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Abstract 

To improve the vibration isolation performance of suspensions, various new structural forms of suspensions have 
been proposed. However, there is uncertainty in these new structure suspensions, so the deterministic research can-
not reflect the performance of the suspension under actual operating conditions. In this paper, a quasi-zero stiffness 
isolator is used in automotive suspensions to form a new suspension−quasi-zero stiffness air suspension (QZSAS). 
Due to the strong nonlinearity and structural complexity of quasi-zero stiffness suspensions, changes in structural 
parameters may cause dramatic changes in suspension performance, so it is of practical importance to study the 
effect of structural parameter uncertainty on the suspension performance. In order to solve this problem, three 
suspension structural parameters d0, L0 and Pc0 are selected as random variables, and the polynomial chaos expansion 
(PCE) theory is used to solve the suspension performance parameters. The sensitivity of the performance parameters 
to different structural parameters was discussed and analyzed in the frequency domain. Furthermore, a multi-objec-
tive optimization of the structural parameters d0, L0 and Pc0 of QZSAS was performed with the mean and variance of 
the root-mean-square (RMS) acceleration values as the optimization objectives. The optimization results show that 
there is an improvement of about 8%−10% in the mean value and about 40%−55% in the standard deviation of 
acceleration (RMS) values. This paper verifies the feasibility of the PCE method for solving the uncertainty problem 
of complex nonlinear systems, which provide a reference for the future structural design and optimization of such 
suspension systems.
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1  Introduction
The suspension system is an essential part of automobiles 
assembly, which affects ride comfort, handling stability 
and driving safety. In order to improve the suspension 
performance, various new structures for suspensions 
have been proposed. The suspension serves as a vibra-
tion isolation system, and much of its structural design 
depends on the type of vibration isolator. A quasi-zero 
stiffness isolator is a nonlinear vibration isolation sys-
tem with high static stiffness and low dynamic stiffness 

[1, 2]. Alabuzhev and Gritchin first put forward the con-
cept of quasi-zero stiffness [3]. And the basic principle 
of quasi-zero stiffness realization is to introduce a nega-
tive stiffness structure into a positive stiffness system [4, 
5]. Through theoretical and experimental analysis, some 
scholars proved that the system has a larger vibration 
isolation frequency range and higher vibration attenu-
ation rate compared with the system without negative 
stiffness [6, 7]. Although the quasi-zero stiffness isolator 
has attracted much attention from scholars because of its 
excellent vibration isolation performance, few scholars 
have applied it to suspensions and studied the influence 
of structural parametric uncertainty on its performance.
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Generally, vehicle parameters are considered as 
deterministic, but in fact there are still many uncer-
tain parameters, which can be made by design toler-
ance, manufacture error, and/or time-varying, which 
greatly affect vehicle dynamic performance. It is very 
important to consider the parametric uncertainty in 
the analysis of suspension performance [8, 9]. Nagy 
and Braatz classified uncertainty propagation methods 
available into three categories: (i) analytical methods, 
(ii) Monte Carlo simulation methods, and (iii) response 
surface methods, and stated that analytical methods are 
the most efficient [10]. The most accurate of these is 
Monte Carlo (MC) simulation, but this often requires 
thousands of deterministic simulations to obtain uncer-
tainty statistics, which is infeasible for computation-
ally expensive CFD simulations [11]. Dai et  al. applied 
MC method to the field of automobile suspension [12]. 
Chen et  al. used MC simulation results to verify the 
correctness of the application of unascertained theory 
in automobile suspension [13].

An alternative approach, which has been intensively 
applied in the past decades, is based on stochastic 
response surface (SRS). It describes the performance 
function/model output as a sum of elementary functions 
of stochastic input parameters. Polynomial chaos expan-
sion (PCE) as a functional approximation of the math-
ematical model belongs to the class of SRS approaches. 
PCE method was first proposed by Wiener [14]. It was 
mainly used to establish turbulence model. Now, PCE 
method has been widely used in many engineering fields, 
such as fluid mechanics [11], structural dynamics sys-
tems [15], controller design [16], multibody dynamics 
[17], aerospace technology [18] and power systems [19]. 
Many researchers found that the computational burden 
of the polynomial chaos expansion-based approach is 
significantly lower than that of the MC approach [11, 20, 
21].

In the past decades, air springs have been widely used in 
commercial vehicles because of their advantages of reduc-
ing weight, adjusting ride height, improving driving com-
fort, reducing road damage and structural noise [22, 23]. 
In this paper, a new type of automotive suspension, quasi-
zero stiffness air suspension (QZSAS), was proposed. The 
uncertainty of the parameters on suspension performance 
was analyzed using polynomial chaos expansion theory. 
Then, the statistical properties of QZSAS performance 
were taken as the objective function of optimization, which 
is a typical Pareto optimization problem [24, 25]. Genetic 
algorithm, which is widely used for passive and semi-active 
suspension optimization [26–28], is adopted to perform 
a multi-objective optimization of QZSAS with consider-
ing parameter uncertainty. To verify the effectiveness of 

proposed method, a bench testing for model validation and 
optimization simulation is carried out.

2 � Quasi‑Zero Stiffness Air Suspension System
2.1 � Mechanical Analysis
The QZSAS studied in this paper is a suspension for com-
mercial vehicles. The mechanism is supported in the verti-
cal direction by an air spring to provide positive stiffness. 
Two horizontally opposed cylinders are mounted on either 
side of the air spring for the purpose of providing negative 
stiffness. The stiffness of the system is the sum of the two 
stiffnesses. The negative stiffness can be changed by adjust-
ing the air pressure of the cylinders, which can make the 
system stiffness near the equilibrium position approxi-
mately zero, when the load is constant. However, in practi-
cal applications, the total system stiffness will not be zero 
but slightly greater than zero in order to ensure the stability 
of the system.

