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on Z‑yarn Continuous Implanted Preforms 
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Abstract 

To improve the quality and efficiency of Z-directional 3D preform forming, the Z-yarn frictional force distribution 
model of the preform and its wear mechanism were investigated. In this study, a tensile force measuring device was 
designed to measure the force required to replace the guide sleeve, which is equivalent to the Z-yarn frictional forces. 
The frictional force is proportional to the number of preform layers and is applied to the preform decreased from the 
corner, edge, sub-edge, and middle in order. A back propagation neural network model was established to predict 
the friction at different positions of the preform with different layers, and the error was within 1.9%. The wear of Z-yarn 
was studied at different frictional positions and after different times of successive implantation into the preform. The 
results showed that with an increase in the number of Z-yarn implantations and frictional forces, the amount of car-
bon fiber bundle hairiness gradually increased, and the tensile fracture strength damage of the fiber was increasingly 
affected by the frictional forces. In the corner position of the preform, when the number of implantations was 25, the 
fiber fracture strength decreased non-linearly and substantially; in order to avoid fiber fracturing in the implantation 
process, the Z-yarn needs to be replaced in time after 20–25 cycles of continuous implantation. This study solves the 
problem of difficulty in measuring the force required for individual replacements owing to the excessive number of 
guide sleeves, puts forward the relationship between fiber wear, preform position, and implantation times, solves the 
phenomenon of fracture in the preform during Z-direction fiber implantation, and realizes the continuous implanta-
tion of fibers.
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1  Introduction
Advanced composite materials are widely used in the 
fields of aerospace, defense, military, rail transportation, 
etc., and are contested by industrially developed coun-
tries as strategic must-have resources. C/C composites 
with excellent high-temperature performance are widely 
used in missile warheads, solid rocket engine nozzles, 
aircraft brake discs, space shuttle structural compo-
nents, and other applications [1]. The carbon fiber pre-
form is the most basic reinforcing structural body of C/C 

composites, and can determine the volume content of 
fibers and fiber orientation, influence the pore geometry, 
distribution of pores and the degree of fiber bending and 
twisting in the composites, and determine the perfor-
mance of the composites. C/C composites have always 
been a major topic for research in the industry [2–4].

Three-dimensional (3D) preforms contain load-bear-
ing fibers in all directions, solving the shortcomings of 
two-dimensional (2D) preforms, which had insufficient 
interlayer performance and were easy to damage. 3D 
preforms have better load-bearing performance, have 
received more attention. The application of the current 
needling process for complex fiber structures will lead 
to preform damage which is difficult to describe, and a 
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large dispersion in macroscopic mechanical behavior [5]. 
3D woven composites have complex structures, long pro-
cess cycles, and are expensive to develop using traditional 
design methods [6]. Weaving of complex curved compo-
nents is also a difficult task. The overall degree of auto-
mation of woven molded preforms is still not sufficient to 
meet the demands of short-time high-volume production 
[7], which restricts the development and application of 
3D woven fabrics to a certain extent.

The digital 3D weaving and forming proposed by Shan 
et  al. [8], as shown in Figure  1, used a layered weaving 
method with digital templates, which realized the weav-
ing and formation of complex preforms by creating and 
forming structural parts along digitally guided templates 
with fibers under computer control. We used CAD to 
generate the model of the preform and arrange the guide 
sleeves to limit the shape of the preform. The forming 
process of the composite preform first lays the fiber bun-
dles in the X and Y directions between the guide tem-
plate layer by layer, uses the side bar and guide sleeve to 
restrain the shape of the fiber position, layers to a certain 
thickness for compaction densification, then repeats the 
previous steps to complete the weaving of the preform, as 
shown in Figure 2.

After weaving, the Z-yarn must be inserted into the 
preform to replace the guide sleeve, as shown in Figure 3. 
First, a steel needle (called a replacement needle) carry-
ing the Z-yarn is used to position the needle at the coax-
ial point of the guide sleeve, as shown in Figure 3(a), and 
move forward along the guide sleeve to replace the guide 
sleeve while introducing the Z-yarn into the preform, 
as shown in Figure  3(b). After replacing the first guide 
sleeve, the second guide sleeve is replaced in the oppo-
site direction, as shown in Figure 3(c), and the Z-yarn is 
implanted into the preform again as shown in Figure 3(d). 
The entire guide sleeve is repeatedly replaced with a 
replacement needle carrying the Z-yarn into the preform, 
finally forming a three-dimensional preform.

