific value of α, the possible fault-induced infor-
mation is contained in either the extracted modes or the 
residual modes. The one exhibiting the most salient fault 
information is called the fault-related mode, which is 
selected by the Gini index [32]:

where eu(n) is an N-point discrete format of the envelope 
of a decomposed mode u(t), eur(n) is a reordered version 
of eu(n), whose elements are arranged from the smallest 
to the largest, ||·||1 is the L1 norm operation. The mode 
leading to the highest GI value is selected as the fault-
related mode corresponding to the specific α. The band-
widths of the fault-related modes obtained with different 
α differ from one another. The mode with relatively large 
bandwidth contains more fault-related information than 
the mode with relatively small bandwidth, while the latter 
one contains less fault-unrelated components and noise 
than the former one. As a result, ten fault-related modes 
are obtained, which constitute a ten-dimensional data 
matrix called multi-bandwidth modes as below:

where ui ∈ RN×1 is a vector derived from the ith fault-
related mode in the discrete format.

Step 3: Address the LTSA algorithm on the constructed 
multi-bandwidth modes to learn the TM feature repre-
senting the intrinsic waveform structure of the fault-
related modes. The LTSA is a widely used manifold 
learning algorithm for extraction of impulsive features 
in machinery fault diagnosis [27–29, 33]. The basic prin-
ciple of the LTSA is to maintain the intrinsic manifold 
structure with the form of skeleton when reducing the 
dimensionality of a high-dimensional data, by keeping 
the local data distribution constructed by its k neighbor-
ing points. For the multi-bandwidth modes in Eq. (3), the 
skeleton structure is the waveform induced by the bear-
ing fault, which is revealed in the output of the LTSA as:

(2)GI = 1− 2

N
∑

n=1

eur(n)

�eu(n)�1

(

N − n+ 0.5

N

)

,

(3)MBM =

[

u1 u2 · · ·ui · · · u10
]

T
,

(4)WM = [w1 w2 · · ·wi · · · wd]T,

where wi ∈ RN×1 is the ith-dimensional data in the dis-
crete format, and d << 10. In the original TM method, d 
is set as one. Thus, the output is rewritten as:

where yi is the ith data point in w1. To obtain a fault-
induced waveform with a satisfactory effect of in-band 
noise removal, the parameter k is optimized by the per-
mutation entropy criterion (PE) formulated by:

where p is the embedding dimension in the phase space 
reconstruction of WM, Pi is the probability distribution 
of the ith permutation of the reconstruction of WM. The 
output resulting in the minimum PE value is regarded as 
the TM feature that represents the pure fault transient 
components.

3 � Improved Multi‑Bandwidth Mode Manifold
The TM method is a promising tool to extract the bear-
ing fault features under noisy working conditions. It 
overcomes the difficulty of parameter setting in the VMD 
method by uniting the modes containing similar fault 
contents that are obtained with different parameters. 
The computational efficiency and feature extraction 
performance of the TM method have been enhanced as 
compared to the traditional VMD methods. This paper 
intends to further improve the TM method by devel-
oping the LTSA algorithm. The improved TM method 
addresses the issues in two aspects: construction of per-
sonalized local data distribution and formation of sym-
metric TM feature, which are described in detail in the 
following.

3.1 � Construction of Personalized Local Data Distribution
In the original TM method, the local data distributions 
of the high-dimensional data of multi-bandwidth modes 
being established in Eq. (3) are constructed by the same 
number of neighboring data points via the traditional 
k-nearest neighbor algorithm in the LTSA. The multi-
bandwidth modes is consist of the fault-induced tran-
sient components and the fault-unrelated components. 
The fault-induced transient components distribute in 
the sparse areas because they have impulsive character-
istic, while the fault-unrelated components distribute 
in the dense areas because they are regarded as noise. 
If k is larger than the data number of one fault impulse 
in the sparse areas, some noise data points in the dense 
areas are selected as the neighbors of the impulse data 
points, which corrupts the inherent regularity of the fault 

