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Abstract 

Initial residual stress is the main reason causing machining deformation of the workpiece, which has been deemed 
as one of the most important aspects of machining quality issues. The inference of the distribution of initial residual 
stress inside the blank has significant meaning for machining deformation control. Due to the principle error of 
existing residual stress detection methods, there are still challenges in practical applications. Aiming at the detection 
problem of the initial residual stress field, an initial residual stress inference method by incorporating monitoring data 
and mechanism model is proposed in this paper. Monitoring data during machining process is used to represent the 
macroscopic characterization of the unbalanced residual stress, and the finite element numerical model is used as the 
mechanism model so as to solve the problem that the analytic mechanism model is difficult to establish; the policy 
gradient approach is introduced to solve the gradient descent problem of the combination of learning model and 
mechanism model. Finally, the initial residual stress field is obtained through iterative calculation based on the fusing 
method of monitoring data and mechanism model. Verification results show that the proposed inference method of 
initial residual stress field can accurately and effectively reflect the machining deformation in the actual machining 
process.
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1  Introduction
Initial residual stress is inevitable inside the workpiece 
due to thermal gradient, force load and phase transfor-
mation during the manufacturing process of blank, and 
the existence of initial residual stress can seriously affect 
the machining quality of the workpiece, which is espe-
cially critical in the field of aviation manufacturing. Take 
the high-strength aluminum alloy pre-stretched plate 
used in aircraft structural parts as an example, the blanks 
generally undergo processes, such as casting, quench-
ing, hot rolling, forging, pre-stretching, and aging. Dur-
ing the manufacturing process, the blank will experience 
an uneven temperature field, and uneven elastoplastic 

deformation will occur. Therefore, residual stress will be 
generated inside the blank. The initial residual stress of 
the blank with initial residual stress will be broken due 
to the removal of the material in the machining process. 
Workpiece deformation will happen so as to achieve a 
new equilibrium state. The problem of machining defor-
mation is particularly serious in the field of aircraft struc-
tural parts. Aircraft structural parts are characterized by 
large size, high material removal rate (up to 95% [1, 2]) 
and thin wall, which will lead to large machining defor-
mation of the parts, and serious deformation will directly 
lead to part scrap [3, 4]. Relevant studies show that one 
of the most important reasons for machining deforma-
tion of structural parts is the initial residual stress inside 
the blank [5–8]. Therefore, it is significant to obtain the 
distribution of initial residual stress field for machining 
deformation control.
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Because the distribution of initial residual stress field 
has the characteristics of complex spatial distribution, 
varied forms and large distribution scale influenced by 
the blank size, it is a great challenge to infer the residual 
stress field. At present, the methods to obtain residual 
stress are mainly divided into destructive testing and 
non-destructive testing, the main principle of the two 
methods is to detect some indirect physical quanti-
ties of the residual stress and obtain the residual stress 
with inverse problem-solving process. However, exist-
ing detection methods still have problems in practical 
applications. For example, destructive testing technique 
is carried out by pasting strain gauge, this method has 
the problems of low detection accuracy, poor reliability 
of detection results, and can only detect local residual 
stress. There are also some problems in nondestructive 
testing technique. Ultrasonic testing technique is easy to 
be disturbed by material internal defects, so the reliability 
of testing results is not high. Due to the X-ray penetration 
depth is limited, so it can only detect the residual stress 
on the workpiece surface. Neutron diffraction technique 
has strong penetration ability, but the detection princi-
ple of this method directly leads to the problem of high 
detection cost. It can be seen from the above that there 
are still many problems in the practical applications of 
the existing detection methods.

In order to obtain the initial residual stress inside the 
blank, an initial residual stress inference method by 
incorporating monitoring data and mechanism model is 
proposed in this paper. The deformation force is moni-
tored during the machining process, and the policy 

gradient algorithm is used to incorporate the monitor-
ing data with the finite element mechanism model so as 
to infer the initial residual stress field. The general idea 
of the proposed initial residual stress field inference 
method in this paper is shown in Figure  1. The neural 
network is used as a generator to generate initial residual 
stress field; the finite element mechanism model is used 
to calculate the deformation force corresponding to the 
generated initial residual stress field; the obtained defor-
mation force will be compared with the real deformation 
force data to obtain deviation, and then the generator is 
adjusted according to the deviation to regenerate the ini-
tial residual stress which is closer to the real data. Itera-
tion will be performed in this way until convergence, i.e., 
the deviation is satisfied to a threshold, and finally an 
initial residual stress field with required accuracy can be 
obtained.

2 � Related Work
The initial residual stress in the workpiece is the main 
cause of machining deformation, it seriously affects the 
machining quality of the workpiece. Therefore, it is of 
great significance to detect the workpiece and understand 
the initial residual stress inside the workpiece to control 
the machining deformation and improve the machin-
ing quality. At present, the widely applied and relatively 
techniques in the aspect of residual stress detection are 
mainly divided into two categories: destructive testing 
techniques and nondestructive testing techniques [9].

