
Ying et al. 
Chinese Journal of Mechanical Engineering           (2022) 35:61  
https://doi.org/10.1186/s10033-022-00744-x

ORIGINAL ARTICLE

Bone Milling: On Monitoring Cutting State 
and Force Using Sound Signals
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Abstract 

Efficient monitoring of bone milling conditions in orthopedic and neurosurgical surgery can prevent tissue, bone, and 
tool damage, and reduce surgery time. Current researches are mainly focused on recognizing the cutting state using 
force signal. However, the force signal during the milling process is difficult and expensive to acquire. In this study, a 
neural network-based method is proposed to recognize the cutting state and force during the bone milling process 
using sound signals. Numerical modeling of the cutting force is performed to capture the relationship between 
the cutting force and the depth of cut in the bone milling process. The force model is used to calibrate the training 
data to improve the recognition accuracy. Wavelet package transform is used for signal processing to understand 
bone-cutting phenomena using sound signals. The proposed system succeeds to monitor the bone milling process 
to reduce the surgical risk. Experiments on standard bone specimens and vertebrae also indicate that the proposed 
approach has considerable potential for use in computer-assisted and robot-assisted bone-cutting systems used in 
various types of surgery.
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1  Introduction
Bone milling is an indispensable and technically demand-
ing procedure in many orthopedic and neurosurgical 
operations. The bone as the “workpiece” in milling is 
mainly composed of two structures: cortical and cancel-
lous bone layers. Surgeons tend to choose different cut-
ting strategies in different bone layers because of the 
significantly different mechanical properties required to 
improve the efficiency of bone milling and thus reduce 
the burden on the patient. Moreover, surgeons must 
avoid nerve or tissue damage, which seriously affects 
postoperative recovery [1, 2]. For instance, lumbar lami-
nectomy, which is known as one of the most challeng-
ing surgeries, requires removal of a portion of a vertebra 
called the lamina. To adjust the machining parameters 
and avoid damage on spinal cord during bone milling, 

surgeons must determine the cutting state, i.e., the bone 
structure being cutting and extent of penetration of the 
cutting tool. Automatic detection and control in bone 
milling are essential to improving the safety of surgery 
and reducing the physical and mental fatigue of the sur-
geon [3, 4].

Adaptive control and monitoring of bone milling have 
attracted considerable interest in the development of 
computer- and robot-assisted technologies [5–7]. The 
purpose of monitoring the milling condition in surgery 
is to prevent tissue/bone/tool damage from the large cut-
ting force and to optimize the machining parameters in 
different cutting states to reduce the surgery time [8]. 
One of the challenges in using an adaptive control or tool 
monitoring system is the accurate and real-time repre-
sentation of the variation in machining variables, such as 
cutting force and state. Most current surgical computer-
assisted and robot-assisted systems utilize computed 
tomography data-based image navigation systems and 
force sensors to track the real-time cutting state and force 
[7, 9, 10]. However, the two/three-dimensional marker 
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array needs to be manually fixed onto the bone based 
on the boney land marker for registration during sur-
gery, which could introduce a random error of navigation 
that is not sufficient compared to the degree of precision 
required (< 1 mm) [11]. Additionally, the navigation and 
force sensor systems would significantly increase the cost 
and complexity of the surgical system.

Finding an effective and convenient monitoring method 
with a low cost is important for improving the perfor-
mance and popularization of bone milling. Experienced 
surgeons can judge the cutting state of bone milling, 
optimize the machining parameters through sound sig-
nals, and perceive the cutting force through touch. Liao 
et al. [12] analyzed the difference in sound signals at vari-
ous penetration depths and chip formations. They found 
that sound signals have considerable potential for use in 
monitoring bone milling. For the past few years, the rapid 
development in artificial neural network (ANN) provides a 
promising solution to the monitoring problems in machin-
ing of biological tissues [7, 13–15]. Kais et al. [10] devel-
oped ANN models to estimate the mean values of force 
and temperature in bone milling, which can be used as 
nolinear constraint optimization functions. Dai et al. [16] 
integrated a sound signal with a single-layer neural net-
work to determine the cutting state of a bone and found 
a predicted accuracy higher than 85%. Guan et  al. [17] 
applied a sound signal to distinguish the cutting layer dur-
ing bone drilling, and the recognition rate reached 84.2%. 
However, in previous studies, the prediction accuracy did 
not meet the high requirements of surgery. For bone mill-
ing, the axial depth of cut (ADOC) is an unknown quan-
tity because of the complex structure of natural bone and 
is difficult to capture experimentally and in practice. An 
accurate label of the ADOC in the training dataset is an 
essential requirement in machine learning algorithms for 
bone milling monitoring. In addition, most previous stud-
ies only focused on the cutting state, but the cutting force 
is also an essential parameter in the adaptive control of 
bone milling.