As shown in Figure 1, pressurized air in the cylinders and 
air spring is supplied by the high-pressure air tank, and the 
discharged air goes to the low-pressure air tank. As with 
conventional suspensions, shock absorbers are installed 
between the body and the frame, and the frame is con-
nected to the wheels (not shown in Figure 1).

When the vehicle is driven on a bumpy road, the body 
and frame will be displaced relatively to each other, the air 
spring will be stretched or compressed, and the cylinders 
will rotate as shown in Figure 2.

Since the quasi-zero stiffness air suspension uses the 
compressibility of air to produce vibration isolation. The 
relationship between air pressure and volume in air spring 
and cylinders will be given by the gas state equation in Eq. 
(1), where the sprung mass is considered to be constant.

where P0 is the initial state air pressure, V0 is the initial 
state volume, P is the air pressure in any state, V is the 
volume in any state, and n is the polytropic index.

(1)PV
n
= P0V

n

0 ,

Figure 1  Structure of quasi-zero stiffness air suspension
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The air spring selected is a diaphragm air spring. In 
its working air pressure range. During its effective area 
is almost unchanged. It will be simplified to a cylinder 
with constant piston area. For a certain displacement z, 
according to the gas state Eq. (1), the size of its force as 
shown in Eq. (2):

where As is the effective area of air spring, Ps0 is the air 
spring pressure in the equilibrium position, z0 is the 
height of air spring in the equilibrium position, and Pa is 
the atmospheric pressure.

Figure 3 shows the movement of left cylinder when the 
vehicle driving on the bumpy road. d0 is the distance from 
the piston to the back wall of the higher-pressure cham-
ber and L0 is the distance between the two hinge points 
of the cylinder when the vehicle is stationary. When the 
relative displacement occurs, the cylinder will rotate. θ is 
the cylinder rotation angle, z is the displacement of the 
body relative to the frame, d is the distance from the pis-
ton to the back wall of the high-pressure chamber and L 
is the distance between the two hinge points of the cyl-
inder when the vehicle is in motion. The geometric rela-
tionship of these parameters and variables can be given 
by Eqs. (3) (4) and (5):

(2)Fs = As

[

Ps0

(

z0

z0 − z

)ns

− Pa

]

,

(3)L =

√

L20 + z2,

Then, through mechanical analysis, the fore of negative 
stiffness cylinder in the vertical direction can be given by 
Eq. (6):

where Ac is the effective area of the cylinder, Pc0 is the 
cylinder equilibrium position air pressure, and nc is the 
gas polytropic index inside the cylinder.

After determining the forces provided by the positive 
and negative stiffnesses system, the dynamic equations of 
the system can be given by Eq. (7) according to the quasi-
zero stiffness 1/4 air suspension model shown in Figure 4. 
Where C is the damping coefficient and Kt is the tire stiff-
ness. The F value can be obtained from Eq. (8):

(4)sin θ =
z

√

L20 + z2
,

(5)�d =

√

(

L20 + z2
)

− L0.

(6)Fc = 2Ac

[

Pc0

(

d0

d0 +�d

)nc

− Pa

]

sin θ ,

(7)
{

m1z̈1 + C(ż1 − ż2)− F = 0,

m2z̈2 − C(ż1 − ż2)+ Kt(z2 − q)+ F = 0.

(8)F = Fs(z1 − z2)+ Fc(z1 − z2)−m1g ,

(a) Movement of the suspension when the distance increasing

(b) Movement of the suspension when the distance decreasing

Figure 2  Suspension movement when the distance between the 
bod and the frame changing

Figure 3  Geometric relationship of cylinder motion
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where Fs(z1 − z2) is a function of the distance (z1 − z2) 
between the body and frame, and similarly for Fc(z1 − z2).
These two can be calculated separately by Eqs. (2) and (6).

2.2 � Experiment and Validation
Figure 5 shows the construction of the test bench for the 
QZSAS. This servo system consists mainly of a hydrau-
lic cylinder, controlled by a servo valve and controller. 
A single channel servo-hydraulic system is used to cre-
ate various ideal excitations such as sinusoidal excita-
tion. Two sets of tests are conducted, static and dynamic 
experiments.

For static experiment, Air spring pressure is set at 
155 kPa and the spring mass is 690 kg. Cylinder air pres-
sure increased from 196 to 378 kPa. Figure 6 shows the 
mechanical characteristics of QZSAS at different air 
pressures, it can be seen that as the air pressure of nega-
tive stiffness system increases, the curve changes more 
and more gently. Static experiments show that it is feasi-
ble to change the stiffness of the whole system by chang-
ing the air pressure of the cylinder, and the whole system 
can reach quasi zero stiffness.

In order to further study the vibration isolation per-
formance of QZSAS, each frequency response test was 
conducted, and the test items are shown in Table 1. Fig-
ure  7 shows the suspension force transfer rate. It can 
be clearly seen that the vibration isolation performance 

Figure 4  Simplification of 1/4 quasi-zero stiffness air suspension

Figure 5  Experimental setup of QZSAS

Figure 6  Static characteristics of QZSAS at different air pressures of 
negative stiffness

Table 1  Dynamic characterization experiment

Group Load (kg) Ps0 (kPa) Pc0 (kPa) Frequency (Hz)

1 690 255 − 0.2, 0.4,…, 5, 6, 7, 
8, 92 800 280 −

3 690 255 250

4 690 255 330

5 800 280 330

Figure 7  Force transmissibility of QZSAS and air spring
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of QZSAS is better than that of air spring in the low 
frequency band, and no obvious resonance peak will 
appear. At the same time, as the load increases, the 
vibration isolation performance of QZSAS becomes 
better than that of air spring. Therefore, it can be seen 
that the performance of QZSAS is better than that of 
the ordinary suspension with air spring only.