Non-destructive testing (NDT) can be realized without 
damaging the tested object. At present, the mainstream 

Figure 1  General idea of the proposed inference method of initial residual stress
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non-destructive testing methods mainly include X-ray 
diffraction method [10], ultrasonic method [11–13], neu-
tron diffraction [14], etc. Compared with the destructive 
testing techniques, the nondestructive testing technique 
has the advantages of not damaging the tested object. 
However, limited to the testing principle and character-
istics of NDT, these testing techniques still have some 
shortcomings. The depth of X-ray diffraction measure-
ment is shallow, the inspection area is limited to the sur-
face and subsurface of the material, and it is sensitive to 
the treatment of material surface, surface roughness and 
surface curvature will affect the measurement accuracy. 
In addition, due to the limitation of measurement space, 
large structural parts cannot be measured [15]. Com-
pared with X-ray diffraction, neutron diffraction method 
has the advantage of more depth of penetration, it can 
detect the internal residual stress of large-size materials; 
however, the high construction and operation costs of the 
equipment seriously affect the applicability of neutron 
diffraction method, and it is impossible to realize in-situ 
measurement for large-scale parts in industrial field [16]. 
The measurement of residual stress by ultrasonic method 
is mainly based on the acoustoelastic theory. When the 
ultrasonic wave passes through the material containing 
residual stress, the speed of sound will change because 
of the residual stress and the residual stress inside the 
material can be obtained by analyzing and calculating 
the change of the speed of sound. Therefore, the meas-
urement effect of ultrasonic method depends on the uni-
formity of the material microstructure, and the internal 
defects of the material will seriously affect the measure-
ment accuracy [17].

Destructive testing would damage the tested object for 
obtaining residual stress. This method needs to remove 
the material in the part of the detected object for releas-
ing the residual stress to get local strain, and the corre-
sponding residual stress can be obtained based on the 
strain data. Destructive testing techniques mainly have 
the following several methods: blind-hole drilling [18, 19] 
is a simple and quick method which is widely used at pre-
sent, where the measurement area of the detected object 
is drilled to produce deformation, and the deformation 
around the small holes is measured with strain gauges, 
so the residual stress in the area can be calculated based 
on the measured data. The layer removal method [20] is 
more destructive than the blind-hole drilling, where the 
whole workpiece is deformed by milling the tested object 
layer by layer. The deformation data of the workpiece is 
measured by a strain gauge, and finally the residual stress 
is calculated based on the data of the strain gauge. The 
indentation method [21] is based on the inverse relation-
ship between the hardness of the material surface and the 
residual stress to solve the residual stress. Compared with 

the blind-hole drilling and the layer removal method, 
this method has less damage on workpiece. The slitting 
method [22], similar to the blind-hole drilling, is realized 
through releasing the residual stress by machining the 
slit on the tested object, and then the residual stress is 
calculated by measuring the strain at the specified posi-
tion. All of the above destructive testing techniques need 
to destroy the workpiece, and only local residual stress 
can be obtained according to the Saint-Venant principle. 
Although the indentation method has less damage to the 
workpiece, and no need to use strain gauges for testing, 
due to the low accuracy of hardness measurement and 
the existence of plastic zone on the surface of the object 
to be measured, the accuracy of retro-inferring residual 
stress through hardness is either not high.

In order to make up for the deficiency of traditional 
nondestructive testing and destructive testing tech-
niques, related testing methods were proposed so as to 
improve the applicability of traditional testing technolo-
gies. Mao et al. [23] proposed a residual stress inference 
method by combining the detected surface residual stress 
and residual stress balance equation. Wang et  al. [24] 
proposed a model to solve the complete surface residual 
stress field by measuring some limited residual stress at 
some points on the surface through X-ray technology. 
Hatamleh et  al. [25] quantified the uncertainty of X-ray 
detection results so as to improve the reliability of the 
data by introducing the joint probability density function. 
Chukkan et al. [26] proposed an iterative solving method 
under simulation environment using limited detection 
data by neutron diffraction method, so as to obtain the 
residual stress meeting accuracy requirements. Far-
rahi et  al. [27] proposed a reverse solving method of 
residual stress field based on Airy stress function, and 
reconstructed the residual stress field by finite measure-
ment of the residual stress existing in the welded plate. 
Despite these studies improve the applicability of tradi-
tional detection techniques, they did not improve the 
traditional detection technology on the principle level, so 
the problems of low detection accuracy and high cost still 
exist.

Most of the above solutions are based on the mecha-
nism relationship between the residual stress and the 
measured quantities to establish mechanism models, 
and then solve the residual stress according to the estab-
lished mechanism models. Since mechanism models are 
the simplification of actual situations, when the actual 
situations are more complicated, the performance of the 
mechanism models is often unsatisfactory. Therefore, the 
solving method based on mechanism model has larger 
errors for complex residual stress fields. With the con-
tinuous development of artificial intelligence technol-
ogy, it has gradually produced transformative results in 
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different disciplines [28–30]. However, the outstanding 
performance of artificial intelligence technology is often 
inseparable from a large amount of data. In many prac-
tical situations, the cost of collecting data is often high, 
and we will inevitably face the dilemma of lack of data. 
In the case of insufficient data, most artificial intelligence 
technologies will suffer from the lack of robustness.

In order to solve the problem of accuracy issue of 
mechanism model in complex situations and large 
amount data demand of artificial intelligence, the new 
idea of fusing mechanism model and machine learn-
ing has been an effective solution. As the mechanism 
model reflects the natural law of data, through the fus-
ing of mechanism model and machine learning, the prior 
knowledge in mechanism model can be used to guide the 
training of machine learning model, amplify the informa-
tion volume of the training data, and reduce the demand 
for the data volume of the machine learning model. There 
has been some existing research on the fusing of mecha-
nism model and machine learning model. Nataniel et al. 
[31] used neural networks to solve the optimal parame-
ters of the simulation model, which improved the calcu-
lation accuracy of the simulation model. Raissi et al. [32] 
proposed a physics-informed neural networks, which 
can solve the problem of partial differential equation in 
physical formula, the combination of machine learning 
and mechanism models is realized, and the applicability 
of the mechanism model is improved. Michael et al. [33] 
combined the Lagrange mechanical mechanism model 
with the neural network and established deep Lagran-
gian Networks, which can learn the equations of motion 
of a mechanical system with a deep network efficiently 
while ensuring physical plausibility. Greydanus et  al. 
[34] trained the machine learning model following the 
conservation of energy through unsupervised learning 
according to Hamiltonian mechanics theory, which can 
learn the Hamiltonian mechanics formula directly from 
the data compared with the traditional methods.