(5)WM = [y1, y2, · · · , yi, · · · , yN ],

(6)
PE(k) = −

p!
∑

i=1

Pi ln Pi

ln(p!)
,
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impulse, leading to that the fault-induced transients in 
the learned TM feature are not dominated or even sub-
merged by the noise. If k is smaller than the data num-
ber of one fault impulse in the sparse areas, the noise 
data points in the dense areas could not obtain enough 
neighbors to show their difference from the impulse 
data points, resulting in that some noise components are 
regarded as the manifold structure that is kept in the TM 
feature. Due to the different local linearity property and 
data density between the impulse areas and noise areas, 
the local data distributions of different data points should 
be represented by different number of neighboring data 
points. Moreover, the determination of the neighbor-
hood size in the original TM method is time-consuming 
because the LTSA algorithm must be repetitively con-
ducted with a series of neighborhood sizes.

This paper proposes to construct personalized local 
data distribution for each data point by introducing the 
natural nearest neighbor (TN) algorithm to the LTSA. 
The TN algorithm is a scale-free nearest neighbor 
method that does not preset specific scale which deter-
mines the performance of manifold learning, such as the 
neighborhood size k in the traditional k-nearest neighbor 
algorithm. If the traditional k-nearest neighbor algorithm 
is regarded as an active neighbor search process, the TN 
algorithm is a completely passive neighbor confirmation 
process. The idea of the TN algorithm is to assign the 
neighbor number of each data according to the density of 
the data area for construction of personalized local data 
distribution. The specific steps of the TN algorithm is as 
follows:

1) Calculate the distances between each data point zi 
and other data points.

2) Given the initial value of k, record the nearest k data 
points for each point zi.

3) For each data point zi, the data points that take zi as 
one of the nearest k points are considered as the natural 
nearest neighbors of zi.

According to the TN algorithm, the impulse data 
points will have less neighbor numbers than the noise 
data points. On the other hand, due to that the ampli-
tudes of the fault-induced transients are usually larger 
than the noise, the impulse data points are difficult to 
be treated as the neighbors of the noise data points, 
and vice versa. Thus, the difference of local data distri-
bution between the fault-related transient components 
and the fault-unrelated components is strengthened. 
Therefore, the TN algorithm helps to select proper 
neighborhood size for each data points and construct 
personalized local data distribution, which is beneficial 
for the TM feature learning by the LTSA technique. The 
LTSA based on the TN is called TN-LTSA in this paper. 

Some data points may also be misled as the neighbors 
of improper areas by the TN algorithm. In this condition, 
the inconsistency between the constructed local data dis-
tribution and those in the same area is increased, which 
will be alleviated in the dimensionality reduction process 
of the LTSA method. By introducing the TN algorithm to 
the LTSA, the performance of the TM feature is expected 
to be improved.

Due to the fact that the construction of the local data 
distribution is only related to the local data density in the 
TN algorithm, the parameter k has little effect on the fea-
ture learning performance. Therefore, the TN-LTSA only 
needs to be performed once for the TM feature learning, 
which improves the efficiency of the TM method signifi-
cantly. The range of k value is generally between 10 and 50. 
Without loss of generality, k is set as 30 in this paper.

3.2 � Formation of Symmetric TM Feature
In the original TM method, the manifold output is a one-
dimensional vector and is regarded as the TM feature rep-
resenting the fault transient components. However, the 
TM feature would probably be asymmetric in the up-and-
down direction, which is not the real waveform pattern of 
the fault transient components. There are many reasons 
for this problem, including but not limited to unreasonable 
local information extraction, improper local space con-
struction, and theoretical limitations of the LTSA on the 
processing of one-dimensional signals.