3 � Uncertainty Modeling Base on PCE
3.1 � Polynomial Chaos Expansion Method
The PCE method is actually an alternative model 
approach. For a complex model of a sufficiently smooth 
black-box system in probability space, as represented by 
Eq. (9):

where X is the input to the black box and Y is the output 
of the black box, but the correspondence is not known. 
Usually, black box systems are highly nonlinear and dif-
ficult to express in explicit terms. The essence of poly-
nomial chaos expansion is to approximate this black box 
by a set of polynomials. This alternative model can be 
expressed as Eq. (10):

where ci is the coefficient to be solved; ξi is the uncer-
tainty variable obeying the standard normal distribution; 
Γi(ξ) is Hermite orthogonal polynomial, whose general 
formula can be expressed as Eq. (11):

where dim is the number of random variable dimensions. 
And the ξ = [ξi1, ξi2, ..., ξidim].

In practical applications, it is not possible to expand 
the polynomial by an infinite number of terms. Usually 
the s-term truncation is taken to approximate the system 
output, and the above equation can be approximated in 
the form of Eq. (12):

The recursive formula will be used instead of the defin-
ing equation of Eq. (11), which facilitates the proce-
dural implementation of the chaotic polynomial, and the 

(9)Y = f (X),

(10)

Y = c0 +

n
∑

i1=1

ci1Ŵ1(ξi1)+

n
∑

i1=1

i1
∑

i2=1

ci1i2Ŵ2(ξi1 , ξi2)

+

n
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ci1i2i3Ŵ3(ξi1 , ξi2 , ξi3) · · ·

(11)Ŵdim(ξ) = (−1)dime
1
2
ξTξ ∂dim

∂ξi1 , · · · , ∂ξidim
e−

1
2
ξTξ

,

(12)Y ≈

s−1
∑

i=0

ciŴi(ξ).

recursive formula is shown in Eq. (13). Here i is the order 
of the Hermite polynomial.

For computational convenience, the Hermite polyno-
mials are normalized by dividing each term by the square 
root of the factorial of the order. The Hermite polynomi-
als after normalization of the first 6 orders are given by 
Table 2.

The solution of the polynomial chaos coefficients ci is 
a crucial step. In general, the solution of the coefficients 
can be classified as intrusive or non-intrusive. For the 
black-box problem, it is not easy to use the invasive solu-
tion because the specific expression of the initial model 
cannot be determined, so the noninvasive method is cho-
sen to calculate the coefficients. There are two commonly 
used methods for non-invasive solutions, the Galerkin 
projection method and the collection method. The col-
lection method is easier to implement than the Galerkin 
method, especially for nonlinear systems [29], and this 
paper used the collection method for solving the polyno-
mial chaotic coefficients.

The key step is to select and combine the collocation 
points. For the random variables obeying Gaussian sto-
chastic process, the expansion base should be chosen 
as Hermite orthogonal polynomial. Assuming that the 
order of expansion is m, then the collocation points can 
be chosen as the roots of (m+1)th Hermite orthogo-
nal polynomials [30]. The collocation points cannot be 
directly input to the system, therefore, they need to be 
transformed into input variables. Taking a random vari-
able obeying Gaussian distribution as an example, the 
input variable x = σξ+µ, where µ, σ are the prior mean 
and standard deviation of the input random variables. 
The process of calculating the output response statistics 
using the PCE method is shown in Figure 8.

If only collocation points obtained by finding the 
roots of the polynomial are selected for the calculation, 
it may lead to inaccurate calculation of the coefficients. 

(13)







Ŵ1(ξ) = 1,

Ŵ2(ξ) = ξ ,

Ŵi(ξ) = ξ Ŵi−1(ξ)− (i − 2)Ŵi−2(ξ) (i > 3).

Table 2  The normalized Hermite polynomials

Polynomial Order Hermite polynomials

0th 1

1st ξ

2nd 1
√
2

(

ξ2 − 1
)

3rd 1
√
6

(

ξ3 − 3ξ
)

4th 1

2
√
6
(ξ4 − 6ξ2 + 3)

5th 1

2
√
30

(

ξ5 − 10ξ3 + 15ξ
)
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In order to minimize the influence of each group of 
collocation points on the response surface, more col-
location points can be introduced to solve the coef-
ficients. The number of groups of collocation points is 
only needed to be more than the total number of coeffi-
cients to be solved, and the polynomial coefficients can 
be obtained by solving the system of linear equations 
shown in Eq. (14):

where N is the total number of sampling points, and s is 
the number of coefficients to be solved.

Since the orthogonal polynomial has the property of 
weighted orthogonality, its mean and variance can be 
found more quickly from the coefficients of the chaotic 
polynomial. Eq. (15) is the mean solution of the system 
response Y. Eq. (16) is the variance solution of the sys-
tem response Y. The first coefficient of the polynomial 
is the mean of the response, and the sum of the squares 

(14)









Ŵ0(ξ0) Ŵ1(ξ0) · · · Ŵs−1(ξ0)

Ŵ0(ξ1) Ŵ1(ξ1) · · · Ŵs−1(ξ1)
.
.
.

.

.

.
.
.
.