For the problem of inference, the initial residual stress 
field, the physical relationship between the initial resid-
ual stress inside the workpiece and the deformation data 
is complicated, and it is difficult to establish an analyti-
cal mechanism model of the mechanism relationship; 
most of the existing data-driven and mechanism model 
fusing methods are used when the mechanism model is 
known. Therefore, the existing data-driven and mecha-
nism model fusing methods are still insufficient to solve 
the problem of initial residual stress.

Aiming at the shortcomings of the existing methods, 
this paper will establish a numerical model between ini-
tial residual stress and deformation force through a finite 
element method (FEM). Since the calculation process 

of the finite element numerical model from the residual 
stress to the deformation force is not differentiable, it is 
difficult to update the data-driven model through a gradi-
ent descent method, which brings some difficulty to com-
bine the data-driven model and the mechanism model. 
To address this issue, the policy gradient algorithm will 
be studied to achieve the fusing of the data-driven model 
and the mechanism model.

3 � Relationship between Deformation Force 
and Residual Stress

In the actual machining process, the workpiece is 
clamped by fixtures. As the material of the workpiece 
is removed during machining process, the original bal-
anced initial residual stress inside the workpiece is bro-
ken, and the workpiece-fixture system will be balanced 
by the fixtures, so the reaction force will be reflected by 
the fixtures, here the reaction force is defined as defor-
mation force [35] which can be deemed as the force 
resisting workpiece deformation. In order to measure 
the deformation force, special fixtures and fixture layout 
are designed, as shown in Figure 2(a). A fixed clamping 
area is formed through three fixed clamping points, the 
six degrees of freedom of the workpiece are constrained. 
According to the clamping way of the workpiece, we take 
the half of the workpiece as a simple beam for force anal-
ysis, as shown in Figure 2(b) and (d).

The deformation force of the workpiece is caused by 
the imbalance of initial residual stress inside the work-
piece, and the deformation force can be deemed as the 
macroscopic characterization quantity of the initial resid-
ual stress inside the workpiece. The unbalanced residual 
stress inside the workpiece is superimposed and acts on 
the workpiece in the form of bending moments ( Mz,Mx ), 
causing the workpiece deformation. The workpiece is con-
strained by clamping points, and the deformation trend 
acts on the clamping points to produce deformation force 
( F1 , F2).

In order to facilitate the description of the relationship 
between the deformation force and the initial residual 
stress, we simplified the force state of the workpiece to 
two dimensions, as shown in Figure 2(c). When the mate-
rial of the workpiece is removed, the internal unbalanced 
residual stress forms a bending moment, which causes 
the workpiece deformation. Do integration for the initial 
residual stress on each section along the thickness direc-
tion, and the integral formula is shown in Eq. (1):

(1)M =

∫ a

−b
σydy,
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where σ is the internal stress of the workpiece; a and b 
are the distances from the top and bottom surfaces of the 
workpiece to the neutral surface, respectively.

From Eq. (1), it can be seen that the unbalanced initial 
residual stress forms a bending moment with respect to 
the neutral area. As shown in Figure  2(c), if the work-
piece is not constrained, the workpiece will be deformed. 
When the workpiece is restrained by clamping, the defor-
mation tendency caused by the bending moment acts on 
the clamping point with deformation force. The balance 
equation can be obtained from Figure 2(c):

Simultaneously, the relationship between the unbalanced 
initial residual stress and the force on the workpiece clamp-
ing can be obtained based on Eq. (1) and Eq. (2), as shown 
in Eq. (3):

(2)
∂M

∂x
− F = 0.

(3)
∂
∫ a
−bσydy

∂x
= −F .

4 � Combination of Mechanism Model 
and Monitoring Data

In the previous section, we have established the mecha-
nism model of initial residual stress to deformation force 
in two dimensions by Eq. (3). As the initial residual stress 
exists in a form of field, it is not easy to explicitly express 
the mechanism model of Eq. (3) for the whole workpiece. 
In order to address this issue, the mechanism model of 
residual stress to deformation force is constructed by 
FEM in this paper. The main method is to establish a 
mechanism model between initial residual stress and 
deformation force under FEM simulation environment. 
The initial residual stress was added to the workpiece in 
the simulation environment, and the deformation force 
corresponding to initial residual stress can be obtained 
during the simulation process. In this paper, the numeri-
cal mechanism model is established to replace the 
analytical mechanism model to realize the modeling rela-
tionship of initial residual stress and deformation force.

The proposed method is based on the deformation 
force data obtained during the workpiece machining 
process, and the initial residual stress field inside the 

Figure 2  Workpiece clamping and deformation force diagram
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workpiece is iteratively solved by data-driven method 
incorporated with the finite element numerical mecha-
nism model. The flowchart of the proposed initial resid-
ual stress solving method is shown in Figure 3. Firstly, a 
random initial residual stress of the workpiece is prelimi-
narily generated by a residual stress generator composed 
of a neural network and a Gaussian multi-peak fitting 
function. The generated initial residual stress is used as 
the input of the finite element numerical model to ana-
lyze and calculate the corresponding deformation force. 
Then the deformation force calculated by the numerical 
model is compared with the real deformation force to 
obtain deviation. Finally, the weights of the neural net-
work are updated using error back propagation to adjust 
the initial residual stress output from the residual stress 
generator to be closer to the expected value. Repeat itera-
tively until the deviation is minimized within the preset 
error.