About research on Z-yarn, Hassan et  al. [9] showed 
that the accurate design of the Z-yarn path and more 
importantly, its frequency in a three-dimensional woven 
structure is essential for impact-resistant composite 
structures. Midani et  al. [10] found that changing the 
number of Z-yarns in the structure has a negligible effect 
on tensile strength (in-plane) and a significant effect on 
the weight reduction impact performance (out-of-plane). 
Esmaeeli et  al. [11] used the finite element method to 
establish a composite cell model and found that the opti-
mal out-of-plane elastic modulus largely depended on the 
Z-yarn distribution density and the ratio of yarn width to 
yarn radius. Bilisik [12] pointed out that the root cause of 
the structural instability of the preform was the thickness 
variation, where the main factors were the width ratio of 
the preform and the thickness variation, where the main 
factors are the width ratio of the preform and the intro-
duction path of Z-yarn fibers. Xu et al. [13] pointed out 
that the interlayer intercut strength of 3D needled SiC 
increased with increasing yarn size and Z-yarn density, 
and decreased with Z-yarn density. Scholars have only 
pointed out the importance of Z-yarn for preforms and 
composites, but the distribution pattern of the frictional 
forces to which Z-yarn is implanted in preforms has not 
been studied.

Regarding friction studies of fibers, Eddine et  al. [14] 
found that the transverse friction was relatively stable, 
and the friction coefficient was smaller than the longi-
tudinal friction. Allaoui et al. [15] found that the relative 
orientation of the yarns in the fabric had a significant 
effect on the coefficient of friction, which increased with 
increasing warp and weft densities. Tourlonias et al. [16] 
found a decreasing trend in the coefficient of friction and 
its coefficient of variation for carbon fiber bundles as the 
degree of pulp film wear between the filaments increased. 
Cornelissen et al. [17] explored the relationship between 
carbon fiber bundles and the friction properties of fabrics 
at three scales (microscopic, fine, and macroscopic) to 
predict the friction pattern between satin fabrics woven 

Figure 1  Digital weaving forming
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Figure 2  Composite preform weaving

Figure 3  Z-yarn replacement guide sleeve
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from fiber bundles and metals by observing the friction 
pattern between bundles and metals. Lee et al. [18] found 
that damage to carbon fiber bundles during weaving was 
caused by the guide rods. Archer et al. [19] found that the 
overall damage caused by weaving of carbon fiber bun-
dles decreased the tensile fracture strength of the bundles 
by 9%–10%, which is much lower than the performance 
damage caused by weaving into glass fiber bundles. Sugi-
moto et al. [20] designed a device to evaluate the dynamic 
friction between carbon fibers and found that the state 
of the cladding between the filaments was strongly influ-
enced by compressive stress and had a significant effect 
on the coefficient of dynamic friction of the fiber.

Current research on fiber friction has revealed the 
damage mechanism of fibers and studied the fiber wear 
in the X and Y directions during the weaving process; 
however, there is no research on the change in damage 
of Z-yarns after implantation into the precast and on 
Z-yarn replacement to prevent their breakage in the pre-
cast because of high wear.

In this study, we used a homemade tensile-force meas-
uring device to measure preforms of different thick-
nesses. The force required to replace the guide sleeve at 
different positions is expressed as F, and is equivalent 
to the frictional force on the Z-yarn-implanted preform, 
where the distribution pattern of F is obtained. Modeling 
the distribution of frictional forces on Z-yarn implanta-
tion in preforms with different thicknesses using a back 
propagation (BP) neural network enables the prediction 
of frictional forces on large and complex preforms with 
Z-yarn, and the performing of experiments involving 
continuous replacement of guide sleeves with Z-yarn 
for different frictional regions. Via tensile testing, check-
ing the amount of hairiness on the fiber bundle surface, 
detecting the amount of hairiness on the fiber bundle 
surface, and the relationship between the wear of Z-yarn 
in the preform and the number of preform layers, the 

position of the guide sleeve and the number of replace-
ment guide sleeve were obtained to solve the problem 
of low preform forming efficiency and poor quality, as 
shown in Figure  4, to improve the theoretical basis and 
practical process data for the realization of continuous 
Z-yarn implantation.