Ŵ0(ξN ) Ŵ1(ξN ) · · · Ŵs−1(ξN )

















c0
c1
.
.
.

cs−1









=









Y (ξ0)

Y (ξ1)
.
.
.

Y (ξN )









,

of the coefficients from the second term to the last term 
is the variance of the response. After the PCE model is 
obtained, the statistical distribution of the response can 
be found by bringing in the alternative model using MC 
method for sampling:

where g(ξ) is a function of the polynomial alternative 
model and f(ξ) is the power function of the polynomial 
expansion.

3.2 � Using PCE on the QZSAS
The QZSAS in this paper is a strongly nonlinear system 
whose mathematical model has been presented in previ-
ous section. The parameters of the suspension are given in 
Table 3. ns, nc are the air polytropic index of the air spring 
and cylinder, respectively. d0, L0 have the meanings shown 
in Figure 3, d0 is the distance between cylinder piston and 
end face at the state shown in Figure 1. And L0 is the cylin-
der node distance. Ac is the piston area of the cylinder, As is 
the effective area of the air spring, C is the damper damp-
ing factor of QZSAS, which can be seen in Figures 1, 2, and 
4. And the mass of the wheel is denoted as m2, the mass of 
the body is denoted as m1. Kt is the stiffness of a single tire, 
which can be seen in Figure 4. z0 is the height of air spring 
when QZSAS is in the state shown in Figure 1. Ps0 and Pc0 
are the air pressure of air spring and cylinder, respectively, 
when the QZSAS is in the state shown in Figure  1. The 
MATLAB/Simulink based simulation model of QZSAS is 
established through the data in Table 3.

(15)µY =

∫

�

g(ξ)f (ξ)dξ = c0,

(16)σ 2
Y =

∫

�

g2(ξ)f (ξ)dξ − µ2
Y =

s−1
∑

i=1

c2i ,

Figure 8  Process for calculating output response statistics using the 
PCE method

Table 3  Parameters of QZSAS

Parameters Value

Air polytropic index ns, nc 1

Cylinder node distance L0 (m) 0.467

Distance between cylinder piston and end face d0 (mm) 32

Cylinder piston area Ac (m
2) 0.0314

Effective area of air spring As (m
2) 0.0421

Shock absorber damping factor C (N·s/m) 2000

Wheel mass m2 (kg) 100

Body mass m1 (kg) 800

Tire stiffness Kt (N/m) 243000

Initial height of air spring z0 (m) 0.275

Air spring initial air pressure Ps0 (kPa) 288

Cylinder initial air pressure Pc0 (kPa) 300
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The main QZSAS parameters are selected as random 
variables in this paper. Their magnitudes are taken into 
account due to manufacturing and installation tolerance, 
sensor accuracy, equipment errors and other uncertain-
ties. Since the QZSAS has multiple components, errors 
are inevitable in the manufacturing and installation pro-
cess. d0 and L0 as non-manufacturing quantities, whose 
magnitudes are determined by other manufacturing 
quantities, have a wide range of variation due to instal-
lation and manufacturing errors, so they were selected as 
uncertain parameters.

Pc0 is the air pressure of the cylinder at the balance 
position of the suspension system. Its value is deter-
mined by the delayed effect of the air during inflation, the 
closing accuracy of the solenoid valve, and the accuracy 
of the air pressure sensor. Its actual value is inconsist-
ent with the expected size during inflation, and there is 
a fluctuation range, so Pc0 was chosen as a parameter of 
uncertainty analysis.

The above parameters are affected by many mutually 
independent random factors, and the impact of each 
factor is very small. These parameters can be seen as 

(17)a, fd ,
Fd

G
≈

s−1
∑

i=0

cpiŴi(Pc0),

(18)a, fd ,
Fd

G
≈

s−1
∑

i=0

cdiŴi(d0),

(19)a, fd ,
Fd

G
≈

s−1
∑

i=0

cliŴi(L0),

obeying a normal distribution, the mean value of d0, L0 
and Pc0 is in the Table 3. If the coefficient of variation ζ is 
taken as 10%, their probability density distribution can be 
given in Figure 9.

After determining the uncertain parameters, the 
QZSAS is regarded as a nonlinear black box system, and 
the Matlab/Simulink based model is used instead. The 
model can be built from the differential Eq. (7).

The uncertain parameters matching with the stand-
ard normal distribution are added into the simulation 
model. To determine the effect of parameters uncertain-
ties on suspension performance, the body acceleration 
a, suspension dynamic deflection fd,  and wheel relative 
dynamic load Fd/G used to evaluate the suspension per-
formance are obtained. The body acceleration a is the 
main indicator to evaluate the smoothness of the vehicle. 
The dynamic suspension deflection, which is defined as 
the relative displacement of the body and the frame, is 
related to its limit travel. And its improper fit increases 
the probability of hitting the limit and makes the smooth-
ness worse. The relative dynamic load of the suspension 
is the ratio of wheel dynamic Load Fd between static load 
G. Where dynamic load Fd equals to Kt(z2−q), static load 
G equals to (m1 + m2)g. The relative dynamic load affects 
the adhesion effect between the wheel and the road, and 
is related to driving safety. The expression of polynomial 
chaos is obtained, as given in Eqs. (17)‒(19).

The coefficients of polynomial chaos can be calculated 
by Eq. (14), and the mean and variance of a, Fd/G, and fd 
can be quickly calculated by Eqs. (15) and (16). If further 
distribution of the output response is desired, the sam-
pling points can be brought into PCE with the help of the 
MC method.