In the proposed method, the generator will generate 
the coefficients of the initial residual stress function by 
a neural network firstly, and the initial residual stress is 
determined by the coefficients of the function. A neural 
network is used for a specific workpiece with fixed input, 
and the output of the neural network is adjusted by updat-
ing the weights according to the errors. In actual situa-
tion, the residual stress in the thickness direction is much 
smaller than the residual stress in the width and length 
directions, and the machining deformation of the work-
piece is mainly affected by the residual stress in the length 
and width directions, so the residual stress in the thick-
ness direction can be ignored. As shown in Figure 4, it is 
a typical initial residual stress distribution curve inside the 

workpiece [36]. It can be seen from the figure that the ini-
tial residual stress inside the workpiece changes continu-
ously along the thickness direction with multiple peaks. 
Considering the characteristics of the variation curve of 
residual stress along the thickness direction, it is fitted by 
a Gaussian multi-peak fitting function. It has many advan-
tages using Gaussian multi-peak fitting function, i.e., more 
discrete residual stress values can be represented by less 
parameters, which is very important for the neural net-
work, and physical prior can be easily considered for better 
solution. The Gaussian multi-peak fitting function used in 
this paper is shown in Eq. (4):

Figure 3  Flow chart of initial residual stress field inference based on strategy gradient

Figure 4  Typical initial residual stress curve within workpiece
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The length and width of the aluminum alloy pre-
stretched plate are much greater than the thickness, and 
the quenching and aging treatment effects in the manu-
facturing process are symmetrical to the neutral plane 
of the pre-stretched plate. Therefore, the initial residual 
stress of the pre-stretched sheet can be deemed as sym-
metrically distributed along the neutral plane and satis-
fies the stress balance condition [20]. In order to reduce 
the size of the solving space and improve the efficiency 
of the proposed algorithm, the Gaussian multi-peak fit-
ting function of initial residual stress is set as even func-
tion according to the distribution characteristics of initial 
residual stress. And the generator is constrained accord-
ing to the stress balance condition. As mentioned above, 
we use prior data and knowledge to define the fitting 
function of the initial residual stress field in advance to 
narrow the gap between the solving value of the initial 
residual stress and the target value, which can effectively 
improve solving efficiency and accuracy.

It can be found from above that the generator will gen-
erate the fitting coefficients of the multimodal Gaussian 
fitting function firstly. After the fitting coefficients are 
obtained, the initial residual stress distribution curve can 
be determined. Then the initial residual stress function is 
input into the finite element numerical model to calcu-
late the corresponding deformation force. The deforma-
tion force obtained by the numerical mechanism model 
is compared with the data obtained in the real machining 
environment to calculate the deviation. Root mean square 
error (RMSE) is used to measure the difference between 

(4)
σ(x) = a0 + a1e

−c1x
2
+

∑2

i=1
a2e

−c2(x−b2×(−1)i)
2

.
the real data and the solving data, and the error is back 
propagated in the network of generator. Then the weight 
of the network is adjusted through continuous iteration to 
minimize the deviation ( L ) between the output results and 
the real data ( Dval ). This is a typical optimization problem, 
and the optimization goal is shown in the following Eq. (5):

where c is the coefficients of the initial residual stress 
function generated by the neural network generator, and 
the value is determined by the neural network weight ω
, hc is the mapping between the coefficients of the initial 
residual stress function c and deformation force.

The solving method proposed in this paper involves the 
finite element numerical mechanism model, in which the 
process from initial residual stress to deformation force is 
not differentiable and the gradient descent is difficult to 
be calculated. In order to address this problem, inspired 
by reinforcement learning, the policy gradient algorithm 
[37] is introduced so as to solve the problem, and the fus-
ing of the monitoring data and the mechanism model can 
be realized. The main idea is that the output values (i.e., 
the coefficient c ) of the neural network is transformed to 
a Gaussian distribution, and coefficient c can be sampled 
from the Gaussian distribution so as to generate residual 
stress as well as calculate deformation force deviation. 
Then, a reward function can be defined and statistical 
expectation of the reward can be obtained. Finally, the 
weight is updated according to the optimization goal of the 
maximum reward. The detailed method of policy gradient 
will be described as follows.

(5)c
∗(ω) = argmin

c

∑

y∈Dval

L(y, hc(c)),
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We set the inference process of the initial residual stress 
field according to the idea of policy gradient. As shown 
in Figure 3, the output of the neural network is the mean 
μ of the fitting function coefficients and the correspond-
ing variance σ, which obeys a Gaussian distribution. After 
the output is obtained, K  times of sampling is performed 
according to the mean and variance of the output to obtain 
a sample of the fitting coefficients. The corresponding K  
samples of initial residual stress can be obtained from the 
fitting coefficient samples. The reward (i.e., the negative 
error) corresponding to the initial residual stress sample 
can be calculated to obtain the expectation of the reward. 
It can be found from that above problem is an optimiza-
tion problem, and the optimization goal is the maximum 
reward expectation. The optimization objective is shown 
in the following Eq. (6), where the reward ( R ) is com-
puted as the negative error (L), i.e., R = 1/L . According to 
REINFORCE rule [37], we can get the gradient of updated 
weight as shown in Eq. (7). Therefore, when we obtain the 
reward expectation, we can obtain the gradient through 
calculation to update the weight of the neural network and 
adjust the output.