2 � Experimental Materials and Methods
2.1 � Prefabricated System Preparation
A Toray T300 series 3K carbon fiber tow was selected 
to complete the weaving of the preform for the flexible-
guided three-dimensional structural composite, accord-
ing to flexible-guided 3D weaving technology.

Guide sleeves were introduced in the thickness direc-
tion of the composite preform, which outlined the pre-
form and achieved near-net forming. The guide sleeves 
lock the fibers woven in layers to provide Z-directional 
reinforcement. Because the guide sleeves were pre-
positioned on the weaving guide template, the fibers 
were woven according to a defined path when the guide 
sleeves were locked according to a defined locking pat-
tern; therefore, taking maximum advantage of the guide 
sleeve [21].

The Z-yarn was implanted into the preform after weav-
ing was completed, and the guide sleeves were replaced. 
On the weaving surface, 3K fiber bundles were wound 
by 0°/90° guide sleeves in the X and Y directions, respec-
tively, and orthogonal winding was done once; this is 
defined as weaving into one layer 50, 100, 150, 200, and 
250 layers of carbon fiber preforms with thicknesses of 
25, 50, 75, 100, and 125  mm, respectively. After weav-
ing, two 6K fiber bundles were implanted into the pre-
form member from the Z direction to complete the 
in situ replacement of the Z-yarn with the guide sleeves 
to realize the overall restraint and reinforcement of the 
preform.

Figure 4  Z-yarn implantation condition
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2.2 � Yarn Replacement Force Measurement Method
A tension-measuring device was designed to replace 
the guide sleeves and the structural characteristics of 
the guide sleeves. A gripper was connected to the sen-
sor at one end and to the guide sleeve at the other, and 
the required replacement force was fed back to the sen-
sor by dragging the guide sleeve outward. The value of 
the replacement force was displayed on the computer 
through digital module processing, as shown in Fig-
ure 5. Because the weaving process is repetitive and the 
preform has a rectangular cross-section with axially 
symmetric characteristics, only 1/4 of the preform cross-
section was considered for the study, and each guide 
sleeve of the preform was taken separately for the yarn 
replacement force measurement.

Because the tensile force measurement of the replace-
ment guide sleeves included so much data and high vola-
tility factors, the experiment to verify the accuracy of the 
tensile force measurement was first done on a preform of 
50 layers of 25 mm thickness. To ensure the universality 
of the results, the diagonal position of the guide sleeves 
was divided into four parts, and five guide sleeves, GS1, 
GS2, GS3, GS4, and GS5, were taken at the end point 
for the replacement force measurement. The replace-
ment forces were measured five times for the same guide 
sleeve, as shown in Figure 6. The maximum error of the 
yarn replacement force was 5.2%, indicating that the fluc-
tuation and error of the measured yarn replacement force 
were within the acceptable range and could be used to 

accurately measure the size of the replacement force of 
the preform.

3 � Experimental Results and Analysis
The preform of flexible guided three-dimensional weav-
ing consists of in-plane X-direction yarn, in-plane 
Y-direction yarn, and Z-directed guide sleeve for Z-yarn 
implantation. The diameter of the guide array was 1.2 mm 
and the center spacing was 2.4  mm. After the preform 
was weaved, we used Z-yarn to replace the guide sleeves 
to form a flexible guided three-dimensional woven pre-
form. Liu et al. [21] found that the fiber volume content 
of the flexible-guided three-dimensional woven preform 
increased with increasing compressive stress, and the 
fiber volume fraction changed more rapidly if the pre-
form was compacted when the number of woven layers 
was small, and the growth trend gradually leveled off as 
the number of woven layers increased. A higher fiber vol-
ume fraction indicates better denseness of the preform, 
that is, a higher force is required for Z-directed guide 
sleeve replacement. During the compaction process of Figure 5  Yarn tying force measurement device

Figure 6  Tensile force measurement of the replacement guide 
sleeve fluctuations
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the preform, the fiber bundles and guide sleeves squeeze 
each other to produce small deformations, and the 
guide sleeves are subjected to different forces at differ-
ent locations. Therefore, we used the device to measure 
the replacement force of the guide sleeves at different 

positions on the preforms of 50, 100, 150, 200 and 250 
layers, and the results are shown in Figure 7.