In order to alleviate the asymmetry phenomenon of the 
TM feature, a weight-based feature compensation strategy 
is proposed in this paper to form a synthetic TM feature. 
d is set as two in the improved TM feature. Then, the TN-
LTSA output is written as

The two vectors w1 and w2 are actually two eigenvec-
tors of an alignment matrix constructed in the TN-LTSA, 
whose corresponding eigenvalues are λ1 and λ2, and λ1 < λ2. 
The smaller the eigenvalue is, the lower the affine error of 
the manifold feature in the corresponding dimension will 
be. Therefore, w1 is more similar to the fault-related tran-
sients than w2. It is discovered that, when w1 is asymmetric 
in the vertical direction, w2 has complementary waveform 
pattern as compared to w1. This motivates us to combine 
the second vector to compensate the asymmetry of the 
first vector. Considering the different amplitude proper-
ties of the two vectors, the two eigenvalues are used as the 
weight coefficients of the opposite eigenvectors. The syn-
thetic TM feature is formed by the weight-based feature 
compensation strategy as:

(7)WM = [w1 w2 ]T.
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where the plus or minus sign is determined according 
to the respective waveform, ||·||2 is the L2 norm opera-
tion. The symmetry of the synthetic TM feature is much 
enhanced, hence is more suitable to represent the fault 
transient components than the feature obtained in the 
original TM method.

3.3 � Summary of the Improved TM Method
The flowchart of the improved TM method are illus-
trated in Figure  2, and the specific procedures are 
briefly described as follows.

Step 1: Perform the RVMD on the original signal 
repetitively with 10 values of the bandwidth balance 
parameter α, which is selected from the range of [100, 
5000] equidistantly.

Step 2: Construct the multi-bandwidth modes by 
selecting the fault-related modes from the decomposed 
modes based on the Gini index.

Step 3: Employ the proposed TN-LTSA on the matrix 
of multi-bandwidth modes with k = 30 and d = 2. The 
manifold output includes two-dimensional data with 
complementary waveform.

Step 4: Form the symmetric TM feature by the 
weight-based feature compensation strategy via Eq. 
(8). The possible bearing fault characteristic period is 
expected to be easily identified in the obtained sym-
metric TM feature.

(8)w =
�1w

2 ± �2w
1

∥

∥�1w2 ± �2w1
∥

∥

2

,
4 � Simulation Analysis
In order to verify the enhanced performance of the 
improved TM method for extraction of bearing fault-
related transients, a test signal consisting of white noise 
and periodic impulses is simulated by considering a free 
vibration model with damping as follows:

where β = 200 denotes the attention factor, r is the num-
ber of the impulses, Fs = 2000 Hz is the sampling fre-
quency, fm= 10 Hz is the fault characteristic frequency, 
f1 = 200 Hz denotes the resonant frequency, τr is used 
to simulate the randomness caused by slippage, which is 
subject to a discrete uniform distribution and is ranged 
among (−π,π] , ξ(n) represents the white noise that 
results in the signal-to-noise ratio (SNR) as − 9  dB. A 
sample with 1 s time length is used for analysis.

The simulated pure signal, noisy signal and their spec-
tra are shown in the Figure 3. The pure signal consists of 
exponentially decaying pulses that last for a short period 
of time. However, the periodic impulses are drowned by 
strong white noise in the noisy signal, making it difficult 
to be identified in the waveform and spectrum of the 
noisy signal.

The proposed improved TM method is firstly per-
formed on the simulated noisy signal. First, the RVMD 
is carried out on the original signal with 10 values of 
the bandwidth balance parameter α. In each RVMD, all 
extracted modes and residual modes are considered as 
the candidates of fault-related modes after 5 times recy-
cling. The spectra of the 5 extracted modes with α being 
5000 are presented in Figure  4, where the background 
spectrum is of the original noisy signal. It can be seen 
that the first mode extracted contains most of the pure 