The unbiased empirical estimate of the gradient is 
shown in Eq. (8):

where Â = R(ck)− b is the advantage estimate, b is the 
baseline, whose value is the exponential moving average 
over previous rewards. The baseline can accelerate the 
convergence speed and improve the convergence accu-
racy. K  is the number of samples sampled according to 
the mean value and variance during each iteration. R(ck) 
is the reward for each sample in K  samples.

The pseudocode of the proposed algorithm is shown 
in Algorithm  1. The deformation force data set ( Dval ) 
collected in actual machining and the error threshold 
( � ) are input into the algorithm, and the algorithm will 
automatically carry out iterative solving until the error 
( L ) is less than the threshold ( � ). Finally, the coeffi-
cients of the initial residual stress function ( c∗ ) is out-
put corresponding to the deformation force data ( Dval).

(6)J (ω) = Ec(ω)[R],

(7)∇ωJ (ω) = Ec(ω)[∇ωlogc(ω)R(c)].

(8)L(ω) =
1

K

K∑

k=1

∇ωlogc(ω)Âk ,

5 � Case Study and Verification
The proposed method in this paper is verified both 
in simulation environment and actual machining. In 
simulation environment, a benchmark initial residual 
stress field is set as the ground truth, and the defor-
mation force of the benchmark initial residual stress is 
obtained by finite element calculation. The initial resid-
ual stress is inferred based on the deformation force 
generated under the set initial residual stress, and the 
obtained initial residual stress is compared with the 
ground truth residual stress to verify the accuracy of 
the results. In actual machining environment, the initial 
residual stress field inside the workpiece is solved based 
on the deformation force monitoring data during the 
actual machining process, the initial residual stress field 
was inferred based on the proposed method. As there is 
no ground truth of initial residual stress for actual situ-
ation, we verify the solution by comparing the deforma-
tion data collected in the actual machining process with 
the corresponding deformation data calculated accord-
ing to the inferred initial residual stress field.

5.1 � Theoretical Verification under Simulation Environment
In order to facilitate comparison, verification and explana-
tion, this paper simplified the three-dimensional entity into 
a two-dimensional sheet as the machining object for theo-
retical verification under simulation environment.

A two-dimensional plane of 10 mm × 100 mm was built 
in the simulation environment through the secondary 
development of ABAQUS, and the units of the workpiece 
were quadrilateral units. Under the premise of satisfying 
the finite element calculation accuracy, the unit discrete 
size is set as 1 mm × 1 mm, and the material properties are 
set based on the 7050-T7451 aluminum alloy commonly 
used in aircraft structural parts in the aviation field. The 
specific parameters are shown in Table 1.

The main principle of finite element simulation analy-
sis is to discretize the continuous solving domain into the 
combination of elements. Therefore, the initial residual 
stress field inside the workpiece under the simulation 
environment is discrete. The initial residual stress inside 

Table 1  Mechanical properties of 7050-T7451 aluminum alloy

Elastic 
modulus 
(GPa)

Tensile yield 
strength 
(MPa)

Shear 
strength 
(MPa)

Poisson’s 
ration

Density (g/ 
mm3)

71.7 469 303 0.33 2.83



Page 9 of 19Wang et al. Chinese Journal of Mechanical Engineering           (2022) 35:82 	

the workpiece changes continuously along the thickness 
direction. In order to realize the reasonable addition of the 
initial residual stress of the workpiece in the simulation 
environment, the workpiece is layered along the thickness 
direction, and the initial residual stress field that changes 
linearly along the thickness direction is discretized accord-
ing to the number of layers divided. Then, the discretized 
stress value is applied to the unit grid of each layer so as to 
realize the modeling of the workpiece with initial residual 
stress in the simulation environment. In order to make the 
initial residual stress field in theoretical verification close to 
the actual situation, the initial residual stress of 7050-T7451 
aluminum alloy blank detected in the experiment of related 
research [36] is referred, and set in the simulation environ-
ment, as shown in Figure 5a.

During the machining process, the deformation force 
monitoring of the workpiece is mainly realized by installing 
force sensors on the fixtures of the workpiece. In the simu-
lation environment, the force sensor is simulated by adding 
a ground spring at the monitoring point of the workpiece, 
and extracts the strain data of the spring to obtain the 
deformation force of the workpiece. In order to ensure the 
restraint effect of the spring on the workpiece, the spring 
rate of the monitoring point is set to a larger value, i.e., 
the spring rate is 50000 N/mm. The boundary conditions 
are set in the simulation environment by referring to the 
clamping mode of the workpiece in the actual machining 
situation. As shown in Figure  5a, a fixed constraint is set 
on the workpiece at the unit node in the middle position 
to constrain the 6 degrees of freedom of the workpiece and 
fix the spatial pose of the workpiece. A ground spring is 

arranged at the corners of both ends of the workpiece to 
fix the workpiece and measure the deformation force of the 
workpiece.

During the machining process, the residual stress con-
tained in the material to be removed is peeled from the 
originally balanced residual stress field inside the work-
piece as the machining progresses, resulting in an imbal-
ance of the residual stress field. In order to simulate the 
material removal process of the workpiece in the simula-
tion environment, the birth and death element method is 
used to simulate the removal of materials during machin-
ing based on the ABAUQS simulation platform.