In this study, we developed a cutting state and force 
monitoring system for laminectomy surgery using a 
sound signal with a neural network during vertebral lam-
ina milling. A mechanistic model of the cortical and can-
cellous bone milling process was developed and verified 
experimentally and used to auto-label the training data 
in vertebra milling to improve the prediction accuracy of 
the monitoring system.

2 � Bone Structure Analysis and Cutting Challenges 
in Vertebra Lamina Milling

The schematics of lumbar laminectomy and the anatomi-
cal structure of the vertebral lamina are shown in Fig-
ure 1. The vertebral lamina presents a sandwich structure 

and is mainly composed of two different types of bone 
tissue: cortical and cancellous tissue. The cortical bone 
covers the surface of the vertebral plate and has a dense 
microscopic structure, whereas the cancellous bone 
is located inside the vertebral plate and is composed of 
a network-like tissue with porous spaces. This special 
bone structure makes the vertebral lamina capable of 
sustaining elevated mechanical loads with light weight. 
As shown in Figure 1b, the cross-section of the vertebral 
plate is irregular, with a slightly thicker side (3–5 mm), 
which may cause cutting challenges in vertebral lamina 
milling [18–20].

The strategy of vertebral lamina removal in laminec-
tomy is to mill the thicker part (basically all the upper 
layer of cortical bone and most part of cancellous bone) 
first and then mill the residual part to a low thickness 
(0–1.2 mm), which makes the residual part quite frag-
ile. Therefore, the residual depth of the vertebral lamina 
should be precisely monitored to prevent penetration of 
the milling tool and damage to the nerve in the spinal 
cord. The adaptive control of bone milling in laminec-
tomy is dependent on recognition of the tool penetra-
tion and cutting force. The problem can be divided into 
two parts: judgement of the cutting state and prediction 
of the ADOC for inferring the cutting force. The cutting 
state in the bone milling of the lamina can be divided into 
five states, as shown in Figure 1c.

Cutting state (1): The milling tool starts to cut the 
bone, and the top surface of the lamina is the cortical 
bone. This state is relatively safe because the lamina is 
located far from the bottom surface. However, this state 
also increases the cutting force and temperature, which 

Figure 1  Lumbar laminectomy a schematic of lumbar laminectomy, 
b cross-section of the vertebral plate, and c five cutting states of bone 
milling in laminectomy. Cutting state (1): upper cortical bone, cutting 
state (2): upper cortical and cancellous bone, cutting state (3): totally 
cancellous bone, cutting state (4): lower cortical and cancellous bone, 
and cutting state (5): tool already penetrate the lower cortical bone
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increases the risk of bone damage and tool breakage. 
Optimized machining parameters are preferred in this 
cutting state during the adaptive control of bone mill-
ing. Cutting state (2): The milling tool starts cutting the 
cancellous bone. The cutting force tends to reduce owing 
to the relatively low material strength of cancellous bone. 
Cutting state (3): All cutting bones are cancellous. A high 
feeding speed, ADOC, and low rotation speed are pre-
ferred for balancing cutting efficiency, force, and tem-
perature in bone milling. When cutting state (4) occurs, 
milling is stopped, which means that the milling tool has 
reached the last layer. Because the bottom layer of the 
cortical bone varies from 3 to 10 µm, and the radius of 
the milling tool varies from 1.5 to 3.0 mm, penetrating 
the bottom surface (state 5) is easy when the cutting state 
reaches state (4).