Figure 9  Distribution of random variables with a variance coefficient (ζ = 10%)
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4 � Uncertainty Analysis of QZSAS
Three road profile excitations are selected in this paper: 
sine excitation, step excitation, and full frequency band 
excitation. For sine excitation, the signal with an ampli-
tude of 0.1 m and frequency 1 Hz was used to do the 
simulation. For the step excitation, the jump time is 
the first 1 s, and its amplitude is 0.05 m. Full frequency 
band excitation consists of a series of sine signals with 
an amplitude of 0.1 m, the lowest frequency sine signal is 
0.1 Hz the largest frequency sine signal is 30 Hz, and the 
individual sine signals are spaced 0.1 Hz apart. And the 
statistical index of the output response under each exci-
tation is derived.

For the input of sinusoidal pavement, the coefficient 
of variation of d0, L0 and Pc0 is 0.1, and their distribu-
tions are shown in Figure  9. The corresponding output 
responses of performance variables are shown in Fig-
ures 10, 11 and 12.

It can be seen that in comparison, the uncertainty of Pc0 
has the largest effect on the standard deviation response 
of sprung mass acceleration, and the effects of d0 and L0 
on the standard deviation are very close. The effects of 
three parameters on the mean acceleration response are 
almost the same. The acceleration distribution at the top 
is more dispersed compared to that at the bottom.

Figure 11 shows each of three random variables on the 
dynamic deflection response of the suspension. Pc0 is 
still the random variable that affects the standard devia-
tion the most, and the other two random variables do not 
have very different effects on the standard deviation. The 
mean values of the deflection responses of three random 
variables are almost the same.

The effects of Pc0, L0 and d0 on the dynamic load 
response of the suspension are given in Figure  12. The 
effects of three random variables on the mean and vari-
ance of the dynamic load response are almost the same as 
the acceleration and dynamic deflection.

To verify the correctness of the PCE method, a sto-
chastic simulation was carried out using the MC method 
and compared with the PCE-MC method. The PCE-MC 
method means that the sampling points are brought into 
the PCE alternative model rather than into the actual 
model as in the MC method. The number of the random 
sampling points selected was 500, and the probability 
density profile of Figure 13 was obtained after the numer-
ical simulation of the two methods. Where Figures 13(a), 
(b), (c), show the probability density functions of a, fd, 
and Fd/G.

From the Figure 9, it can be seen that the input random 
variables Pc0, L0 and d0 are obeying a symmetric normal 
distribution. As a comparison, from Figure 13, the distri-
butions of the output random variables a, fd, and Fd/G are 
not symmetrical but skewed distribution.

The distribution function of the output random vari-
ables calculated using the MC method and the PCE-MC 
method are almost the same. And the MC method is an 
exact verified random method. It also verifies the feasibil-
ity and validity of the PCE-MC method.

(a) Effect of d0 on body acceleration

(b) Effect of L0 on body acceleration

(c) Effect of Pc0 on body acceleration

Figure 10  Effect of different parameter uncertainties on the mean 
and standard deviation of body acceleration
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(a) Effect of d0 on dynamic deflection

(b) Effect of L0 on dynamic deflection

(c) Effect of Pc0 on dynamic deflection

Figure 11  Effect of different parameter uncertainties on the mean 
and standard deviation of dynamic deflection

(a) Effect of d0 on dynamic load

(b) Effect of L0 on dynamic load

(c) Effect of Pc0 on dynamic load

Figure 12  Effect of different parameter uncertainties on the mean 
and standard deviation of dynamic load
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To compare the effects of input random variables with 
different variation coefficients on the response of sys-
tem, two different coefficients of variation (10%, 20%) 
were selected. The mean and variance of the response 
of three random variables on the output of the system 
are obtained by the PCE method under the excitation of 
sinusoidal and step signals, respectively.

Figures 14, 15 and 16 show the effect of random vari-
ables with different coefficients of variation on the a, 
fd, and Fd/G responses. The variation coefficients of the 
random input parameters are chosen to be 10% and 20%. 
Figure 14(a) shows the random responses of body accel-
eration. It can be seen that when the variation coefficients 
of the random variable are 0.1, the effect differences of 

(a) Body acceleration distribution

(b) Suspension dynamic deflection distribution

(c) Wheel relative dynamic load distribution

Figure 13  Distribution of output random variables
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d0 and L0 on the mean value of the body acceleration 
responses is not significant, and the effect of Pc0 is greater 
than that of other random variables, and the highest 
point of the curve is the highest point of the ζ = 0 curve. 
That means the output response of the random variable 
mean is not equal to the mean of the output response. 
The mean response curve of the suspension dynamic 
deflection is given by Figures  14(b), 15(b) and 16(b), 
which shows that Pc0 is still the most significant random 
variable affecting the mean value of the system output. 
20% variation coefficient of Pc0 is the smallest ampli-
tude among all the curves. The other curves have more 

similar characteristics to Figures  14(a), 15(a) and 16(a). 
The mean of Fd/G responses are shown in Figures 14(c), 
15(c) and 16(c), and the same by Figure 16 is that Pc0 with 
20% coefficient of variation is the smallest amplitude 
among all the curves. This also illustrates that the output 
response of the system analyzed with the design value as 
input can show a large deviation due to the uncertainty of 
the parameters. Different random variables can have dif-
ferent effects on the system response.