The actual machining is a sequential dynamic pro-
cess. The material of the workpiece is removed layer 
by layer along the thickness direction as the machin-
ing progresses. In the process of material removal, the 
deformation force will change constantly, so it is neces-
sary to simulate the continuous machining process of the 
workpiece and record the change process of deformation 
force. The time-series dynamic machining process of the 
workpiece is simulated by establishing continuous analy-
sis steps in a simulation environment. The analysis steps 
of ABAQUS are set through secondary development, 
each analysis step is set corresponding to the machining 
of a single slot on each layer of the workpiece, multiple 
continuous analysis steps are set according to the num-
ber of machining slots so as to simulates the dynamic 
machining process of the workpiece sequence. Since 
the mesh size of the workpiece is 1  mm, the number 
of machining layers is 7 layers. Each layer mills 5 slots, 
only one slot is milling at each analysis step, so the total 

Figure 5  Simulation environment setting
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is 35 analysis steps. After the simulation analysis is over, 
the ABAQUS simulation software will generate an .odb 
file, which contains simulation environment modeling 
data and finite element analysis results. We accessed the 
.odb file through Python script, extracted the deforma-
tion force data generated in the simulation process, and 
saved it in .csv file format. The specific process is shown 
in Figure 6

Based on the deformation force data, the initial resid-
ual stress field corresponding to the deformation force 
is inferred according to the proposed method. As shown 
in Figure 7, after continuous iterative solving, the solving 
results are finally converged. The solving results with the 
minimum iteration error are taken as output.

The output of the proposed inference method is the 
distribution of initial residual stress field (i.e., mean value 
and variance). In order to evaluate the validity of the 
output results more reasonably, the deformation force 
corresponding to the mean value is compared with that 
corresponding to the benchmark initial residual stress. 
As shown in Figure 8, the true value is the deformation 
force corresponding to the benchmark initial residual 
stress field (Figure 5(a)). Solution is the deformation force 
corresponding to the inferred initial residual stress. Error 
indicates the difference between true value and the solu-
tion. It can be found from Figure 8 that the deformation 
force extracted by spring 1 and spring 2 is basically the 
same, which is mainly because the structure of the work-
piece is basically symmetrical (as shown in Figure 5(b)), 
and the initial residual stress field inside the workpiece 
is symmetrically distributed (as shown in Figure  5(a)). 
In this experiment, a two-dimensional piece is used, so 
the deformation force is small. The contrast results show 
that the maximum error is no more than 0.30 N, the 
minimum error is approaching 0.0003 N, and the average 
error is 0.105 N, which indicates the effectiveness of the 
solving results.

The unbalanced residual stress inside the workpiece 
will cause deformation force in the process of machin-
ing. When the clamping constraints of the workpiece 
are released after machining, the workpiece will be 
deformed. Therefore, the final machining deformation 
of the workpiece is equivalent to the deformation force 
of the workpiece, which can reflect the level of initial 

Figure 6  Simulation flow chart

Figure 7  Convergence process with iteration solution under 
simulation environment
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residual stress inside the workpiece. We compared the 
deformation corresponding to the solved results with 
the deformation corresponding to the benchmark ini-
tial residual stress field (as shown in Figure 5(a)) to ver-
ify the effectiveness of the solved results. We extracted 
the deformation according to the position shown in 
Figure  5(b). The deformation caused by initial resid-
ual stress of the workpiece was mainly warping, so we 
extracted the variation in the Y-direction as the defor-
mation of the workpiece.

The relative deformation data are shown in Table  2, 
where the deformation of solving is the corresponding 
deformation by the solved initial residual stress field. 
The ground truth is the deformation corresponding to 
the benchmark initial residual stress field. According to 
the data in Table  2, the deformation of the workpiece 
is a bit large at both ends and small in the middle. And 
the deformation of measuring points 1, 2 and 3 is simi-
lar to that of measuring points 6, 5 and 4. This is mainly 
because the geometric structure of the workpiece is 
symmetrical and the initial residual stress distribution 
inside the workpiece is also symmetric. In addition, the 
difference between the deformation of solving and the 
ground truth is small. The maximum error between 
the ground truth and the deformation of solving is only 
0.02462  mm, the minimum error is 0.00134  mm, and 
the average error is 0.01132 mm.

The current solution of the initial residual stress field 
is based on the deformation force with a milling depth 
of 7 mm. To further verify the effectiveness of the solv-
ing results, the initial residual stress field obtained by 
the inferred method is applied to the simulation envi-
ronment to calculate the deformation force and the 
deformation when milling the depth of 8  mm, and 
compare this value with the corresponding data corre-
sponding to the benchmark initial residual stress field 
(as shown in Figure 5(a)), which means that we use the 
inferred initial residual stress to predict future machin-
ing trends.

Figure 9 shows the deformation force comparison dia-
gram when milling the depth of 8 mm. After comparison, 
the maximum error is 0.096 N, and the minimum error 
is 0.008 N. The deformation data is shown in Table  3. 
The maximum error is 0.0354 mm, the minimum error is 
0.0037 mm, and the average error is 0.0186 mm.

In order to further verify the validity of the solving 
results, different benchmark initial residual stress fields 
are solved and analyzed. As shown in Figure 10, it can be 
found that very good solving results are obtained for dif-
ferent initial residual stress fields. Since the verification is 
performed on a two-dimensional plane, the initial resid-
ual stress has only one direction.

Figure 8  The solved deformation force and error compared with 
true value for the milling depth from 1 mm to 7 mm

Table 2  The solved deformation values and error compared with ground truth for the milling depth from 1 mm to 7 mm

Measuring point number 1 2 3 4 5 6

Deformation of solving (mm) 0.15936 0.06520 0.00411 0.00149 0.06182 0.16066

Ground truth deformation (mm) 0.13489 0.05697 0.00545 0.00319 0.05423 0.13604

Difference (mm) 0.02447 0.00822 0.00134 0.00170 0.00759 0.02462
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5.2 � Actual Machining Verification
In order to verify the feasibility of the proposed method 
in practical machining, the blank with an external con-
tour size of 640  mm × 240 mm × 26  mm is selected as 
the machining object to extract the deformation force, 
as shown in Figure 11(a), and the corresponding numeri-
cal calculation model is established under the simulation 

environment. 7050-T7451 aluminum alloy was used in 
the experiment.

