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Efficient Inverse Method for Structural 
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and Response Uncertainties
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Abstract 

The inverse problem analysis method provides an effective way for the structural parameter identification. However, 
uncertainties wildly exist in the practical engineering inverse problems. Due to the coupling of multi-source uncer-
tainties in the measured responses and the modeling parameters, the traditional inverse method under the determin-
istic framework faces the challenges in solving mechanism and computing cost. In this paper, an uncertain inverse 
method based on convex model and dimension reduction decomposition is proposed to realize the interval identifi-
cation of unknown structural parameters according to the uncertain measured responses and modeling parameters. 
Firstly, the polygonal convex set model is established to quantify the epistemic uncertainties of modeling parameters. 
Afterwards, a space collocation method based on dimension reduction decomposition is proposed to transform the 
inverse problem considering multi-source uncertainties into a few interval inverse problems considering response 
uncertainty. The transformed interval inverse problem involves the two-layer solving process including interval propa-
gation and optimization updating. In order to solve the interval inverse problems considering response uncertainty, 
an efficient interval inverse method based on the high dimensional model representation and affine algorithm is 
further developed. Through the coupling of the above two strategies, the proposed uncertain inverse method avoids 
the time-consuming multi-layer nested calculation procedure, and then effectively realizes the uncertainty identifica-
tion of unknown structural parameters. Finally, two engineering examples are provided to verify the effectiveness of 
the proposed uncertain inverse method.

Keywords:  Inverse problem, Uncertainty quantification, Dimension reduction decomposition, Polygonal convex set, 
Affine algorithm
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1  Introduction
Engineering problems are generally classified into the 
forward problems and the inverse problems. The forward 
problems aim at estimating the performance responses 
under the given physical system and external condi-
tions, which are the analysis process. In contrast, the 
inverse problems are the comprehensive process of infer-
ring internal parameters or external excitations from the 

testing or expected performances [1, 2]. Nowadays, the 
inverse problem analysis methods have received continu-
ous attention from academia, and have been successfully 
applied in many engineering fields, such as the param-
eters estimation [3], the damage identification [4], the 
health monitoring [5] and the load identification [6], etc.

Actually, due to fluctuation of environment, random-
ness of material, measuring and manufacturing errors, 
and so on, uncertainties wildly exist in the practical 
engineering inverse problems [7–9]. However, the com-
putational inverse methods under the deterministic 
framework have no ability to identify the influence of 
these uncertainties on the inverse results. Therefore, it 
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is very necessary to deeply study the uncertain inverse 
method to effectively evaluate these uncertainties and 
their effects on the inverse parameters. As shown in 
Figure 1, according to the location of uncertainty in the 
system function, uncertain inverse problems are divided 
into three categories: ① the inverse problem consider-
ing response uncertainty (IP-RU); ② the inverse prob-
lem considering modeling uncertainty (IP-MU); ③ the 
inverse problem considering modeling and response 
uncertainties (IP-MRU) that uncertainties exist in both 
the measured responses and some modeling parameters. 
Because the coupling of uncertainty analysis and inverse 
calculation, the solving of uncertain inverse problem 
often faces the bottleneck of complex nesting and large-
scale computing.

The IP-RU aims to identify the unknown structural 
parameters under the deterministic system model and 
the uncertain measured responses. As the most widely 
used uncertainty quantification method, probability the-
ory can effectively measure the uncertainty in measured 
responses [10–12]. So far, the researches about the IP-RU 
is relatively sufficient, and many advanced inverse meth-
ods are developed, mainly including the maximum likeli-
hood estimation [13], the Bayesian inverse method [14], 
and the uncertainty propagation-based inverse method 
[15]. The maximum likelihood estimation and Bayes-
ian approach commonly involve the random sampling 
process, the computational cost is expensive in practi-
cal engineering application [16, 17]. In recent years, the 
computational inverse method embedded uncertainty 
propagation has attracted extensive attention of schol-
ars. The core of this kind of inverse method is to build 
the uncertainty optimization matching model of the 
measured and calculated responses for inversing the 
unknown parameters [18]. In the IP-MU, some system 
modeling parameters are uncertain, and the measured 
responses are deterministic. Generally, it is necessary 
to conduct the uncertain sampling for modeling param-
eters, and then estimate the influence of the uncertainties 
on the identified parameters according to the determin-
istic inverse results under each sampling point [19, 20]. 
Compared with the IP-RU, the researches about IP-MU 
are relatively few at present.