After determining the cutting state, the monitoring 
approach predicts the ADOC of each layer (cortical bone, 
cancellous bone, and idle). Based on the results of the 
predicted ADOC and inferred cutting force, the produc-
tivity and safety of bone milling in laminectomy can be 
improved by integrating adaptive control algorithms [21].

3 � Materials and Methods
In this study, we propose a neural network model to 
classify the cutting state and predict the ADOC of each 
layer during bone milling. Although it is difficult to esti-
mate the ADOC by experimental video during data col-
lection, ensuring the veracity of the training data and 
accuracy of the recognition model is critical. Moreover, 
because the vertebral lamina has an irregular shape and 
structure, maintaining the ADOC static in an actual bone 
milling experiment is difficult. First, a credible ADOC 
value should be estimated. Building a numerical rela-
tionship between the ADOC and force appears to be a 
feasible approach to accurately measure the force signal 
in the milling process. An overview of the workflow of 
this study is shown in Figure 2. The ANNs were trained 
using a database established using the sound signal col-
lected during bone milling and the inferred cutting state. 
To improve the accuracy of state recognition, the corre-
sponding cutting state and depth were labeled with verifi-
cation of the milling force model.

Milling force modeling was performed to capture the 
relationship between the ADOC and the cutting state 
against the cutting force in the bone milling process. 
With an accurate numerical relationship, the cutting state 
and ADOC could be derived correctly using the meas-
ured cutting force, which was used to label the database. 
Additionally, the effect of cutting parameters (ADOC, 
rotation speed, and feed rate) on the milling force was 
investigated to provide experimental support for opera-
tion condition optimization.

3.1 � Milling Force Model
A mechanistic force model is improved to estimate the 
cutting force in ball-end bone milling based on the early 
work from Lee and Lamikiz [22, 23]. This work improved 
the mechanistic force model with respect to the mill bit 
geometry and milling process parameters firstly. Then, 
the calibration experiments are conducted to derive the 
coefficients of force model. Finally, experiments with a 
wide range of milling conditions are used to validate the 
calculated results of cutting force.

The improved force model estimates the cutting force 
in two steps. At first, the position of the cutting tips of 
ball-end mill bit (Figure 3a) has been located with the dis-
crete geometry modeling. Secondly, the cutting force is 
calculated by integrating on contacting area with a coor-
dinate transformation. There are two part of length need 
to be calculated: the thickness of chip cut by the blade 
and the width of discrete element of the cutting edge. 
However, the ball-end milling tool is not like the normal 
end mill bit. It needs re-modeling with a transformed 
coordinate of the cutting tip on the flute. The differential 
force on the element of cutting edge can be calculated. 
At last, the cutting force on the normal coordinate can be 
acquired by integration.

3.1.1 � Geometrical Modeling of the Ball‑end Cutting Tip
Given the radius R0 of ball-end milling tool, the position-
ing angle of the element � can be expressed as a function 
of the spindle rotation angle, corresponding to the posi-
tion of the cutting-edge element in the tool as shown in 
Figure 3b:

where θ is the spindle rotation angle, ϕi is the angle 
gap between the i cutting edge element and the tool 
point, ϕ0 is the total lag angle. The lag angle is a constant 

(1)�ij(θ , z) = θ +
(

j − 1
)

φp − ϕi(zi),

Figure 2  Workflow of the monitoring algorithm using sound signals
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for each tool and depends on the helix angle i0 , and the 
sphere radius R0 ; ϕi is the element lag angle, which varies 
between zero and ϕ0 . The pitch angle φp can be expressed 
as:

where Nf  is number of flutes on the ball-end milling 
tool.

The point on the surface of sphere in the normal coor-
dinate can be expressed as:

Replacing the radius of circle at z coordinate of zi:

As shown in Figure 3c, the z coordinate of the cutting-
edge elements can be expressed by the cylindrical helix 
with radius of ball-end milling tool, corresponding to the 
nominal helix angle:

(2)φp =
2π

Nf
,

(3)x2i + y2i + (R0 − zi)
2 = R0.

(4)x2i + y2i = Ri(zi)
2.