The actual clamping method of the workpiece is shown 
in Figure  11(a). In the position of the monitoring point 
1, 2, 3 and 4, the force measuring fixtures are installed 
to measure the deformation force of the workpiece. The 
spring constraint is set at the corresponding position in 
the simulation environment. Points 1, 2 and 3 are fixed 
fixtures, and fixed constraints are set at corresponding 
positions in the simulation environment to fix the spatial 
pose of the workpiece.

As shown in Figure 11(a), there are 7 slots in total, the 
machining depth is 22  mm, the number of machining 
layers is 11, and the single cutting depth is 2 mm. The 
number of machining layers is 11, and each layer has 
7 slots. The simulation environment is set according 
to the actual machining situation. Milling a slot in one 
layer is an analysis step, so there are 77 analysis steps 
in total. The cutting depth of the workpiece is 2  mm, 
so the size of the cell in the thickness direction is 1mm 
corresponding to the actual working condition. The 
deformation force is extracted from the measurement 
points shown in Figure 11(a), and the deformation force 
data of the workpiece is shown in Figure 12. The defor-
mation force is obtained in the simulation environ-
ment by adding springs in accordance with the method 
adopted in theoretical verification.

According to the method proposed in this study, the 
initial residual stress field corresponding to the defor-
mation force data in Figure  12 was solved. As shown 
in Figure 13, after continuous iterative calculation, the 
calculation results finally converge.

After iterative solving, the minimum RMSE is 6.71 N. 
In accordance with the same verification idea as in the 
theoretical verification, we compare the solving results 
with the data monitored during actual machining (i.e., 
true value in the Figure  14). The comparison result is 
shown in Figure  14, and it can be seen that the solving 
results are in good agreement with the data monitored 
in actual machining. We calculated the average relative 
error corresponding to the iterative solution result, and 
the result showed that the average relative error was only 

Figure 9  The solved deformation force and error compared with 
true value for the milling depth of 8 mm

Table 3  The solved deformation values and error compared with ground truth for milling depth of 8 mm

Measuring point number 1 2 3 4 5 6

Deformation of solving (mm) − 0.3367 − 0.1448 − 0.0187 − 0.0127 − 0.1431 − 0.3432

Ground truth deformation (mm) − 0.3021 − 0.1270 − 0.0141 − 0.0089 − 0.1254 − 0.3078

Difference (mm) 0.0345 0.0178 0.0046 0.0037 0.0177 0.0354
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9%. The calculation formula is shown in the following Eq. 
(9):

where δmean is the average relative error,Fground_truth 
is the deformation force monitored during machining, 
Fsolution deformation force corresponding to the solving 
result; n is the amount of deformation force monitored in 
the actual machining.

The inference result of the initial residual stress is based 
on the deformation force with a milling depth of 22 mm. 
In order to further verify the validity of the inference 
results, we continue to mill down to 23 mm on the basis 
of 22 mm and compare the difference between the defor-
mation force corresponding to the inference result and 

(9)δmean =
1

n

n∑

i=1

Fground_truth,i − Fsolution,i

Fground_truth,i
× 100%,

the deformation force monitored in the actual machining 
process (i.e., true value in the Figure  15). It means that 
we use the inferred initial residual stress to predict future 
trends. Figure  15 shows the comparison of deformation 
forces at a milling depth of 23 mm. After comparison, 
the error (RMSE) of monitoring point 1 is 12.22  N, the 
error (RMSE) of monitoring point 2 is 1.41 N, the error 
(RMSE) of monitoring point 3 is 4.68  N, and the error 
(RMSE) of monitoring point 4 is 8.68 N.

Since the main influence of initial residual stress on 
the workpiece is machining deformation, here we com-
pare the deformation corresponding to the solved ini-
tial residual stress with the actual deformation of the 
workpiece after machining. After machining (the mill-
ing depth is 23  mm), we released the constraint of the 
force measuring fixture on the workpiece to deform the 
workpiece. The deformation was measured by the probe 

Figure 10  The inferred initial residual stress and compared with ground truth
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provided with the machine tool (Figure  11(b)) accord-
ing to the position shown by the monitoring points in 
Figure  11(a). The deformation caused by initial residual 
stress of the workpiece was mainly manifested as warp-
ing, so we extracted the variation in the Z direction as the 
deformation of the workpiece. The measurement results 
are shown in Table 4.

As shown in Table  4, the solved deformation is the 
deformation corresponding to the initial residual stress 
field obtained by the method in this paper; the ground 
truth is the deformation measured in the actual machin-
ing. From the data in Table 4, it can be seen that the dif-
ference between the solved deformation and the ground 
truth is small, the maximum error between the real 
deformation and the solving deformation is only 0.0671 
mm, and the average error is 0.0446 mm. It can be seen 
from the verification that the inferred result can reflect 
the deformation trend of the workpiece machining, but 
there is a certain error with the actual result. This part 
of the error is mainly related to the size of the grid in the 
finite element calculation. When the grid size is large, the 
error will increase, and the error will be correspondingly 
small when the grid size is small. However, the decrease 
of the grid size will directly lead to the increase of the 
computational amount and affect the computational effi-
ciency. In this paper, the mesh size is selected according 
to the actual error requirement and calculation efficiency.