Generally, uncertainties are classified into stochastic 
uncertainty and epistemic uncertainty. Stochastic uncer-
tainty is derived from the inherent randomness of system 
or environment, which is usually described by the prob-
abilistic model [21, 22]. Epistemic uncertainty is often 
caused by incompleteness of knowledge to some extent 
[23, 24]. However, the probabilistic model is based on 
the sufficient sample information and the explicit prob-
ability distribution type. Unfortunately, only the limited 
data is available in the practical engineering problems 
because of constrains of economic and technical condi-
tions. Therefore, it is difficult to construct a complete 
probability distribution according to the incomplete 
knowledge and data. The non-probabilistic convex 
model method can evaluate the boundaries of uncertain 
parameters with the limited sample data, and provide an 
alternative way for quantitative representation of epis-
temic uncertainties. The typical convex model includes 
interval model [25], ellipsoid model [26], parallelepiped 
model [27] and polygonal convex set (PCS) model [28]. 
At present, the interval model has been applied to the 
practical engineering inverse problems because of its 
convenience. For the IP-RU, Faes et al. [29] proposed an 
effective multivariate interval method to inversely assess 
the uncertainty of parameter under limited experimental 
data. Jiang et al. [30] realized the uncertainty identifica-
tion of material parameters for composite laminates by 
constructing the interval error optimization model. For 
the IP-MU, Liu et al. [31] developed a dynamic load iden-
tification method based on Gegenbauer polynomial and 
regularization method to evaluate the influence of system 
uncertainty on the identified load. Xu et al. [32] proposed 
a sequential two-stage interval identification method 
based on Tikhonov regularization, and achieved the 
interval identification of dynamic load under the uncer-
tain structure.

In practical engineering inverse problems, due to the 
changeable working conditions, the complex multi physi-
cal processes and the measuring and processing errors, 
uncertainties often exist in the model itself and the meas-
ured responses at the same time. In fact, this kind of IP-
MRU is more common in practical engineering problems. 
However, because of the coupling of these multi-source 
uncertainties, the solving for this kind of uncertain inverse 
problem involves the complex multi-layer nesting. In view 
of that, it is difficult to investigate the inverse propagation 
mechanism of uncertainties in engineering structures, and 
then it is also impossible to realize the solving of this kind 
of uncertain inverse problem and uncertainty quantifica-
tion of the unknown parameters. At present, the researches 
about IP-MRU are in the exploration stage, there are few 
reports about the effective solving method. Therefore, it 
has the great practical significance to study the efficient 
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Figure 1  Classification of uncertain inverse problems
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uncertain inverse method for the parameter identification 
and high-precision modeling in engineering problems.

In this paper, a general solving framework based on 
convex model for IP-MRU is presented, and an efficient 
uncertain inverse method is further proposed to realize 
the inverse uncertainty identification of unknown struc-
tural parameters. The remainder of this paper is organized 
as follows. In Section  2, the inverse problem considering 
multi-source uncertainties is descripted, and a basic solv-
ing framework is presented. In Section  3, the efficient 
uncertain method is presented in detailed. In the pro-
posed method, the PCS model and the interval model 
are employed to quantify uncertainties in the modeling 
parameters and the measured responses respectively, and 
an uncertain inverse method based on dimension reduc-
tion decomposition (DRD) is developed to realize the solv-
ing of IP-MRU. Two examples are provided to show the 
effectiveness of the proposed uncertain inverse method in 
Section 4. The conclusions of this paper are summarized in 
Section 5.

2 � Description of IP‑MRU
The effective forward model is the premise and foundation 
for solving the inverse problem. For IP-MRU, the forward 
structure model G is generally expressed as

where Y is the p-dimensional vector of structural 
responses, U is the n-dimensional vector of the known 
but uncertain modeling parameters, and X is the 
m-dimensional unknown modeling or input parameters 
that need to be identified. In order to distinguish them 
effectively, the known and uncertain structural mod-
eling parameters are called “uncertain variables”, and the 
unknown structural modeling parameters that need to 
be identified are called “unknown parameters”. Gener-
ally, the dimension p of Y is greater than or equal to the 
dimension m of X, so that the inverse problem has the 
positive definite solution. Due to the lack of testing data 
and the limitation of physical knowledge, the responses Y 
and variables U are uncertain. The purpose of this kind of 
uncertain inverse problem is to identify unknown param-
eters X and their uncertainties according to the uncertain 
responses and system model. In view of that, the IP-MRU 
can be descripted as

(1)







Y = G(X ,U),

Yi = Gi(X1,X2, · · · ,Xm,U1,U2, · · · ,Un),

i = 1, 2, · · · , p,

(2)

{

F : fX (X) ←
{

fU (U), fY (Y )
}

,

s.t.Y = G(X ,U),

where fU , fY  and fX denote the uncertainty measurement 
for the responses Y, the variables U and the unknown 
parameters X, respectively. In this study, the measured 
responses Y are modeled by the interval model, namely, 
the left and right boundaries are known, and the uncer-
tain structural variables U are quantified by PCS model. F 
represents the mapping relation of the uncertainties from 
the responses Y and variables U to the unknown param-
eters X. It can be found from Eq. (2) that the IP-MRU 
is actually an inverse uncertainty propagation process 
under the constraint of forward structure model. For the 
convenience of expression, the IP-MRU described in Eq. 
(2) can be expressed as

where 
←−
Gi denotes the inverse function of Xi with respect 

to the responses Y and variables U. All inverse functions 
←−
Gi constitute the system inverse function 

←−
G  . Through 

the inverse uncertainty propagation, the left and right 
boundaries of unknown parameters X can be identified.