(9)
x(n) =A

∑

re
−β(n−rFs/fm−τr )/Fs sin(2πf1

− (n− rFs/fm − τr)/Fs)+ ξ(n),

RVMD with different parameters

Construction of multi-bandwidth modes

Manifold learning based on the TN-
LTSA algorithm

Bearing vibration signal

Bearing fault identification

Formation of symmetric TM feature

Figure 2  Flowchart of the improved TM method
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signal information, partly owing to the strategy that 
the RVMD sets the initial center frequency as the fre-
quency that has the highest amplitude in the analyzed 
signal spectrum. Then the first mode extracted is picked 
out as a fault-related mode by the Gini index, and a ten-
dimensional data matrix is formed together with other 
fault-related modes having different bandwidths. Figure 5 
shows the waveforms and spectra of the first, fifth and 
tenth target modes sorted in ascending order of α val-
ues. All target modes were extracted in the first recycling 
round of RVMD, but have different bandwidths due to 
variant α values. The target mode with small bandwidth 
contains relatively less noise and fault-unrelated com-
ponents, while the target mode with large bandwidth 

contains more fault-related information. To reveal the 
inherent regularity of the high-dimensional data matrix, 
the TN-LTSA is performed on the multi-bandwidth 
modes. Given the initial value of the nearest neighbor 
number k as 30, the number of neighbors for each data 
point is reallocated by the TN algorithm, as illustrated in 
Figure 6a. The number of neighbors for each data point 
is determined by the density of its area, which main-
tains the uniqueness of the impulse data points and the 
randomness of the noise data points. The waveforms of 
the two eigenvectors of the output manifold feature are 
shown in Figure 6b and c, respectively. The correspond-
ing eigenvalues are 0.082 and 0.101, respectively. Due to 
proper construction of personalized local data distribu-
tion by the TN algorithm, the transient components are 
retained and the noise is mostly eliminated in the two 
dimensional data. However, both the features have the 
problem of asymmetric waveform in the up-and-down 
direction. The synthetic TM feature is finally obtained 
by the proposed weight-based feature compensation 
strategy, as presented in Figure  6d, where the asymme-
try problem is effectively alleviated, and the periodicity of 
the fault impulses is clearly manifested.

As comparisons, the traditional TM method and the 
PSO-based VMD (PSO-VMD) method [26] are used 
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to analyze the simulated noisy signal in Figure 3. When 
conducting the original TM method, the parameter 
k is optimized from the range of [10, 50]. The TM fea-
ture extracted is shown in Figure  7a, in which the in-
band noise is less than the fault-related modes obtained 
by the RVMD shown in Figure  5, while is a bit larger 

than the first dimensional data of the manifold feature 
extracted by the TN-LTSA shown in Figure  6b. Moreo-
ver, the asymmetry problem is obvious in Figure  7a. In 
the PSO-VMD method, the bandwidth balance param-
eter α and the number of modes K are optimized via the 
PSO algorithm, whose ranges are from 100 to 5000 and 
from 3 to 6, respectively. The waveform of the optimal 
mode is shown in Figure 7b. It can be seen that the noise 
of the optimal mode is much larger than the original and 
improved TM methods, hindering the identification of 
the periodic transients.

To quantify the performance and efficiency of the three 
methods, the Gini index and computation time of each 
method are calculated and given in the corresponding 
results in Figures 6d, 7a and b, respectively. The proposed 
improved TM method achieves the result with the high-
est GI value and spends much less time than the other 
methods, indicating that the improved TM method out-
performs the original TM method and the PSO-VMD 
method in both performance and efficiency for extrac-
tion of fault transient components.

5 � Experimental Verification
In order to verify the enhanced performance of the 
improved TM method for rolling bearing fault diagnosis, 
two groups of bearing dataset, including the NASA bear-
ing dataset and the bearing test rig dataset obtained in 
our research group are analyzed in this section.

5.1 � NASA Bearing Dataset
The NASA bearing dataset are lifecycle vibration signals 
of a bearing run-to-failure test provided by the Center 
for Intelligent Maintenance Systems (IMS), University 
of Cincinnati [34]. A severe outer-race fault was found 
in a bearing at the end of one test, whose characteristic 
period is calculated to be TO = 0.004 s. For more details 
on this experiment, please refer to Ref. [35].