From Figure  7, it can be seen that by measuring the 
force F required to replace the guide sleeve of the five 
preforms, the maximum value of the force F required to 

Figure 7  Yarn replacement force distribution
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replace the guide sleeve is proportional to the thickness 
of the fabric; for the same fabric, the F value decreased 
from the corner, edge, secondary edge, and central part. 
This is because of the digital flexible guide preform 
forming process. To ensure the fiber volume fraction 
of the fabric, it is necessary to apply positive pressure 
F1 on the preform; this reduces the height of the pre-
form in the Z direction. Because the volume remains 
the same, the preform’s X and Y direction lengths will 
increase; however, the guide sleeves limit its displace-
ment in X and Y directions, so the fiber in the X, Y 
direction will have a force F2 on the guide sleeves, 
as shown in Figure  8(a) and (b), resulting in the low-
est value of F at the center of the fabric. Therefore, the 
closer the distance to the outermost guide sleeves, the 

higher the F value. In addition, after the preform weav-
ing is completed, it must be removed from the table. 
First, the steel piece is inserted into the gap between 
the two adjacent rows of the guide sleeve, and the steel 
piece is inserted into the gap of the pickup frame simul-
taneously to complete the position of the pickup frame 
and the fixed preform. Finally, the distance between 
the two taking frames is adjusted to shift the thick-
ness of the preform to a suitable position, as shown in 
Figure  8(c). Adjustment of the distance between the 
pickup frames needs to be completed by the screw, so 
the corner part of the fabric has the largest deformation 
of the pickup frame; that is, the outermost corner part 
of the fabric has the largest force value with the guide 
sleeves.

Figure 8  Force on guide sleeve
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4 � Replacement Yarn Force Distribution Modeling 
of Preform

Error BP neural networks have a simple structure and 
can be trained to automatically summarize the func-
tional relationships between data without any a priori 
formulas; therefore, they have an advantage that tra-
ditional mechanical or mathematical methods cannot 
match [22], and are widely used in financial, biological, 
medical, health, and marketing research fields [23]. Liu 
et al. [24] proposed a back-propagation artificial neural 
network model to predict body dimensions related to 
pattern making by inputting several key body dimen-
sions. Song et al. [25] found that, compared with a sup-
port vector machine (SVM) and random forest (RF), 
the BP neural network has the best prediction accuracy, 
generalization ability, and test time. The improved net-
work enhanced the convergence performance, reduced 
the running time and mean square error. The applica-
tion of a BP neural network in modeling the replace-
ment force of the preform is important for continuous 
dynamic prediction of the preform replacement force 
with different layers at different positions.

4.1 � BP Network Modeling
The feedforward network of its learning algorithm was 
first established, and consisted of an input layer, an 
implicit layer, and an output layer [26]. The BP learn-
ing algorithm consists of two parts: the forward prop-
agation of information and backward propagation of 
errors. In the forward propagation process, the input 
information is computed from the input to the out-
put sequentially via the implicit layer, and the state of 
the neurons in each layer only affects the state of the 
neurons in the next layer [27]. If the desired output is 
not obtained at the output layer, the value of the error 
change at the output layer is calculated and then shifted 
to backpropagation, where the error signal is backprop-
agated via the network along the original connection 
pathway to modify the weights of the neurons in each 
layer until the desired goal is reached [28]. The configu-
ration of the input layer needs to consider all the ele-
ments that affect the output layer, which is the result of 
the model analysis, i.e., the replacement force. There-
fore, for this system, the input layer mainly includes the 
number of preform layers, the number of array steel 
needle columns, and the number of array steel needle 
rows.

The selection of the implied nodes is based on the cor-
rect reflection of the input and output, and the number 
of implied nodes is chosen as rarely as possible, and is 
gradually increased during training according to the situ-
ation until the network performance requirements are 

met. The initial value of the number of hidden nodes is 
determined using Eq. (1) [29].

where n is the number of hidden layer nodes, ni is the 
number of input nodes, n0 is the number of output nodes, 
and a is a constant between one and ten.

In this study, the implicit nodes were initially selected 
among 5–14 according to the smallest possible value 
of the number of input and output nodes. The network 
was trained for different implicit layers, and an analysis 
of the predicted regression coefficient was conducted. 
The regression against the number of hidden nodes n is 
shown in Figure  9. The more the regression coefficient 
tends to 1, the better the fitting effect; therefore, the best 
implicit layer node number was finally selected as 9.