Replacing Eq. (5) into Eq. (4):

Thus, the coordinates of the cutting-edge elements on x 
and y axis from the z coordinate and the spindle rotation 
angle θ , can be obtained by Eq. (6). The position of each 
flute in the global coordinate:

The length of discrete element can be calculated and so 
as the differential form, representing the discrete element 
position as:

(5)zi =
R0ϕi

tan(ϕ0)
.

(6)Ri(zi) = R0

√

1−
(

zi

R0

− 1

)2

.

(7)rij(�) = Ri(ϕi)[sin(�)i + cos(�)j]+
R0ϕi

tan(ϕ0)
k .

(8)

dSij = �drij� =

√

[

R
′
i(ϕi)

]2 + R2
i (ϕi)+

R2
0

tan2(ϕ0)
dϕ,

Figure 3  Geometry and mechanistic analysis of ball-end mill bit: a image of a surgical ball-end mill bit, b Geometric analysis of chip element in tool 
coordinate, c bottom view of chip element, and d side view of chip element
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where R′
(ϕi) is the derivative of R(ϕi).

The uncut chip thickness as shown in Figure 3d is cal-
culated with the angular position:

where fz is the feed per tooth; κ is the axial position 
angle.

On the other hand, the chip thickness of discrete 
element, as shown in Figure  4b, can be calculated as 
following:

3.1.2 � Modeling of the Cutting Force
Based on the geometry modeling, the differential force 
on the flutes then can be calculated. The cutting force 
on normal coordinate can be acquired by integration of 
a superposition of all the forces acting on infinitesimal 

(9)tn(� , θ , κ) = fz • sin(�) • sin(κ),

(10)db =
dz

sin(κ)
.

segments [24, 25]. The resultant force can be divided to 
two parts: the shear force required to remove the chip, 
and the work-tool edge force. Therefore, the total force 
acting on the cutter can be expressed as follow:

where dFt , dFr , dFa ( N  ) are the tangential, radial and 
axial components of cutting force, Ktc , Krc , Kac : ( N/mm2 ) 
are the shear specific coefficients, Kte , Kre , Kae ( N/mm ) 
are the edge specific coefficients using to adjust the 
ploughing force, dS ( mm ) is the length of each discrete 
elements of the cutting edge, tn ( mm ) is the undeformed 
chip thickness, and db ( mm ) is the chip width in each 
cutting edge discrete element.

The tangential, radial and binormal cutting forces of 
each cutting-edge element used transformed in a unified 
coordinate system, the components dFx , dFy and dFz as 
shown in following:

(11)





dFt
dFr
dFa



 =





Kte Ktctn(� , θ , κ)

Kre Krctn(� , θ , κ)

Kae Kactn(� , θ , κ)





�

dS
db

�

,

(12)





dFx
dFy
dFz



 =





−sin(κ)sin(�) −cos(�) −cos(κ)sin(�)

−sin(κ)cos(�) sin(�) −cos(κ)cos(�)

cos(κ) 0 sin(κ)



 •





dFr
dFt
dFa



.

Figure 4  Experimental setup for bone milling
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The resulting force can be obtained with a numeri-
cal integration along the cutting edge engaged in the 
machining process. The cutting force acting on the j th 
cutting edge could be calculated as:

where z1 and z2 are the starting and ending z coordi-
nate, respectively.

The milling force components Fx , Fy and Fz can be cal-
culated on each cutting edge of the tool. The resulting 
force is calculated by adding the force of each of flute:

where F  is the instantaneous force acting on the ball-
end milling cutter.

Moreover, the integration range of every flute also 
depends on the spindle rotation angle θ as shown in 
Table 1. With the formulation of cutting force, we could 
estimate the cutting force along three axes with known 
ADOC and cutting tool parameters.

3.2 � Modeling of the Cutting Force
In the bone-cutting process, the sound signal originates 
from bone structure breakage and bone chip extrusion. 
Considering that the sound signal has bone cutting infor-
mation, we applied this signal to monitor the bone milling 
process and thus provide an adaptive control method for 
orthopaedic surgical robots to enhance safety. The sound 
generated during bone milling contains a large amount of 
information about the condition of the cutting state and 
contacting surface in the time and frequency domains. 
In this study, the wavelet packet transform (WPT) was 
chosen as the time frequency analysis method for sound 
signals owing to its high fixed-frequency multiresolution.