To further quantify the random variables, the response 
mean-maximum (RMM) and response variance mean 
(RVM) are defined as indexes for evaluating the effect 

Figure 14  Effect of d0 with different coefficients of variation on the 
mean values of the responses under sinusoidal road excitation input

(a) Body acceleration response

(b) Suspension dynamic deflection response

(c) Wheel relative dynamic load response

Figure 15  Effect of L0 with different coefficients of variation on the 
mean values of the responses under sinusoidal road excitation input
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of input random variables on the output response under 
sinusoidal road excitation. The RMM is calculated by 
finding the maximum value of the output response mean, 

and the RVM is obtained by averaging the response vari-
ance at each simulated output point. The magnitudes 
of RMM and RVM for body acceleration with different 
input random variables at different variation coefficients 
ζ are given in Table 4. And the RMM equals to 23.9361 
m/s2 when the body acceleration under deterministic 
input. By comparison, it is found that the RMM of accel-
eration under random input is smaller than that under 
deterministic input. The effects of the random variable d0 
and L0 on the random variable acceleration a are closer 
under the same coefficient of variation. However, the 
effect of L0 is smaller than that of d0, and the variance 
of the output response is also the smallest. The output 
response is most sensitive to Pc0 under the same variation 
coefficient. The body acceleration response due to Pc0 as 
a random variable input changes the most with respect 
to the deterministic input for both RMM and RVM. The 
corresponding RMM and RVM changes when the varia-
tion coefficient increases, and the RVM increases more 
significantly. Accordingly, the output response is more 
dispersed, but the RMM shows a slight decrease. Simi-
larly, the RMM and RVM of the suspension dynamic 
deflection are also calculated in this paper. The value of 
its RMM is 0.3754 m under the deterministic input, as 
shown in Table 5. All three random variable inputs have 
a small effect on the RMM of the output response. As the 
same as the body acceleration, Pc0 as the random variable 
input causes the largest change in the response and gen-
erate the more dispersed output relative to the other two 
variables. The change in the variation coefficient ζ from 
10% to 20% causes a 4−6 times change in the RVM, and 

Figure 16  Effect of Pc0 with different coefficients of variation on the 
mean values of the responses under sinusoidal road excitation input

Table 4  Body acceleration RMM (m/s2), RVM (m2/s4) induced by 
random variable inputs with different coefficients of variation

Input random 
variables

ζ = 10% ζ = 20%

RMM RVM RMM RVM

d0 23.4278 0.6113 22.7419 2.3366

L0 23.4799 0.3698 22.9516 1.4444

Pc0 23.0401 1.9468 21.3869 7.5703

Table 5  Dynamic deflection of suspension RMM (m), RVM (m2) 
induced by random variable inputs with different coefficients of 
variation

Input random 
variables

ζ = 10% ζ = 20%

RMM RVM RMM RVM

d0 0.3784 0.0001 0.3740 0.0006

L0 0.3785 0.0001 0.3748 0.0004

Pc0 0.3760 0.0004 0.3618 0.0021

Table 6  Wheel relative dynamic load RMM, RVM induced by 
random variable inputs with different coefficients of variation

Input random 
variables

ζ = 10% ζ = 20%

RMM RVM RMM RVM

d0 2.2355 0.0060 2.1707 0.0228

L0 2.2436 0.0037 2.1948 0.0144

Pc0 2.1957 0.0190 2.0164 0.0701
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it can be seen that the variation coefficient ζ can have a 
greater effect on the dispersion of the output response. 
Table  6 gives the response of the last output response, 
wheel dynamic load, for different random input variables, 
and it can be seen that the effect on the output is Pc0 > d0 
> L0. Similarly, the increase of ζ causes the output vari-
able distribution to be more dispersed.

It is essential to pass a speed bump when vehicle driv-
ing on a city road, or suddenly a tire presses over a stone 
on a country road. In these cases, the performance of 
the vehicle suspension directly affects the smooth-
ness and safety of the vehicle. This paper also studies 
the influence of the parameters’ uncertainties on the 
vehicle suspension performance under the step road 

excitation, Figures 17, 18 and 19 show the vehicle body 
acceleration, suspension dynamic deflection, and wheel 
dynamic load response with time when the road surface 
is a step signal. It can be seen from Figures 17(a), 18(a) 
and 19(a) that the effect of different inputs on the body 
acceleration is not significant enough, but there is still 
a small difference. The body acceleration can recover to 
zero value faster when the coefficient of variation of Pc0 
is 20%. From Figures 17(b), 18(b) and 19(b), the mean 
suspension dynamic deflection output is more sensitive 
to the difference of the variation coefficient and param-
eters. There is an anomaly, that is, Pc0 and L0 are always 
in the position of greater than zero after 2.5 s when 

(a) Body acceleration response

(b) Suspension dynamic deflection response

(c) Wheel relative dynamic load response

Figure 17  Effect of d0 with different coefficients of variation on the 
mean values of the responses under sinusoidal road excitation input

(a) Body acceleration response

(b) Suspension dynamic deflection response

(c) Wheel relative dynamic load response

Figure 18  Effect of L0 with different coefficients of variation on the 
mean values of the responses under sinusoidal road excitation input



Page 14 of 19Xu et al. Chinese Journal of Mechanical Engineering           (2022) 35:93 

the variation coefficient ζ is 20%, which means that the 
deflection cannot recover to the original equilibrium 
position. And Figures  17(c), 18(c) and 19(c) show that 
the wheel relative dynamic load Fd/G is more insensi-
tive to the difference between the random variables and 
the coefficient of variation relative to the other two per-
formance parameters.