Due to the coupling of the response uncertainty and 
the modeling uncertainty, it is difficult to explore the 
inverse propagation mechanism of response and mode-
ling uncertainties. The basic idea for solving this kind of 
uncertain inverse problem is to decouple the response 
uncertainty and modeling uncertainty in the inverse 
problem, and then transform the IP-MRU into the 
inverse problem with single-source uncertainty. Actu-
ally, if a set of specific values of uncertain modeling 
variables U are given, the structure model will be deter-
ministic. Under these circumstances, the IP-MRU in 
Eq. (2) can degenerate into an IP-RU. For the IP-RU, the 
uncertainty propagation-based inverse method can be 
employed to inverse the intervals of unknown param-
eters. In which, the out layer is the interval matching 
optimization of the measured and calculated responses, 
and the inner layer is the interval propagation analysis 
process. On the basis of the above statement, a basic 

(3)

{

X=
←−
G (U ,Y ),Xi =

←−
Gi(U ,Y ), i = 1, 2, · · · ,m,

s.t.U ∈ fU (U),Y ∈ fY (Y ),

Figure 2  The basic solving framework for IP-MRU
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solving framework involving multi-layer nesting for the 
IP-MRU are presented as shown in Figure 2:

(1)	 The outer layer is the inverse uncertainty propaga-
tion process for modeling uncertainty. Through 
Monte Carlo Simulation (MCS) in the convex 
model of variables U, the IP-MRU is transformed 
into a series of IP-RU under each sampling point.

(2)	 The middle layer is the solving of IP-RU under the 
deterministic variables U. Solving the interval opti-
mization matching model of the measured and cal-
culated responses, the left and right boundaries of 
unknown parameters X can be obtained.

(3)	 The inner layer is the forward uncertainty propaga-
tion process to obtain the calculated responses in 
the middle layer. Through the interval propagation 
analysis, the intervals of responses Y can be calcu-
lated according to the given intervals of unknown 
parameters X.

According to the above inverse calculation, the inter-
vals for the unknown parameters X will be obtained 
under each sampling point of uncertain variables U. 
Thus, the final left and right boundaries of unknown 
parameters X can be identified through the statistical 
comparison of all inverse results. It can be found that the 
solving of IP-MRU is a multi-layer nested complex calcu-
lation process. Involving MCS, optimization and uncer-
tainty propagation, the whole inverse process faces the 
bottleneck problem of large-scale computation.

3 � Uncertain Inverse Method Based on PCS Model 
and DRD

From the above discussion, it can be obviously seen that 
the uncertain inverse problem as shown in Eq. (2) faces 
the unbearable computational cost due to the multi-
layer nesting solving process. In this section, an effec-
tive uncertain inverse method based on PCS and DRD 
is proposed to realize the inverse uncertainty identifica-
tion of unknown parameters. Firstly, PCS is employed 
to quantify the uncertainties and correlation of vari-
ables U according to the limited sample information. 
Secondly, an efficient space collocation method based 
on DRD is proposed to transform the IP-MRU into a 
few IP-RU. Finally, an interval inverse method based on 
high dimensional model representation (HDMR) and 
affine algorithm is further presented to effectively solve 
the IP-RU.

3.1 � PCS Model for Quantifying Modeling Uncertainty
In practical engineering problems, the sample distribu-
tions of uncertain modeling variables are usually complex 
and various, and there is a certain correlation. Compared 

with the traditional convex model with the simple regu-
lar shape, PCS model provides a more suitable and rea-
sonable way to quantify uncertainty and correlation 
with limited sample information by using the irregular 
boundaries.

Assuming that there are N experimental samples 
UN =

[

U (1),U (2), · · · ,U (N )
]

 of n-dimensional uncertain 
modeling variables U, where U (N )

=

[

U
(N )
1

,U
(N )
2

, · · · ,

U
(N )
n

]T

 . According to the samples, a traditional interval 
model is firstly established, which is expressed as

where UL = min
(

UN
)

 and UR = max
(

UN
)

 represent 
the left and right boundaries of variables U; ΩI denotes 
the uncertainty domain of interval model. In order to 
reasonably quantify the correlation in sample data, a 
principal component analysis (PCA) interval model will 
be further established. For the known samples UN , the 
mean point can be calculated as

The covariance matrix C for uncertain samples is 
defined as

where UM
=
[

UM,UM, · · · ,UM
]

n×N
 is the mean matrix 

composed of N mean points UM . Through PCA, the 
orthogonal eigenvectors with respect to the covari-
ance matrix pi = (p1i, p2i, · · · , pni)

T, i = 1, 2, · · · , n 
can be obtained, which are rewritten as a matrix 
P =

(

p1,p2, · · · ,pn
)

 by the decreasing order. Thus, a new 
coordinate system can be constructed based on these 
orthogonal eigenvector directions, and the uncertain 
modeling variables U and the samples UN can be pro-
jected to the new coordinate system through matrix P

In the new coordinate system, the correlation coefficient 
between any two of variables Z are zero. According to the 
transformed samples ZN , a new interval model based on 
PCA can be established as

where ZL = min
(

ZN
)

 and ZR = max
(

ZN
)

 represent 
the left and right boundaries of variables Z . ΩIP denotes 
the uncertainty domain of PCA interval model. In view 

(4)�I =
{

U |UL ≤ U ≤ UR
}

,

(5)UM =
1

N

[

N
∑

t=1

U
(t)
1 ,

N
∑

t=1

U
(t)
2 , · · · ,

N
∑

t=1

U (t)
n

]T

.

(6)C =
1

n

(

UN −U
M
)(

UN −U
M
)T

,

(7)Z = PT
(

U −UM
)

.