Wavelet transform is a mathematical method for solv-
ing the decomposition of nonstationary signals using 

(13)











Fxj =
� z2
z1

�

−sin(κ)sin(�) • dFrj − cos(�) • dFtj − cos(κ)sin(�) • dFaj
�

dz,

Fyj =
� z2
z1

�

−sin(κ)cos(�) • dFrj + sin(�) • dFtj − cos(κ)cos(�) • dFaj
�

dz,

Fzj =
� z2
z1

�

cos(κ) • dFrj + sin(κ) • dFaj
�

dz,

(14)F =
Nf
∑

j=1

Fj ,

a set of orthogonal rapidly decaying wavelet function 
bases for signal fitting [26, 27]. The positions of the dif-
ferent frequency signal components in the time domain 
are obtained through scale and translation variates of 

the wavelet function base, which means that the signal is 
decomposed into many frequency sub-bands and every 
sub-band has a series of wavelet packet coefficients. The 
WPT is performed using a function that decomposes the 
band in the high-frequency domain as follow:

where wavelet ψ u−t
a  is derived by dilating and translat-

ing the wavelet basis ψ(t) , and 1√
a
 is a normalization fac-

tor to maintain energy conservation. The WPT with a 
moving window was performed to calculate the spectral 
features, which were used to study the frequency domain 
in sound processing.

To estimate the cutting state and ADOC in bone mill-
ing, the sound of the vertebral lamina milling was col-
lected to construct the database. The processed data and 
labels (cutting state and ADOC) validated by the force 
model were then conveyed to an ANN to train the model. 
In this study, the Daubechies-5 wavelet was used to per-
form signal decomposition and 64 sets of wavelet packet 
coefficients on every frequency band were stacked as the 
input matrix of the ANN. The ANN was chosen to clas-
sify the milling state with extracted features from the 
milling sound, which was successfully applied in condi-
tion monitoring of manufacturing, pattern recognition, 
and computer vision [28]. Using the ANN, the intrinsic 
information contained in the milling sound signals can 
be clarified and the important frequency band can be 
screened out. The datasets in the database were divided 
into training (80%) and testing (20%) datasets. In our 
case, the ANN was trained using the training dataset.

3.3 � Experimental Setup

3.3.1 � Experiment for Force Model Calibration
This experiment was conducted to calibrate the cutting 
coefficients in the improved force model and observe 
the effects of cutting conditions on cortical and cancel-
lous bone milling. The experiments were conducted 
on an OKK VM4-2 machining center, as shown in Fig-
ure  4. The cutting force was measured using a Kistler 

(15)WTx(t, a) =
1
√
a

∫

x(u)ψ
u− t

a
du,

Table 1  Integration limit in one pitch

θ Integration 
limit

Case
1

Case
2

Case
3

Case
4

0 < θ < z0tan

(ϕ0)/R0

z1 0 0 R0cot(ϕ0)θ 0

z2 R0cot(ϕ0)θ z0 z0 0

z0tan(ϕ0)/R0
< θ < ϕ0

z1 0 0 0 0

z1 z0 z0 0 0
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Dynamometer 9272 (Kistler Inc., Switzerland), with a 
sampling frequency of 20 kHz. Cortical and cancellous 
bone samples from a fresh femur of a porcine were used 
as the workpiece in the force model calibration, which 
has biomechanical properties similar to those of human 
bone [29], as shown in Figure 4 (Step I-1, Step I-2). The 
bone sample was placed vertically to the rotating spindle 
to ensure that the ADOC was stable and unchanged dur-
ing the entire milling process. The detailed experimental 
conditions are presented in Table 2.

The sound of milling cortical and cancellous bone was 
collected to understand the cutting characteristics of dif-
ferent bone milling techniques. In addition, the depth of 
cut, rotation speed, and feed rate were considered, and 
appropriate milling values were chosen in the construc-
tion of the database.