The waveform and spectrum of a vibration signal 
measured at the early stage of the outer-race defect 
is shown in Figure  8. It can be seen that the in-band 
noise and harmonic components mask the fault tran-
sient components, making it difficult to identify the 
existence of the bearing fault. The proposed improved 
TM method is firstly introduced to analyze the vibra-
tion signal in Figure 8. By using the TN algorithm, the 
data points in the high-dimensional data of the multi-
bandwidth modes have different neighbor numbers for 
construction of personalized local data distribution, as 
is illustrated by Figure 9a. The impulse data points have 
relatively larger neighbor numbers than the noise data 
points, which strengthens the divergence of local data 
distribution between the fault transients and noise. By 
synthesizing the two vectors of the manifold output 
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based on the weight-based feature compensation strat-
egy, the synthetic TM feature is achieved and displayed 
in Figure 9b. It can be seen that the synthetic TM fea-
ture is symmetric, where the fault transient compo-
nents are preserved obviously by the improved TM 
method while the noise is greatly suppressed. As com-
parisons, the vibration signal in Figure  8 is also ana-
lyzed by the original TM method and the PSO-VMD 
method. The resultant waveform of the TM feature is 
shown in Figure 10a, where the survived in-band noise 
is notable and the asymmetry problem in the up-and-
down direction exists. The waveform of the optimal 
mode obtained via the PSO-VMD is displayed in Fig-
ure 10b, where the in-band noise is much heavier than 
those in the two other results. The Gini value of each 

result and the computation time spent in each method 
are calculated and recorded in the corresponding fig-
ure. The improved TM method exhibits the highest GI 
value and the smallest computation time, demonstrat-
ing its outstanding advantages in retaining fault tran-
sient components and improving computing efficiency.

5.2 � Bearing Test Rig Dataset
A simplified bearing test rig was established in our 
research group for collection of bearing data with seeded 
faults, as shown in Figure  11. The rotor-bearing system 
was driven by an induction motor. A spring-loaded device 
was designed as a radial loader of the rotor-bearing sys-
tem. The tested bearing (type: N306E) was installed at the 
right end of the shaft. A seeded defect that is a single slit 
with a width of 0.5 mm was machined on the outer race-
way and inner raceway of the tested bearings separately. 
The acoustic signals of the tested bearings were acquired 
by a microphone (Model: INV9206) near the tested bear-
ing under a noisy surrounding environment. The shaft 
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rotating speed was 1464.6 r/min and the sampling fre-
quency of the data acquisition system was set to be 20 
kHz. Therefore, the characteristic periods of the bearing 
outer-race and inner-race defects are calculated to be 
TO = 0.010 s and TI = 0.007 s, respectively.

5.2.1 � Seeded Outer‑Race Defect
The bearing acoustic signal with the outer-race defect 
is first analyzed. The waveform and spectrum of the 
original signal are displayed in  Figure  12, where the 
transient impulses are seriously corrupted by the back-
ground noise. The improved TM method, the original 
TM method and the PSO-VMD method are used to ana-
lyze the signal in Figure 12 successively. Figure 13a pre-
sents the number of neighbors for each data point in the 
improved TM method, where the neighbor numbers of 
the noise data points are significantly larger than those 
of the impulse data points. The two vectors of the TN-
LTSA output are synthesized according to the weight-
based feature compensation strategy, and waveform of 
the synthetic TM feature is displayed in Figure 13b. It is 
obvious that the in-band noise is largely suppressed by 
the TN-LTSA algorithm, and the synthetic TM feature 
is symmetric due to the weight-based feature compensa-
tion strategy. The average period of the transients in Fig-
ure 13b is 0.097 s, which is close to To = 0.010 s, proving 
that the bearing has a defect in the outer raceway. The GI 
value of the synthetic TM feature is 0.5170. And the com-
puting time of the improved TM method on this signal is 
9.93 s. The result of the original TM method is displayed 
in Figure 14a, where a small amount of in-band noise is 
retained and the waveform is asymmetric. The GI value 
of the TM feature is 0.4319, which is smaller than that 
of the synthetic TM feature. The computing time of the 
original TM method on this signal is 98.05  s, which is 