(8)�IP =
{

U |ZL ≤ PT
(

U −UM
)

≤ ZR
}

,
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of that, the PCS model is established by combining the 
intersecting region between ΩI and ΩIP.

where ΩP denotes the uncertainty domain of PCS model.
The examples of the two-dimensional PCS model 

is shown in Figure  3, it can be found that PCS model 
envelops all samples through the irregular minimum 
area. Therefore, the PCS model effectively quantifies 
the uncertainty represented by the given limited sample 
information. The more properties of PCS model can be 
seen in Ref. [28].

3.2 � Space Collocation Method Based on DRD 
for Decoupling IP‑MRU

As described in Section 2, MCS can realize the decou-
pling of response and modeling uncertainties, and 
then transform the IP-MRU into the IP-RU under each 
sampling point. However, the corresponding solving is 
unacceptable involving the random sampling. In this 
section, an efficient space collocation method based 
on DRD is proposed to replace MCS process, and then 
transforms the IP-MRU into a small amount IP-RU 
under collocation points (CPs).

The DRD method [33, 34] provides an efficient 
analysis framework for uncertainty propagation. This 
method effectively relieves the computational com-
plexity of uncertainty propagation through transform-
ing the structural performance function into the linear 
combination of univariate sub functions. Similarly, 
through the DRD for uncertain modeling variables U, 
the inverse function 

←−
G  can be represented as

(9)
�P =

{

U |UL ≤ U ≤ UR ∩ ZL ≤ PT
(

U −UM
)

≤ ZR
}

,

where UC denotes the decomposition midpoint of 
function.

It can be found from Eq. (10) that the responses of 
inverse function can be efficiently predicted through the 
linear combination of the responses of each sub inverse 
function. In this paper, the mean point of PCS model is 
selected to conduct DRD, namely, UC=UM . Figure 4 is 
schematic diagram of DRD for 3-dimensional problem. 
Assuming that ki marginal CPs are taken for the sub 
inverse function 

←−
Gi , and the lith marginal CP on the ith 

expansion axis is U
li

−i
=

[

U
M
1
, · · · ,UM

i−1
,U

li

i
,UM

i+1
,

· · · ,UM
n

] . Because the measured responses are intervals 
Y

I , the solving of sub inverse function under the mar-
ginal CP U ik

−i is an interval-based IP-RU. For the con-
venience of expression, the corresponding IP-RU is 
expressed as

where i = 1, 2, · · · ,m , and li = 1, 2, · · · , ki.
The solving of IP-RU will be discussed in detail in Sec-

tion 3.3. Here, it only needs to understand that the intervals 
of unknown parameter X can be obtained through Eq. (12). 
Because the inverse function is the linear combination of 
univariate sub inverse functions, the response intervals of 

(10)

X=
←−
G (U ,Y ) ≃

n
∑

i=1

←−
Gi(U−i,Y )− (n− 1)

←−
G
(

UC,Y
)

,

(11)

←−
Gi(U−i,Y ) =

←−
G
(

UC
1 , · · ·,U

C
i−1,Ui,U

C
i+1, · · ·,U

C
n ,Y

)

,

(12)
X
I
i(li)=

←−
Gi

(

U
li

−i
,Y

I
)

=
←−
G

(

U
M
1 , · · ·,UM

i−1,U
li

−i
,U

M
i+1, · · ·,U

M
n ,Y

I
)

,

Figure 3  The two-dimensional PCS model

Figure 4  The schematic diagram of space collocation method
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inverse function XI at any joint CP 
[

U
l1
1 , · · ·,U

li
i , · · ·,U

ln
n

]

 
marked with triangle can be efficiently predicted through 
the linear combination of the response intervals of sub 
inverse function corresponding  to marginal CPs marked 
with dot.

In order to ensure the propagation of correlation, it 
is necessary to ensure that all CPs are located in the 
uncertainty domain of PCS model, which can be easily 
realized by eliminating samples outside the uncertainty 
domain using Eq. (9). As shown in Figure 4, by compar-
ing the all inverse intervals of IP-RU corresponding to the 
CPs marked with blue in the PCS model, the intervals of 
unknown parameters X with respect to the IP-MRU can 
be effectively obtained.

In summary, the proposed space collocation method 
based on DRD realizes the efficient decoupling of IP-
MRU, and transforms the IP-MRU into a small number 
of IP-RU under marginal CPs. Compared with MCS, the 
proposed method effectively avoids the solving of a large 
number of IP-RU under random samples, and relieves 
the complexity and efficiency of solving calculation.

3.3 � Interval Inverse Method Based on Affine Algorithm 
for IP‑RU

Through the above discussion, it can be known that 
the IP-MRU is transformed into a small number of 
IP-RU under marginal CPs of variables U. In this paper, 
the uncertainty propagation-based inverse method is 
adopted to realize the solving of IP-RU under each mar-
ginal CP.

Assuming that UP is a known marginal CP, the corre-
sponding IP-RU can be expressed as

Through establishing the interval matching model 
of the measured and calculated responses, this kind of 
IP-RU can be effectively solved [35].

(13)

X I(l1, · · · li, · · · , ln) =
←−
G
(

U
l1
1 , · · ·,U

li
i , · · ·,U

ln
n ,Y

I
)

≃

n
∑

i=1

←−
Gi

(

U
li
−i,Y

I
)

− (n− 1)
←−
G
(

UM,Y
I
)

=

n
∑

i=1

X I
i(li)− K I.