3.3.2 � Experiment for Monitoring Test of Vertebra Lamina 
Milling

The experimental setup used to validate the monitoring 
method is shown in Figure  4 (Step II). The milling tool 
and operational environment were the same as those in 
the previous experiments on the flat bone specimen. The 
cutting force and sound signals were collected simultane-
ously. Fresh porcine vertebrae were chosen for use as the 
bone specimen in our study. In the continuous experi-
mental procedures of vertebra milling, the ADOCs were 
controlled as 0.5 and 1.0 mm to bring milling conditions 
closer to the real laminectomy. The sound signals were 
measured by a wired commercial microphone (RS Inc. 
Japan) with a sampling rate of 48000 Hz in all experi-
ments and transported to PC for further analysis. Each 
of the sound data sample was processed with differential 
amplification, bandwidth limitation (450 to 24000 Hz) 
and WPT to extract the amplitude information of sound 
signals. The detailed experimental conditions are listed in 
Table 3

4 � Results and Discussion

4.1 � Force Model Calibration and Coefficient Calculation
The milling forces on the cortical and cancellous bones 
under the same milling conditions are shown in Figure 5. 
With the local features of the force and the procedures 
we set in the experiments, the entire milling process can 
be separated into four phases: penetration, stable cut-
ting, evacuation, and non-cutting phases. A significantly 

Table 2  Parameters of the experiment for force model 
calibration

Items Parameters

Test bone Cortical and cancel-
lous bone (Porcine 
femur)

Rotation speed(r/min) 1000, 3000, 5000

Tool diameter(mm) 5

Tool flute number 12

Tool helix angle(°) 30

Feed rate 1.5, 2, 2.5

ADOC(mm) 0.25, 0.5, 0.75, 1.0, 1.25

Table 3  Parameters of vertebra milling experiment.

Items Parameters

Test bone Porcine vertebra

Rotation speed(r/min) 1000, 3000, 5000

Feed rate(mm/s) 1.5, 2, 2.5

ADOC(mm) 0.5, 1.0

Figure 5  Measured milling forces in a corticaland and b cancellous 
bone milling (Cutting speed = 1000 r/min, feed rate = 2.0 mm/s, and 
ADOC = 0.5 mm)
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lower cutting force can be observed in cancellous bone 
milling than in cortical bone milling. A sixth-order low-
pass Butterworth filter was selected to smooth the curve 
of the cutting force with a 200 Hz cut-off frequency. The 
calibrating value of the cutting force under specific pro-
cessing conditions was calculated using the average value 
of the filtered cutting force in the stable cutting phase 
and optimized by the particle swarm optimization algo-
rithm [30]. Three sets of experimental data (depth = 0.5, 
0.75, 1.25 mm) were used to optimize the coefficients, 
and the remaining two sets (depth = 0.25, 1.0 mm) were 
used to evaluate the accuracy of the force model. After 
100000 iterations, the fitness function reached a score of 
0.1 and the results of the optimized coefficient are listed 
in Table 4.

Once the coefficients of the force model are obtained, 
the cutting force of bone milling can be predicted under 
various ADOC conditions. Figure  6 presents example 
results of the measured and calculated forces on the cor-
tical and cancellous bone, respectively. A similar varia-
tion tendency was found between the experimental data 
and predicted results. Compared with the results of pre-
dicted and experimental cutting force in the depths of 
cut of 0.25 mm and 1.0 mm, the developed force model 
predicted the cutting force with a maximum deviation 
of 6.38% under unknown milling conditions. The force 
model also predicted an abrupt decrease in the set of 
0.25 mm. Because the cutting performance was poor at 
the top of the ball-end mill bit, the material removal rate 
could not effectively increase with increasing ADOC.

Because the force model could predict the milling force 
under a specific milling condition, the effect of a wide 
range of milling parameters on the cortical bone (pre-
dominant in cutting force components) was investigated 
to find an optimal condition for vertebral lamina mill-
ing, as shown in Figure 7. Based on the results, a milling 
condition (cutting speed = 3000 r/min and feed rate=2.0 
mm/s) was adopted for the subsequent experiments.