longer than that of the improved TM method. The result 
of the PSO-VMD method is displayed in Figure  14b, in 
which the in-band noise is still heavy and the recognition 
of the transient components is affected. The GI value of 
the optimal target mode in Figure  14b is 0.3732, which 
is the smallest. The computing time of the PSO-VMD 
method on this signal is 103.72  s, which is the longest. 
Therefore, the proposed method has enhanced fault iden-
tification capability and computing efficiency.

5.2.2 � Seeded Inner‑Race Defect
To further confirm the enhanced performance of the 
proposed method in bearing fault diagnosis, the bear-
ing acoustic signal with the inner-face defect is also 
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waveform and b spectrum
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analyzed by the above three methods. Figure  15 shows 
the waveform and spectrum of the acoustic signal with 
the inner-race fault. The transient components in the 
waveform are contaminated by heavy noise. In the spec-
trum, no modulation resonance band spaced at the 
fault characteristic frequency aroused by fault impacts 
can be identified. When introducing the improved TM 
method to reveal the nonlinear inherent structure from 
the high-dimensional multi-bandwidth modes, the num-
ber of neighbors per data point is assigned based on the 
data density by the TN algorithm, as displayed in Fig-
ure  16a. Through the proposed compensation strategy, 
the synthetic TM feature is obtained and is shown in 
Figure 16b, where the in-band noise is almost completely 
removed and the transient impulses can be easily iden-
tified. The average period of the transients in Figure 16b 
is 0.068 s, which is close to Ti = 0.007 s, proving that the 

bearing has a defect in the inner raceway. The results of 
the original TM and the PSO-VMD methods are shown 
in Figure 17 for comparisons. The TM feature shown in 
Figure  17a is asymmetric and the optimal target mode 
in Figure  17b contains notable in-band noise. As can 
be seen in the figures of different results, the improved 
TM method achieves the highest GI value and costs the 
shortest computation time, demonstrating again that the 
proposed improved TM method is superior to the tradi-
tional methods for bearing fault diagnosis.

6 � Conclusions

(1)	 Aiming to overcome the shortcomings of the origi-
nal TM method, this paper proposes an improved 
TM method for enhanced bearing fault diagnosis. 
The proposed method improves the computing effi-
ciency significantly and achieves impulse-enhanced 
and symmetrical fault feature of the rolling bear-
ings.

(2)	 The TN algorithm is introduced to the LTSA algo-
rithm to construct personalized local data distri-
bution for each data point in the high-dimensional 
data of multi-bandwidth modes. The TN algorithm 
selects neighbors according to the data density, 
which is scale free and reasonable for local space 
construction. Therefore, the TN-LTSA only needs 
to be performed once to improve the efficiency, 
and the performance for extraction of bearing fault 
transients is enhanced.

(3)	 By considering the complementary waveform prop-
erty of the two vectors of the TN-LTSA output, a 
weight-based feature compensation strategy is pro-
posed to form a synthetic TM feature that is sym-
metric in the up-and-down direction. The synthetic 
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waveform and b spectrum

Figure 16  Results of the acoustic signal in Figure 15 analyzed by the 
proposed method: a the reallocated neighbor numbers by the TN 
algorithm and b the waveform of the synthetic TM feature
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TM feature obtained by the improved TM method 
is more representative of the fault transient compo-
nents than the TM feature obtained by the original 
TM method.

(4)	 The enhanced performance of the improved TM 
method is validated by one simulation study and 
two applications to bearing fault diagnosis, by com-
paring with the original TM method and a tradi-
tional VMD method.
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