(14)

X=
←−
G
(

UP,Y
)

,Xi =
←−
Gi

(

UP,Y
)

, i = 1, 2, · · · ,m,

s.t.Y ∈ Y
I
.

where XL =
[

XL
1 ,X

L
2 , · · · ,X

L
m

]

 and X
R
=

[

X
R
1
,XR

2
,

· · · ,XR
m

]

 are the left and right boundary vectors of 
unknown parameters, which are the variables to be 
inversed. Y I denotes the interval vector of calculated 
responses corresponding to the given XL and XR . In this 
paper, the genetic algorithm (GA) is adopted to solve 
this optimization model in Eq. (15). In out layer, XL and 
XR will be updated using GA. In inner layer, the Y I with 
respect to the given XL and XR is calculated by the inter-
val propagation analysis.

Involving the interval propagation analysis in inner 
layer, the solving of Eq. (15) will consume a larger num-
ber of forward model. In order to obtain the calculated 
responses Y I effectively, the first-order high dimen-
sional model representation (HDMR) of forward model 
is further expressed as

where XC =
(

XL + XR
)/

2 is the decomposition mid-
point of the forward model.

For the jth univariate sub function Gij of the ith 
response Yi, the polynomial-based response surface 
model is adopted to establish the corresponding surro-
gate model

where h denotes the highest order of polynomial surro-
gate model, ai(s) is the coefficient of s-order sub term. The 
order number h is usually determined according to the 
nonlinear degree of system, while the 3-order is usually 
enough for the univariate sub function. In view of that, 
the polynomial surrogate model for univariate sub func-
tion can be easily established by taking a small number of 
samples. Due to the explicit polynomial model, the inter-
val X I can be directly substituted into Eqs. (16) and (18) 
to obtain the interval Y I

i  . However, the calculation results 
have the interval expansion problem because of the inter-
val operation. In order to the left and right boundaries 
of each sub function, the affine algorithm is employed to 
conduct the interval propagation.

Firstly, the variable Xj is rewritten by the affine form

(15)min

∥

∥

∥
Y I

(

XL,XR
)

− Y
I
∥

∥

∥
,

(16)

Y = G
(

X ,UP
)

≃

m
∑

j=1

Gj

(

X−j ,U
P
)

− (m− 1)G
(

XC,UP
)

,

(17)
Gj

(

X−j ,U
P
)

= Gj

(

XC
1 , · · · ,X

C
j−1,Xj ,X

C
j+1, · · · ,X

C
m,U

P
)

,

(18)Gij

(

X−j ,U
P
)

=

h
∑

s=0

ai(s)X
s
j ,
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where XC
j =

XU
j +XL

j

2
 , XW

j =
XU
j −XL

j

2
.

Substituting Eq. (19) into Eq. (18), the sub function 
can be expressed in Eq. (20) through the binomial 
theorem.

Because ξ ∈ [−1, 1] , if s is even, ξ s ∈ [0, 1] , if s is odd, 
ξ s ∈ [−1, 1] . Thus, the interval expansion problem is 
avoided effectively. Under these circumstances, the inter-
val [-1, 1] can be directly substituted into Eq. (20) to 
obtain the left and right boundary vectors of sub function 
Gij. For the convenience of expression, there is

The left and right boundary vectors of sub function Gij 
can be expressed as

where A denotes arbitrary integer. Similar with Eq. (13), 
substituting Eq. (22) into Eq. (13), the intervals Y I can be 
calculated.

Overall, the above interval inverse method based on 
HDMR and affine algorithm efficiently improves the 
inverse efficiency IP-RU, which can obtain the left and 
right boundaries of unknown parameter X only calling 
a few forward problem functions. In view of that, the 
intervals X I under each marginal CP all can be effectively 
obtained.

3.4 � Solving Procedure
To summarize, the solving process of the proposed uncertain 
method can be divided into three parts. The first part is the 
uncertainty modeling for the variables U and the measured 
responses Y, in which the variables U are quantified by PCS 
model, the measured responses Y are modeled by the inter-
val model. The second part is the decoupling of IP-MRU, the 
complex nesting solving process is transformed into a small 

(19)X̂j=XC
j + ξXW

j , ξ ∈ [−1, 1],

(20)

Gij

(

X−j ,U
P
)

=

h
∑

s=0

aj(s)

(

XC
j + ξXW

j

)s

=

h
∑

s=0

h
∑

t=s

aj(t)

(

t
s

)

(

XC
j

)t−s(

XW
j

)s
ξ s.

(21)bj(t) =

h
∑

t=s

aj(t)

(

t
s

)

(

XC
j

)t−s(

XW
j

)s
.

(22)
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
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�
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P
�

= bj(0) +

h
�

s=1

�

max
�

0, bj(s)
�

s = 2A,
�

�bj(s)
�

� s = 2A+ 1,

GL
ij

�

X−j ,U
P
�

= bj(0) +

h
�

s=1

�

min
�

0, bj(s)
�

s = 2A,

−
�

�bj(s)
�

� s = 2A+ 1,

amount of IP-RU calculation through the proposed space 
collocation method based DRD. The third part is the solving 
of IP-RU under CPs, in which the inverse efficiency is effi-
ciently improved through affine algorithm and HDMR based 
on the polynomial response surface. The solving procedure 
is illustrated in Figure  5, and the inverse solving steps are 
described as follows.