5.3 � Discussion
The inference method of initial residual stress field pro-
posed in this paper is to solve the mean value and vari-
ance of initial residual stress field. Therefore, there is 
uncertainty in the solving result. In order to evaluate 
the uncertainty of the data, we use confidence and con-
fidence interval to quantify the reliability of the solv-
ing results to ensure the integrity of the data expression 

Figure 11  Machining environment and workpiece clamping layout 
diagram

Figure 12  Deformation force curve of the four monitoring points

Figure 13  Convergence process with iteration solution with actual 
monitoring data
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information. Here we take the error corresponding to the 
solving result as the object to evaluate the uncertainty.

Firstly, initial residual stress samples were obtained 
according to the solving results. Here, the number of 
samples in this paper is 1000. Secondly, the deformation 
force corresponding to the initial residual stress sample is 
calculated. Finally, the calculated deformation force sam-
ple is compared with the real deformation force to obtain 
the sampling error. The error distribution is shown in 
Figure 16. As shown in Figure 16, the error distribution 
is skewed. The confidence of the confidence interval [6.5, 
7.2] is 95%. That is, the error of result has a 95% probabil-
ity of falling between 6.5 N and 7.2 N. It can be seen that 
when the confidence level is 95%, the maximum RMSE of 
the solving result is 7.2 N, and the corresponding defor-
mation force is shown in Figure 17.

In the actual machining, machining deformation is 
not only affected by initial residual stress, but also by 
the machining-induced residual stresses. The proposed 
method does not consider the machining-induced resid-
ual stresses in the machining process. This is mainly 
because in the rough machining process, the machining-
induced residual stresses is only distributed in a very 
small range of the machining surface, especially for alu-
minum alloy material. Ref. [36] shows that in the process 
of aluminum alloy processing, the maximum distribution 
depth of residual stress is no more than 0.1 mm. In this 
paper, the data were monitored in the rough machining 
stage, and the wall thickness of the parts in the whole 
machining process was greater than 3 mm, so the influ-
ence of the machining-induced residual stresses can 
be ignored. When deducing the residual stress field 
of the finishing process and the difficult material, the 

Figure 14  The solved deformation force and compared with the real monitored deformation force for the milling depth from 1 mm to 22 mm
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influence of machining-induced residual stresses shall be 
considered.

The proposed method is to infer the global initial 
residual field inside the workpiece, which can be used 
for the analysis of the workpiece’s overall machining 

deformation and the control of the workpiece’s machin-
ing deformation. Most of the existing traditional residual 
stress detection methods can only be used for local resid-
ual stress detection. Although neutron diffraction tech-
nique has strong penetration ability, it has a large error 
when detecting the overall residual stress. Therefore, the 
existing test results cannot effectively reflect the overall 
initial residual stress level inside the workpiece.

The proposed method achieves the iterative solving of 
residual stress field by simulating the actual machining 
process with finite element analysis software (ABAQUS). 
When the actual machining conditions such as the geo-
metric structure, machining path and clamping layout of 
the workpiece change, the residual stress field under dif-
ferent machining conditions can be inferred by modify-
ing the finite element analysis conditions.

Figure 15  The solved deformation force and compared with real monitored deformation force for the milling depth of 23 mm

Table 4  The solved deformation values and error compared 
with ground truth for milling depth of 23 mm

Measuring 
point number

Deformation of 
solving (mm)

Ground 
truth (mm)

Difference (mm)

Point 1 0.2026 0.1370 0.0656

Point 2 0.0974 0.0303 0.0671

Point 3 0.1132 0.1298 − 0.0166

Point 4 0.2349 0.1726 0.0623
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6 � Conclusions
In order to infer the initial residual stress field inside the 
workpiece, this paper proposes a method to infer the ini-
tial residual stress of blank by incorporating the moni-
toring data with the mechanism model. This method 
uses the deformation force during the machining of the 
workpiece as the basis for inference, and solves the initial 
residual stress field inside the blank. Finally, the experi-
mental verification shows that the deformation force 
average relative error is 9%, and the average machining 
deformation error is 0.0446  mm. The results can well 
reflect the initial residual stress field inside the work-
piece, which can provide a very good basis for deforma-
tion control of structural parts.

To sum up, the research of this paper has made the fol-
lowing contributions:Figure 16  The error distribution of the solved deformation force

Figure 17  The comparison between the deformation force with a solution error of 7.2 N and the real monitored deformation force
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Firstly, the method proposed in this paper can infer 
the initial residual stress field inside the workpiece from 
the monitoring data during the machining process. This 
provides an effective basis for optimizing machining 
process and improving workpiece quality.

Secondly, the initial residual stress for simulation is 
firstly generated randomly by a generator composed 
of neural network, and the gradient descent of simu-
lation errors is realized by using the strategy gradient 
approach. Therefore, the research of this paper also 
provides an idea for the optimization of finite element 
simulation.

Finally, the method proposed in this paper is an 
exploration for incorporating the online monitoring 
data and the finite element simulation model, which 
provides a research reference for the fusing of machine 
learning model and mechanism model.

Although the proposed method can effectively infer 
the initial residual stress inside the workpiece in experi-
ments, there is still much work to be done in the future. 
This paper has only been effectively verified in blanks 
with regular initial residual stress field distribution such 
as pre-stretched plates and the material of aluminum 
alloy. This method still faces many challenges for blanks 
with complex structures such as die forgings. For blanks 
such as die forgings, the distribution of initial residual 
stress field is more complex. For difficult-to-machine 
materials, such as Titanium alloy, the machining-induced 
residual stress cannot be neglected, further study is still 
required.
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