For a random road surface which the vehicle travels 
normally, the road velocity spectrum 

√

Ġq(ω) is white 
noise, and the root-mean-square value spectrum of the 
responses such as body acceleration, suspension 
dynamic deflection, and wheel relative dynamic load is 

the amplitude-frequency characteristic multiplied by 
the constant 

√

Ġq(ω) . So that one can use the ampli-
tude-frequency characteristics of the response volume 

(a) Body acceleration response

(b) Suspension dynamic deflection response

(c) Wheel relative dynamic load response

Figure 19  Effect of Pc0 with different coefficients of variation on the 
mean values of the responses under sinusoidal road excitation input

(a) Body acceleration response

(b) Suspension dynamic deflection response

(c) Wheel relative dynamic load response

Figure 20  Effect of d0 uncertainty on a, fd, and Fd/G vs. q̇ 
amplitude-frequency characteristics
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to the velocity input to qualitatively analyze the root-
mean-square value spectrum of the response.

Figures  20, 21 and 22 show the upper and lower 
bound of the amplitude-frequency characteristics of the 
response volume to velocity input obtained by using the 

Figure 21  Effect of L0 uncertainty on a, fd, and Fd/G vs. q̇ 
amplitude-frequency characteristics

(a) Body acceleration response

(b) Suspension dynamic deflection response

(c) Wheel relative dynamic load response

Figure 22  Effect of Pc0 uncertainty on a, fd, and Fd/G vs. q̇ 
amplitude-frequency characteristics
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PCE method. The variation coefficient of the random 
variables was all taken as 10%, and the magnitudes of the 
upper and lower bound curves were obtained by adding 
and subtracting twice the standard deviation from the 
derived mean value.

From Figure 20(a), it can be concluded that at frequen-
cies less than 1 Hz, the maximum and minimum bounds 
almost coincide.

In the low frequency band, the uncertainty of d0 has 
almost no effect on the magnitude-frequency character-
istics. When the frequency is in the range of 1−4 Hz, the 
maximum and minimum bound curves are not in coinci-
dence, and most of the magnitudes fluctuate within the 
maximum and minimum bounds due to the uncertainty 
of d0. When the frequency is greater than 4 Hz, the two 
curves overlap and the effect of d0 uncertainty on the 
amplitude-frequency characteristics becomes minor. 
As a comparison, Figure 21(a) shows the amplitude-fre-
quency characteristic curves of L0 as an input random 
variable. Unlike Figure 20(a), the difference between the 
maximum and minimum bounds is larger in the low fre-
quency band. The uncertainty of L0 in the low frequency 
region has a greater effect on the acceleration compared 
to d0. And the range of amplitude frequency response 
caused by L0 in the middle frequency band of 1−10 Hz 
is smaller than the range caused by d0 in Figure  20(a), 
which indicates that the body acceleration response 
is more sensitive to d0 than L0 in the middle frequency 
band. When the frequency is greater than 10 Hz, there is 
almost no difference between the curves of the two plots. 
The effect of Pc0 on the response is given by Figure 22(a). 
Comparing the other two plots, the difference between 
the maximum and minimum boundary curves is the larg-
est in both the low-frequency and the mid-frequency 
regions. It can be concluded that the uncertainty of Pc0 
has the largest effect on the body acceleration among 
three random variables. In the high frequency region, 
there is almost no difference between the effects of three 
random variables.

Figures 20(b), 21(b), and 22(b) give the effects of three 
random variables on suspension dynamic deflection, 
respectively. The influence region caused by d0 uncer-
tainty is mainly between 0.3 and 2 Hz, the influence 
region of Pc0 is within 1 Hz, and Pc0 has a large influence 
on suspension dynamic deflection up to 2 Hz, but the 
influence is more significant in the low frequency region. 
By comparison, it is found that in the low frequency 
region with frequency less than 0.8 Hz, the influence 
level of uncertainty arranges as Pc0 > L0 > d0, and in the 
middle frequency 0.83 Hz, the influence level of uncer-
tainty arranges as Pc0 > d0 > L0. At other frequency band, 
the three random variables have the same influence level.

For the dynamic wheel load, it can be seen from Fig-
ures  20(c), 21(c), and 22(c) that the influence region 
caused by d0 uncertainty is mainly between 1−10 Hz, 
the influence region of Pc0 is within 4 Hz, and Pc0 has a 
greater influence on the dynamic suspension deflec-
tion up to 10 Hz, but the influence is more significant in 
the intermediate frequency region. By comparison, it is 
found that in the low frequency region with frequency 
less than 1 Hz, the influence level of uncertainty arranges 
as Pc0 > L0 > d0, and in the intermediate frequency 1−5 
Hz, the influence level of uncertainty arranges as Pc0 > d0 
> L0. Three random variables have close influence level at 
higher frequency band.

5 � Uncertainty Optimization Using NSGA‑II
The parameters of QZSAS are related to the vibration 
isolation performance of the whole system, and it can be 
seen from the above section that the uncertainties gen-
erated by the QZSAS parameters due to manufacturing 
and installation tolerance, changes in ambient tempera-
ture, wear and tear of the mechanical structure and 
sensor errors will cause more or less changes in the sus-
pension performance parameters. Therefore, the suspen-
sion performance response is also a distribution rather 
than a specific value. In order to evaluate the suspension 
performance, the mean value is used to reflect the over-
all merit of performance and the standard deviation to 
reflect the dispersion of the performance, because it is 
also unreasonable if the optimization results make the 
suspension performance index too dispersed. Therefore, 
the RMS value of acceleration is used as the optimization 
target, and the parameters d0, L0, and Pc0 of QZSAS are 
optimized under the common class B road surface. And 
their coefficients of variation are all taken as 0.1, the dis-
tribution is shown in Figure 11. Therefore, the optimiza-
tion target is divided into two parts, the first part is the 
mean value of the RMS value of acceleration, and the 
other part is the standard deviation of the RMS value of 
acceleration, so that the overall comfort performance of 
QZSAS is ensured, and the comfort will not have a large 
deviation. Thus, the whole optimization process can be 
expressed by the following equation:

NSGA-II is used to optimize the quasi-zero stiffness 
air suspension parameters. NSGA-II algorithm, the fast 

(20)min µa, σa,

(21)s.t.