Step 1. Establish PCS model and interval model to 
quantify the modeling parameters and the measured 
responses, respectively.

Step 2. Take the mean point of PCS model UM as the 
decomposition midpoint UC , and assign the marginal 
CPs U ik

−i.
Step 3. Construct the optimization matching model at 

marginal CP according to Eq. (15).
Step 4. Expand the performance function according to 

Eqs. (16) and (17).
Step 5. Establish the polynomial-based response sur-

face model of each sub function according Eq. (18).
Step 6. Calculate the response intervals of each sub 

function by using affine algorithm according to Eq. (22).
Step 7. Calculate the response intervals of the forward 

function according to Eq. (16).
Step 8. Inverse the interval of unknown parameters 

combing GA and steps 4–7.
Step 9. Calculate the intervals of unknown parameters 

at all joint CPs according to Eq. (13).
Step 10. Obtain the intervals of unknown parameters X 

by comparing the all inverse intervals corresponding to 
the CPs in the PCS model.

Figure 5  The inverse flowchart of IP-MRU
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4 � Examples and Discussions
In this Section, the effectiveness of the proposed uncer-
tain inverse method will be verified via two examples. 
In addition, the uncertain inverse results will be propa-
gated forward, and the accuracy of the proposed uncer-
tain inverse method can be verified by comparing the 
uncertain responses after propagation and the measured 
responses.

4.1 � Load Identification of Plane Truss
The 25 bar plane truss shown in Figure 6 is employed to 
illustrate the validity of the proposed uncertain inverse 
method. The horizontal span of truss is 91.44 m, the ver-
tical height is 15.24  m. The length L of each horizontal 
and vertical bar is 15.24 m. The joint node 12 is hinge-
supported, and the joint nodes 6, 8 and 10 are roller-
supported. The node 3 and node 5 are subjected to the 
vertical loads F1 and one horizontal load F2, respectively. 
The density and Poisson’s ratio of bar are 7800 kg/m3 and 
0.3. Theoretically, the elastic modulus E and the cross-
sectional areas A of bars are 200  GPa and 0.0052  m2, 
respectively. Considering the uncertainty of the mate-
rial and manufacturing process, the elastic modulus and 
cross-sectional area of some bars, there is a certain cor-
relation between these uncertain parameters. Table  1 
listed the number of bars and the left and right boundary 
of uncertain variables, and Table 2 showed the uncertain 
samples of elastic modulus and cross sectional area. Now, 
the vertical displacement intervals of node 3 and node 
7 are measured by experiments, which are δ3=[27.31, 
36, 17] mm, δ7=[54.19, 83.08] mm, and the loads F1 and 
F2 will be identified by the proposed uncertain inverse 
method.  

The forward model for laid identification is expressed 
as

Firstly, the PCS model is constructed according to the 
samples information to quantify the uncertain model 
variables. Through the PCA analysis, the PCA-based 
interval model is constructed. By combing the traditional 

(23)
{

δ3=G1(E1,E2,A1,A2,A3),

δ7 = G2(E1,E2,A1,A2,A3).

Figure 6  The 25-bar truss structure

Table 1  The information of uncertain variables

Uncertain variables Number of bar The interval

E1 (GPa) 12, 17, 20 [172, 220]

E2 (GPa) 14, 22, 23 [190, 242]

A1 (10-5 m2) 1, 11, 19 [474, 520]

A2 (10-5 m2) 10, 15, 25 [504, 546]

A3 (10-5 m2) 2, 3, 4 [530, 570]

Table 2  The uncertain samples of elastic modulus and cross-
sectional areas

No. E1 E2 A1 A2 A3

1 193.55 199.94 483.69 516.33 557.19

2 180.20 205.09 475.50 533.20 530.00

3 197.44 219.59 484.36 524.87 545.63

4 185.93 200.91 493.09 524.45 540.06

5 195.43 222.24 490.09 519.66 541.48

6 197.20 211.34 494.25 526.65 560.05

7 210.37 223.13 491.70 515.63 542.36

8 215.95 242.00 513.15 504.00 550.91

9 195.36 231.73 492.17 518.38 557.84

10 180.55 205.90 476.72 532.07 533.98

11 203.96 198.57 493.66 528.92 567.00

12 208.51 237.36 503.16 514.38 537.26

13 192.59 212.59 502.65 524.18 567.19

14 185.45 198.39 479.16 522.05 557.93

15 184.61 190.24 483.89 540.25 541.96

16 193.30 205.52 489.60 516.30 563.46

17 194.00 234.50 503.49 504.11 558.13

18 190.11 203.12 509.57 522.80 543.14

19 195.75 227.85 487.32 531.32 533.62

20 197.78 209.24 515.79 511.90 568.59

21 176.39 190.35 483.45 540.92 538.05

22 220.00 230.36 520.00 520.71 533.50

23 172.00 200.96 474.00 522.36 546.00

24 195.65 221.52 493.44 521.94 551.84

25 187.48 225.78 509.64 515.95 556.02

26 196.23 207.20 492.63 527.90 531.04

27 193.90 190.00 487.14 546.00 564.30

28 178.17 230.40 481.18 507.68 533.72

29 198.36 195.18 502.02 535.06 551.27

30 198.48 210.07 483.88 521.69 543.34

31 195.01 219.09 486.01 532.02 539.27

32 208.32 203.44 501.86 533.46 558.00

33 200.77 208.20 508.35 517.63 555.15

34 199.62 213.70 495.37 529.31 570.00

35 183.58 205.11 496.05 514.84 549.93
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interval and PCA-based interval model, the PCS model is 
established, which can be expressed as Eq. (24).