Because the force model can fit the actual cutting force 
components along the three axes, it can be used to auto-
label the cutting state and ADOC in complex bone mill-
ing. The force corresponding to specific ADOC and the 

Table 4  Coefficient of the force model

Bone layer Edge coefficients Shear coefficients

Cortical bone Kte 3.8269 Ktc 5973.4+1620.5z

Kre −5.2733 Krc −28312.5-1693.1z

Kae 12.9675 Kac −41296.3+12595.1z

Cancellous bone Kte 0.3692 Ktc 370.8-532.3z

Kre −0.5615 Krc −105.8-591.4z

Kae 0.9238 Kac −2941.1+4088.2z

Figure 6  Comparison of the averaged experimental and predicted 
milling forces with various ADOCs (Cutting speed = 3000 r/min and 
feed rate = 2.0 mm/s)

Figure 7  Calculated milling forces under various milling conditions



Page 9 of 12Ying et al. Chinese Journal of Mechanical Engineering           (2022) 35:61 	

ratio of cortical and cancellous bone can be calculated 
based on the proposed milling force model. As the mill-
ing force of cortical bone is much larger than cancellous 
bone with same ADOC, the relationship between the 
milling force and cortical-to-cancellous ratio is mono-
tone increasing, avoiding yielding various possibilities 
with a given cortical-to-cancellous ratio. Moreover, the 
model can be used to monitor the cutting force when 
milling irregular surfaces under certain milling condi-
tions, instead of using a force sensor.

4.2 � Cutting State and ADOC Monitoring Using Sound 
Signal

An auto-label result of the cutting state and ADOC in 
vertebral lamina milling is shown in Figure 8. The meas-
ured force was used to validate the proposed ADOC 
using the milling force model. In sound signal processing, 

the data flow was divided into 0.1 s packages. Similarly, 
the cutting force was also averaged with a time length of 
0.1 s to calculate the ADOC, as shown in Figure 8b.

The typical milling region and corresponding sound 
samples in the milling of the vertebral lamina (length of 
10 s) are shown in Figure 9a and b, respectively. The top-
layer milling process was chosen to show the differences 
between various cutting states and ADOCs on the signal 
and processed WPT coefficients. The actual values of the 
cutting state and ADOC, as shown in Figures 9d and 8c, 
represent the three cutting states and the changes in the 
ADOC with time.

The processed WPT temporal spectrum is shown in 
Figure  9c. The differences in cutting states are evident 
and are expressed in terms of the magnitude of spec-
tral density and wavelet energy. The wavelet energy was 
larger when cutting cancellous bone than cortical bone 
in more WPT high-frequency sub-bands because can-
cellous bone is a spongy bone tissue with dense porous 
spaces. The WPT energy ratios of all the sub-bands were 
chosen as features of the ANN because of their excellent 
ability to process redundant information. Additionally, 

Figure 8  Auto-label process of the vertebra milling: a Milling process 
and measured milling force, b Calculated ADOC of each layer based 
on force model (Cutting speed = 3000 r/min, feed rate = 2.0 mm/s, 
and ADOC = 1 mm)

Figure 9  Example of sound signal processing and classification 
result: (Cutting speed = 3000 r/min, feed rate = 2.0 mm/s, and ADOC 
= 1 mm) a The cross section of vertebra after milling and the black 
dotted box represents the milling area in this example, b The sound 
signals collected in the milling procedure, c The temporal spectrum 
of sound signals after WPT, d The results of cutting state classified by 
ANN. The bottom colors represent the actual cutting state (Yellow—
Cutting state 1; Blue—Cutting state 2; Green—Cutting state 3)
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the features in the wavelet domain were used to consider 
the other sound features to effectively regress the ADOC. 
The cutting state and ADOC results are shown in Fig-
ures  9d and 10. Seven classification errors occurred in 
one milling process (length of 100 time packages) during 
the unsteady and changing phases of the cutting state.

After estimating the cutting state, the ANN can predict 
the possible depth of each bone layer based on the results 
of the cutting state. The predicted ADOCs are mostly 
on par with the supposed ADOCs labeled by the force 
model and the measured milling force signals. The ANN 
performed well when the bone milling tool made contact 
with cancellous bone. One disadvantage of this approach 
is that the ANN cannot correctly predict the ADOC if a 
classification mistake occurs. One disadvantage of this 
approach is that the ANN could not predict ADOC cor-
rectly if a classification mistake happened.