The structure of the feedforward neural network is 
shown in Figure 10.

MATLAB provides a variety of improved neural net-
work tool functions, and this study utilizes the fast 

(1)n =
√
ni + n0 + a,

Figure 9  Relationship between hidden nodes and regression 
coefficients

Figure 10  BP neural network model for cutting force prediction
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BP algorithm, which is a method that uses a combina-
tion of momentum and adaptive learning rate to train 
the forward network. BP algorithms mainly include the 
Levenberg-Marquardt algorithm, Bayesian regulariza-
tion algorithm, Scaled conjugate gradient algorithm, and 
other selected algorithms under the same conditions for 
training the network. The results are compared and ana-
lyzed, and the mean square error is used as the criterion 
for algorithm selection, as shown in Table 1.

According to the run results, the Bayesian regulariza-
tion algorithm has the smallest mean square error and 
is the most stable; therefore, it was chosen as the train-
ing algorithm for the replacement yarn force distribution 
model.

When designing a BP neural network, it is necessary 
to determine the topology of the network (the number of 
layers of the hidden layers and the number of neurons in 
each layer), the transformation function of its neurons, 
initialization of the network, error calculation, learn-
ing rules and network training, training parameters, and 
normalization of training samples. The MATLAB Neu-
ral Net Fitting Tool includes important excitation func-
tions, such as nonlinear functions and the sigmoid linear 
function type used in this study. The neural network 
structure, number of neurons set, according to their own 
needs to call the neural network in the toolbox, modify 
the network connection weights and threshold rules, and 
write a variety of network training procedures to achieve 
a variety of desired functions [30].

4.2 � Network Training and Result Analysis
The neural network training for the replacement yarn 
model consists of three main neuronal inputs: x1 is the 
number of preform layers, x2 is the number of rows of 
array stitches, and x3 is number of columns of array 
stitches; these are connected to the three weights ( w1 , w2 , 
and w3 ) of the weight adjustment inputs weighting ratio. 
Selecting the most efficient linear weighted summation 
yields the Netin neuron net input Eq. (2).

(2)Netin =
n

∑

i=1

wixi.

The activation function was chosen as the Sigmoid 
function which transforms the input from negative 
infinity to positive infinity with an output between 0 
and 1. If there is no constraint, a linear activation func-
tion (the sum of the multiplication of the weights) can 
be used, yielding the output of Eq. (3).

The Sigmoid function is defined as Eq. (4).

Substituting Eq. (4) into Eq. (3) yields Eq. (5).

A logical model of the training threshold for the sub-
stitution force network is shown in Figure 11.

As shown in Figure  10, the three nodes in the input 
layer are numbered 1, 2, and 3, and the hidden layer has 
nine nodes, numbered 4–12, and the output layer has 
one node, numbered 13. The data were analyzed using 
the yarn force data of different positions using 50, 100 
and 150 layers of preforms as samples, and the input 
and output matrices were established as 222 × 75 and 
1 × 75, respectively. According to the values of nodes 1, 
2 and 3 from Eq. (3), the output values of node 4 can be 
obtained using Eq. (6).

where w41 , w42 and w43 are the weights of nodes 1, 2, and 
3 relative to node 4, respectively, and the output values of 
nodes 5 to 12 can be calculated; therefore, nine values of 
the hidden nodes can be calculated. The network input 

(3)y = sigmoid

(

n
∑

i=1

wixi

)

.

(4)sigmoid(x) =
1

1+ e−x
.

(5)y =
1

1+ e−Netin
.

(6)
a4 = sigmoid

(

n
∑

i=1

wixi

)

= sigmoid(w41x1 + w42x2 + w43x3).

Table 1  Comparison of the effect of different BP training

Training algorithms Mean Square Error

Training Validation Testing

Levenberg-Marquardt 2.244e−4 2.708e−2 2.706e−2

Bayesian Regularization 5.431e−4 7.2553e−4 6.954e−4

Scaled Conjugate Gradient 5.617e−1 1.897e−1 1.514e0

Figure 11  Sigmoid threshold unit model
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vector and weight vector of each node in the hidden layer 
are defined as follows:

Combining Eqs. (6)– (9) yields Eq. (10).