where U=[E1, E2, A1, A2, A3]T, and the mean point of the 
established PCS is UM=[194.3425, 212,3031, 493.6670, 
523.3977, 549.1200]T.

The four boundary vectors are

The eigenvector matrix is

In view of that, the proposed space collocation method 
is adopted to decouple the IP-MUS. The inverse function 
can be expressed as Eq. (27).

For each sub inverse function, 9 marginal CPs are 
taken. Thus, this complex IP-MUS is transformed into 41 
IP-RU. For each IP-RU, the interval inverse method based 
on DRD and affine algorithm is adopted to inverse the 
intervals of unknown parameters X. Firstly, the forward 
function is reconstructed by HDMR, and the each uni-
variate sub function about X is further approximated by 
using the polynomial-based surrogate model. Because of 
the explicit expression of the surrogate model, the affine 

(24)
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{

U |UL ≤ U ≤ UR ∩ ZL ≤ PT
(
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}

,
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algorithm is employed to realize the interval propagation. 
Under these circumstances, the IP-RU with respect to 
each marginal CP is effectively solved. According to the 
inverse intervals of unknown parameters X at 45 mar-
ginal CPs, the intervals at all joint CPs (95 =59049) can 
be obtained using Eq. (27). It is found through calcula-
tion that there are 13008 CPs in the PCS model. Finally, 
the interval of unknown parameters X can be effectively 
obtained by comparing the all inverse intervals corre-
sponding to these CPs in the PCS model, the correspond-
ing inverse intervals are F1=[2092.6867, 2726.4576] kN 
and F1=[1375.7688, 2238.2330] kN.

In order to illustrate the accuracy of the proposed 
uncertain inverse method, the inversed intervals of 
uncertain parameters and PCS model of model variables 
are brought into the system model, and the forward prop-
agation calculation is conducted by MCS. The intervals of 
calculated responses and measured responses are listed 
in Table 3. It can be found from Table 3 that the calcula-
tion interval is consistent with the measured interval. The 
maximum errors of left and right boundaries are 1.05% 
and 1.43%, respectively. These results represent that the 
proposed uncertain inverse method is effective and pow-
erful for IP-MRU, which only highly improve the inverse 
efficiency, but also accurately identify the intervals of 
unknown loads.

4.2 � Parameter Identification of Bimetal Beam
In the service process of mechanical equipment, due to 
the heat generated inside the structure and the change of 
working external environment temperature, the mechan-
ical component and structure are subjected to thermal 
load, and then the structure thermal deformation and 
thermal stress are caused. Therefore, it is necessary to 
conduct thermo-mechanical coupling analysis of struc-
ture. During the thermo-mechanical coupling analysis, 
the thermal expansion coefficient is a key model param-
eter, which reflects the tendency of material to change its 
shape and density in response to a change in tempera-
ture. The larger the thermal expansion coefficient is, the 
greater the shape change of structure is affected by tem-
perature. Therefore, it is of great significance to obtain 
the effective thermal expansion coefficient for structural 
reliability analysis and design.

Table 3  Interval comparison of the calculated and measured 
responses

Calculated responses Measured responses Error

δ3 [27.2484, 36.5655] [27.3100, 36.1700] [0.23%, 1.09%]

δ7 [53.6210, 84.2714] [54.1900, 83.0800] [1.05%, 1.43%]
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In this example, a coupled thermo-elasticity problem 
of bimetallic beam bonded by two materials is consider-
ing. The structure model of bimetallic beam is shown in 
Figure  7. Due to the different thermal expansion coeffi-
cient, the thermal deformations of the upper and lower 
beams are different, which will lead to the deflection 
deformation of bimetallic beam. Now, the thermal expan-
sion coefficients of the upper and lower beams will be 
identified according to the deformations at two nodes as 
shown in Figure  7. For this bimetallic beam model, the 
initial temperature of bimetallic beam is 25 ℃, and the 
temperature rises to 125 ℃. The displacements of node 
1 and node 2 in Z direction are measured, which are 
δ
I
1 = [6.2596, 8.7268] mm and δI2 = [3.8426, 5.3574] mm, 

respectively. The forward model for parameter identifica-
tion is expressed as

where δ1 and δ2 are the displacement responses at node 
1 and node 2, which are obtained by the finite element 
model. Considering that the material properties are 
affected by temperature, the sum of elastic modulus of 
two metal beams E1 and E2 are regarded as the uncertain 
variables, and the corresponding samples are shown in 
Table  4. α1 and α2 are the unknown thermal expansion 
coefficients that need to be inversed.