To examine the performance of milling force moni-
toring, the calculated force values based on the pre-
dicted ADOC and the actual milling force measured in 
the experiment were compared, as shown in Figure  11. 
The milling force on the x-axis exhibited a better fitting 
relationship because the labeled ADOC was mainly cali-
brated by the measured force.

The confusion matrix of the prediction result used to 
evaluate the performance of the trained ANN model 
is shown in Figure  12. This test set contained 750 data 
packages, of which 723 packages were tested correctly. 
The classification mistakes occurred in distinguishing 
between cutting state 2 and 4, which are both related to 
cortical and cancellous bone. This mistake is resulted 

from that sound signal features of two cutting states are 
highly correlated in the frequency domains. Erroneously 
identifying a true cutting state (4) as a mistake is perilous, 
as it indicates that a dangerous penetration had occurred 
and that the system had not noticed it. The high accuracy 
resulted from the accurate classification of cancellous 
bone milling, whose WPT features were distinct from 
those being recognized.

The accuracy of the cross-validation of ADOC predic-
tion is shown in Figure  13. As the data of all sets were 
collected from different vertebrae, it was concluded that 
our model has an excellent generalization of bone prop-
erties. This also indicates the possible clinical application 
of the model to actual surgery where patient bone infor-
mation does not have to be collected in advance. The 
accuracy of predicting the ADOC of cancellous bone is 
higher than that of cortical bone, which results from the 

Figure 10  Sound signal processing and classification result of 
vertebra lamina milling (Ca bone: cancellous bone; Co bone: cortical 
bone; Cutting speed = 3000 r/min, feed rate = 2.0 mm/s, and ADOC 
= 1 mm)

Figure 11  Comparison between predicted and measured forces of 
vertebra lamina milling (Cutting speed = 3000 r/min, feed rate = 2.0 
mm/s, and ADOC = 1 mm)

Figure 12  Confusion matrix to classify cutting states
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depth of most cutting states (3) being stable with consid-
erably more training data.

Based on the experimental results, a strategy for 
detecting bone milling penetration was proposed. It is 
safe to detect cutting states (1) and (2). When state (3) 
is detected, the alarm system is activated. Following the 
prediction of cutting state (4) and depth of cut, bone 
milling is supposed to cease when the depth of the cor-
tical bone is more than 0.3 mm. Although the residual 
thickness of the lamina is more than 0.7 mm, the surgeon 
can easily remove it. This proves that detection of tool 
penetration using sound signal in real robot-assisted sur-
gical environments can be employed.

Consequently, the mathmatical model-based method 
proposed here follows the steps can be employed to mon-
itor the bone milling procedure: (1) Calculate the mill-
ing forces of all axes to get the representation of milling 
procedure; (2) Extract the ADOC of different bone lay-
ers from each cutting states corresponding to different 
milling forces; (3) Decompose the sound signal by using 
WPT and predict the milling force and cutting state 
using ANN.

The limitation of this study is the proposed model can-
not be adapted to deal with variant feed orientation at a 
tilted angle, which is a common scenario in hand-actu-
ated surgery [4]. Developing a milling force model at 
a tilted angle is a challenging research issue for further 
work.

5 � Conclusions
In this study, a method for monitoring the cutting state 
and force was proposed to provide a safe surgical envi-
ronment for bone milling. The proposed monitoring 
algorithm is based on an ANN and a sound signal. To 

establish a well-labeled database, an improved force 
model was developed to predict the cutting force based 
on ADOC in ball-end bone milling. The calculated 
milling forces were in good agreement with both the 
magnitude of the experimental results and the vari-
ance tendency. In the process of collecting bone milling 
sounds, the features of the sound signal were extracted 
from the temporal, spectral, and wavelet domains. The 
trained model could detect the cutting state and penetra-
tion depth of bone milling. The results revealed a 3.6% 
error of state recognition and a 7%–13% error of depth 
prediction in the bone milling scenarios.
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