200 kPa ≤ Pc0 ≤ 600 kPa,

0.3 m ≤ L0 ≤ 0.7 m,

0.02 m ≤ d0 ≤ 0.05 m.
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non-dominated multi-objective optimization algorithm 
with elite retention strategy, is a multi-objective opti-
mization algorithm based on the Pareto optimal solu-
tion. The key step in the whole optimization process is 
to establish the relationship between the optimization 
design parameters and objectives. The output of the fit-
ness function is an indicator to assess the fitness of the 
population.

Another key step in NSGA-II is the selection of the 
pareto-optimal individual, which is simply explained as 
the Pareto-optimal individual if no individual exists for 
which any of the objectives is superior to the current 
individual.

The Pareto dominance relation is defined as follows: for 
a minimization multi-objective optimization problem, 
for n objective components fi(x) (i = 1, 2,..., n). Given any 
two decision variables Xa and Xb, Xa is said to dominate 
Xb if the following two conditions hold:

A decision variable is said to be a non-dominated solu-
tion if there are no other decision variables that can dom-
inate it.

Pareto rank: In a set of solutions, the Pareto rank of the 
non-dominated solution is defined as 1. By removing the 
non-dominated solution from the set of solutions, the 
Pareto rank of the remaining solutions is defined as 2, 
and so on, the Pareto ranks of all solutions in the set of 
solutions can be obtained.

The Pareto front of the suspension performance is 
shown in Figure  23. The performance points on the 
Pareto front are essentially equivalent, with each point 
being optimal until the two performance indices are 
weighted. For example, a point with a smaller µa must 
have a larger σa than another point.

The Pareto optimal solution set is shown in Figure 24. 
It can be seen that the optimized parameters are not in 
the middle of the optimization space. It can be seen that 
they are concentrated on the right side of the space and 
appear as long strips. The d0 of the optimal solution pre-
sents a dispersed form, which also coincides with the 
small effect of d0 on the suspension performance in the 
previous section. The Pc0 of the optimal solution is fairly 
concentrated around 400 kPa. The L0 of the optimal solu-
tion is also more concentrated and ranges from 0.48 to 

1. ∀i ∈ {1, 2, ..., n}, fi(Xa) ≤ fi(Xb),

2. ∃i ∈ {1, 2, ..., n}, fi(Xa) < fi(Xb).

Figure 23  Pareto frontier for targets

Figure 24  Optimized Pareto solution sets

Table 7  Initial design point and optimized points

Points P P1 P2 P3

d0(m) 0.0325 0.0337 0.0265 0.0380

L0(m) 0.467 0.4896 0.4768 0.4919

Pc0(kPa) 300 415 406 403

Figure 25  Objective values before and after optimization
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0.5 m. The reason for this result could be the different 
sensitivity of the acceleration of the suspension to each 
parameter.

In an attempt to visually compare the effect before 
and after optimization, three Pareto optimal solutions 
for every weight and the initial design point P have been 
selected to compare the target performance indices. 
Three optimal Pareto solutions (P1, P2, P3) with their 
corresponding ground indices have been marked in red 
in Figure 23, and their coordinates are shown in Table 7. 
Figure 25 shows the standard deviation and mean value 
of acceleration (RMS) before and after optimization. It 
can be seen that both the standard deviation and mean 
value have decreased, and the decline degree of stand-
ard deviation is particularly significant. The details of the 
improvement values are recorded in Table 8. The optimi-
zation results show that there is an improvement of about 
8%−10% in the mean value and about 40%−55% in the 
standard deviation of acceleration values (RMS).

6 � Conclusions
In this paper, PCE method is applied to the QZSAS to 
analyze the effects of parameters uncertainties on sus-
pension performance. The uncertainty parameters 
chosen in this paper are structural parameters of the 
suspension. The output responses were selected suspen-
sion performance parameters. The main conclusions are 
included as follows.

(1)	 By comparing with the MC method, it is found that 
the PCE method is feasible in solving the uncer-
tainty problem and can produce results very close 
to those of the MC method.

(2)	 Although the input variables follow a normal distri-
bution, the distribution of the output responses is 
not a symmetrically but a skewed distribution.

(3)	 The output response distributions of the suspension 
are related to input random variables, the variation 
coefficient of the inputs, and road profile excita-
tion. The sensitivity of the suspension performance 
parameters to different frequency road surfaces 
is different. The influence level of each structural 
parameter is focused on a certain frequency band.

(4)	 A multi-objective optimization of the structural 
parameters of QZSAS was performed with the 

mean and variance of the RMS acceleration values 
as the optimization objectives. There is an improve-
ment in both the mean value and standard devia-
tion of acceleration values (RMS).

This paper provides a theoretical basis for the design 
and optimization of suspensions. It is of practical impor-
tance to consider the uncertainties of parameters when 
designing a suspension. The mean value of the output 
performance parameters reflects the overall effect of the 
suspension design, and the standard deviation reflects 
the ability of the suspension to maintain performance. In 
the process of design and optimization, both mean and 
standard deviation must be considered for the superior 
performance of the suspension.
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Table 8  Objective values before and after optimization

Objects P P1 P2 P3

Values Values Upgrades (%) Values Upgrades (%) Values Upgrades (%)

µa 0.4394 0.3976 9.51 0.3964 9.77 0.4021 8.49

σa 0.0268 0.0158 41.26 0.0161 39.97 0.0124 53.65
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