The proposed uncertain inverse method is used to real-
ize the uncertainty identification of thermal expansion 
coefficients. Firstly, the PCS is established according to 

(28)
{

δ1=G1(α1,α2,E1,E2),

δ2 = G2(α1,α2,E1,E2),

the samples provided in Table 3, the analytic expression 
of PCS model is

where the eigenvector matrix PT =

[

0.6734 0.7393

−0.7393 0.6734

]

 , 

the mean point of PCS model EM =

[

137.1800

129.9567

]

 , the 

boundaries EL =

[

127

120

]

 , ER =

[

147

140

]

 , ZR =

[

−9.8993

−5.8835

]

 , 

and ZR =

[

9.5170

5.9836

]

.

Afterwards, the space collocation method based on 
DRD is adopted to decouple the IP-MRU, in which 7 
marginal CPs are arranged on two expansion axis. At 
each marginal CP, the corresponding IP-RU is effectively 
solved by the proposed interval inverse method based on 
HDMR and affine algorithm. Finally, the intervals at all 
joint CPs are obtained using the inverse results at mar-
ginal CPs. The established PCS model and all CPs are 
shown in Figure  8. The intervals of thermal expansion 
coefficients α1 and α2 are effectively obtained by compar-
ing the all inverse results corresponding to the CPs in the 
PCS model. The inversed thermal expansion coefficients 
are αI

1 = [17.9979, 24.1330] 10-6/℃ and αI
2 = [3.8053, 

5.4069]10-6/℃.
It can be found from the above inverse results that 

the thermal expansion coefficient α1 is much larger 
than α2 , thus the deformation of beam 1 is larger than 
that of beam 2 under the same temperature rise. How-
ever, because the two beams are bonded together, the 
deformation of beam 1 is restrained. In view of that, the 
whole metal beam produces the upward deflection defor-
mation. Figure  9 shows the deflection deformation of 
bimetallic beam under different thermal expansion coef-
ficients and elastic modulus. In order to further verify the 
effectiveness of the proposed uncertain inverse method, 

(29)
�P=

{

E

∣

∣

∣
EL ≤ E ≤ ER ∩ ZL ≤ PT

(

E − EM
)

≤ ZR
}

,

Figure 7  The structure of bimetallic beam

Table 4  The samples of elastic modulus for two metal beams

No. E1 (GPa) E2 (GPa) No. E1 (GPa) E2 (GPa)

1 127.00 127.67 11 131.40 124.40

2 147.00 132.00 12 131.80 121.47

3 131.00 127.33 13 134.60 120.00

4 135.00 129.33 14 135.40 128.40

5 139.00 134.67 15 137.00 130.00

6 143.00 131.00 16 138.20 124.53

7 136.20 127.87 17 139.40 140.00

8 133.00 127.00 18 143.80 136.80

9 138.20 136.33 19 141.40 135.33

10 138.60 130.00 20 142.60 135.00 Figure 8  The CPs for solving IP-MRU
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the inverse results are substituted into the forward model 
for propagation analysis. The calculated responses inter-
vals and measured responses interval are compared in 
Table 4. It can be found from Table 5 that the errors of left 
and right boundaries at node 1 are [0.9706%, 0.9247%], 
the errors of left and right boundaries at node 2 are 
[0.9695%, 0.9236%]. These comparison results illustrate 
that the effectiveness of the proposed uncertain inverse 
method, and the inverse results can provide reliable and 
effective guidance for structural optimization design.

5 � Conclusions
In practical engineering inverse problems, uncertainties 
often exist in the model itself and the measured responses 
at the same time. The solving of IP-MRU involves the 
complex multi-layer nesting because of the coupling of 
these multi-source uncertainties. In view of that, an effi-
cient uncertain inverse method based on convex model 
and DRD is proposed to realize the interval identification 
of unknown structural parameters in this paper.

In proposed method, PCS model can flexibly quantify 
the epistemic uncertainty of modeling variables with 
irregular boundaries. Compared with the traditional 
interval model, PCS model provides the more com-
pact uncertainty domain, and reasonably characterizes 
the correlation between uncertain variables. The space 
collocation method based DRD realizes the efficient 

decoupling of the IP-MRU. Through DRD for uncertain 
modeling variables, the IP-MRU are transformed into a 
few IP-RU at marginal CPs. Compared with MCS, the 
collocation method avoids a large number radon sam-
pling, which effectively improves the solving efficiency of 
IP-RU and reduces the inverse computational cost. Fur-
thermore, the interval inverse method based on HDMR 
and affine algorithm is proposed to realize the efficient 
solving of IP-RU. This method establishes the explicit 
surrogate model of the forward function by using HDMR 
and the polynomial-based response surface, and affine 
algorithm effectively improves the solving efficiency of 
IP-RU. The analysis results of two examples all indicate 
that the proposed uncertain inverse method provides an 
effective solving approach for IP-MRU, which can effec-
tively identify the intervals of unknown structural param-
eters according to the uncertain measured responses and 
system model.
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Figure 9  The deflection deformation of bimetallic beam under 
different structural parameters

Table 5  Interval comparison of nodes 1 and 2

Calculated 
responses

Measured responses Error

δ1 [6.1989, 8.8074] [6.2596, 8.7268] [0.9706%, 0.9247%]

δ2 [3.8053, 5.4069] [3.8426, 5.3574] [0.9695%, 0.9236%]
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