Because the algorithm of each layer is the same, for the 
alternative yarn force distribution network model with 
three input nodes, one output layer, and nine hidden layers, 
we assume that the weight matrices are w1 , w2 , w3,…,w12 , 
each hidden output is a1,a2 , a3,…,a11 , the input of the neu-
ral network is x and the output of the neural network is y , 
then the output vector of each layer can be computed and 
expressed as Eq. (11).

Then, the input data are normalized using the Mapmin-
max function to obtain the input and output, and the nor-
malization function is presented as in Eq. (12).

The inverse normalization function is presented in Eq. 
(13).

where xn is the nth input data, xmax is the maximum value 
of the input data, xmin is the minimum value of the input 

(7)x =







x1
x2
x3
1






,

(8)W =

















w4

w5

w6

...

w12

















=

















w41,w42,w43

w51,w52,w53

w61,w62,w63

...

w121,w122,w123

















,

(9)a =

















a4

a5

a6

...

a12

















.

(10)a = sigmoid(W • x).

(11)































a1 = sigmoid(w1 • x),
a2 = sigmoid(w2 • a1),
a3 = sigmoid(w3 • a2),

...

y = sigmoid(w12 • a11).

(12)y, = 2
xn − xmin

xmax − xmin
− 1.

(13)xn = y, • (xmax − xmin)+ xmin,

data, and y’ is the nth normalized data. After the results 
are obtained and then reverse-normalized to determine 
the magnitude of the yarn replacement force at different 
positions, the fit of the test sample is shown in Figure 12.

The mean square error of the training set, validation 
set, test set, and overall, with the number of trainings is 
shown in Figure 13.

It can be seen that the accuracy of this fitting is very 
high, and the training was completed 50 times with a 
mean square error of 1.3356e−8, without overfitting. 
After establishing the replacement force distribution 
model, the neural network function (x) in MATLAB 
was used to predict the required replacement force 
magnitude by inputting the number of preform lay-
ers, number of steel array pin rows, and the number 

Figure 12  Bayesian network training sample fit

Figure 13  Neural network Performance fit
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of steel array pin columns in X-direction, respectively, 
into the actual value of the neural network. To further 
verify the accuracy of the model, the values of the yarn 
replacement force were predicted for 200 and 250 lay-
ers preforms with different number of rows and col-
umns, respectively. The errors between the predicted 
and actual values for different guide sleeve positions are 
shown in Figure 14.

The above results show that the simulated value of the 
BP network model for predicting the yarn replacement 
force fits well with the actual value, and the more the pre-
form layers, the greater the yarn replacement force, and 
the better the fitting effect. The maximum error is 1.9%, 
which is of great practical significance in determining the 
size of the yarn replacement force at different layers and 
different positions of the preform.

5 � Z‑yarn Strength Factor Analysis
The shear resistance of carbon fiber is poor, and it is easy 
to cause wear of carbon fiber in the process of implanting 
the preform. This shows that the fiber surface is rough 
or even broken, which will lead to an interruption in 

the continuous implantation of carbon fiber, reduce the 
forming efficiency of the preform, decrease the volume 
fraction of Z-yarn in the preform, and greatly affect the 
overall mechanical properties of the preform.

Combining these results with the prediction model of 
the yarn replacement force distribution derived from the 
previous section, we selected the 150 layers preform as 
the experimental object. Also, six positions with replace-
ment forces of 1.75, 2, 2.5, 3, 3.5 and 4 N were selected 
to replace the guide sleeves 5, 10, 15, 20, and 25 times 
with two 6 K carbon fiber bundles from Toray, Japan, as 
the Z-yarn. The replacement speed was 5 mm/s, and the 
Z-yarn movement distance was 75 mm. The Z-yarn was 
glued to a reinforcement piece of 50  mm in length and 
10 mm in width, and the length of fiber between the rein-
forcement pieces was 150  mm. The maximum breaking 
strength of the Z-yarn under different replacement times 
was tested using a universal tensile testing machine with 
a loading speed of 2 mm/min, as shown in Figure 15.

The relationship between the number of different fiber 
replacements and fiber breaking strength of the Z-yarn in 
the same area of the preform was obtained, as shown in 
Figure  16(a); for the same number of replacements, the 
relationship between different position areas and fiber 
breaking strength was obtained, as shown in Figure 16(b).

From Figure  16(a), it can be seen that for the same 
preform area, as the number of yarn replacements of 
the guide sleeves increases, the breaking strength of the 
fiber becomes smaller. From Figure 16(b), it can be seen 
that the greater the frictional force on the fiber in the Z 
direction, the more obvious the decrease in the break-
ing strength of the fibers as the number of replacements 
increases. In the area where the friction force was 4 N, 
the replacement force of the Z-yarn implanted 25 times 
decreased substantially. The surface morphology of the 

Figure 14  Fitting of preform with different layers and different 
positions Figure 15  Z-yarn tensile strength test
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Z-yarn with different implantation times is shown in Fig-
ure  17. The hairiness area of the upper and lower parts 
of the dimensional bundle were selected, and the average 
grayness value of the area was calculated; the greater the 
amount of hairiness, the greater the grayness value, and 
the more severe the fiber wear [31].

From Figure 17(a), it can be seen that the surface of the 
carbon fiber bundle is relatively smooth when the num-
ber of implantations is 5; with an increase in the num-
ber of implantations, as shown in Figures 17(b)–(e), the 
number of hairiness produced on carbon fiber bundle 
surface also increases. This is because the more the num-
ber of implantations, the more frequent the mutual fric-
tion between the fibers inside the Z-yarn bundle and the 
X and Y-directional fibers in the preform, which causes 
a certain amount of hairiness on the surface of the car-
bon fiber bundle. Table  2 shows the statistics on gray-
scale values of hairiness in samples with different Z-yarn 
implantations. It can be seen that the amount of hairiness 
in sample I4 is the highest, followed by that of sample 
I3, and the amount of hairiness in sample I0 is the least; 
from the perspective of friction, the more hairiness, the 
more damage the carbon fiber bundle suffers, and this is 
consistent with the variation in tensile properties.

Therefore, to avoid yarn breakage in the preform, 
which affects the strength of the Z-yarn, it is necessary to 
replace the guide sleeve 20–25 times in the corner posi-
tion of the preform, that is, when the Z-yarn is implanted 
in the preform at a distance of 1500–1875  mm, the 
Z-yarn needs to be replaced in time.

6 � Conclusions

(1)	 The designed tensile force measuring device and 
sensors were used to accurately measure the size of 
the replacement force at different positions for 50, 
100, 150, 200 and 250 layers of carbon fiber pre-
forms, revealing that the size of the replacement 
force of the carbon fiber preforms decreases from 
the corner, edge, secondary edge and central part in 
order.

(2)	 The number of preform layers and the number of 
guide sleeve rows and columns were used as input 
layers, and the replacement force was used as the 
output layer. Different algorithms were compared, 

Figure 16  Fiber fracture strength as a function of preform position 
and friction number

Figure 17  Z-yarn surface hairiness at different implantation times

Table 2  Statistics of hairy gray value of Z-yarn samples under 
different implantation times

Serial number I0 I1 I2 I3 I4

Number of implantation 5 10 15 20 25

Grayscale value 96.203 97.510 98.424 99.543 101.862
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the optimal genetic algorithm was selected for the 
150-layer preform yarn force data, and a model was 
developed to predict the distribution of replace-
ment forces at different positions for preforms with 
different number of layers. The predicted value was 
within 1.9% of the actual error, effectively predict-
ing the distribution of preform friction for different 
thicknesses and number of layers.

(3)	 As the number of guide sleeve replacements 
increases in the Z-yarn, the tensile fracture strength 
of carbon fiber bundles decreases, and the amount 
of hair and feathers gradually increases, indicating 
a gradual increase in wear and tear. At the mid-
dle and the sub-edge positions of the preform, the 
Z-yarn tensile breaking strength loss is not sig-
nificantly affected by the number of guide sleeve 
replacements. At the edge of the preform, the loss 
of Z-yarn tensile strength at break is influenced by 
the number of guide sleeve replacements with a 
significant linear decreasing trend. At the corner 
position of the preform, there is a significant non-
linear decrease in fiber tensile breaking strength. To 
avoid fiber breakage during implantation, when the 
Z-yarn is replaced in the corner 20–25 times, the 
Z-yarn needs to be replaced in time.
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