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Abstract: Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is 
always not easy to obtain the information with high accuracy and low expense. Recently, many estimation methods have been put 
forward to solve such problems, in which Kalman filter becomes one of the most popular techniques. Nevertheless, the use of 
complicated model always leads to poor real-time estimation while the role of road friction coefficient is often ignored. For the purpose 
of enhancing the real time performance of the algorithm and pursuing precise estimation of vehicle states, a model-based estimator is 
proposed to conduct combined estimation of vehicle states and road friction coefficients. The estimator is designed based on a 
three-DOF vehicle model coupled with the Highway Safety Research Institute(HSRI) tire model; the dual extended Kalman filter 
(DEKF) technique is employed, which can be regarded as two extended Kalman filters operating and communicating simultaneously. 
Effectiveness of the estimation is firstly examined by comparing the outputs of the estimator with the responses of the vehicle model in 
CarSim under three typical road adhesion conditions(high-friction, low-friction, and joint-friction). On this basis, driving simulator 
experiments are carried out to further investigate the practical application of the estimator. Numerical results from CarSim and driving 
simulator both demonstrate that the estimator designed is capable of estimating the vehicle states and road friction coefficient with 
reasonable accuracy. The DEKF-based estimator proposed provides the essential information for the vehicle active control system with 
low expense and decent precision, and offers the possibility of real car application in future. 
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1  Introduction∗

 
Nowadays, vehicle active safety systems have attracted 

more attention than ever before due to the dramatically 
increasing demand for driving safety. Active control 
systems, such as anti-lock brake system(ABS), traction 
control system(TCS), and electronic stability program (ESP) 
have been developed to improve the safety, performance 
and efficiency of road vehicles. Customarily, the control 
algorithms involved are designed with the variation of 
vehicle states(such as the velocity and yaw rate) and 
driving environment(such as road friction) taken into 
consideration. For example, the goal of ABS, is to 
determine a optimal range of road wheel slip ratio that 
makes the most use of the corresponding tire-road friction, 
as shown in Fig. 1[1]. However, it is always expensive to 
measure the vehicle longitudinal velocity for calculating 
the wheel slip ratio and difficult to detect the road 
adhension coefficient for determining the optimal slip ratio 
range. 
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Fig. 1.  Adhesion coefficient versus slip curve 
 

In order to reduce the high cost associated with the 
measurement in active control, many estimation methods 
have been put forward to acquire vehicle states and road 
friction coefficient. Kalman filter has become one of the 
most popular techniques in recent years. Within this 
research field, BEST, et al[2], completed the combined 
estimation of vehicle states and parameters by 
supplementing vehicle parameters (such as the mass m, 
inertia moment Iz, and the distance between CG and front 
axle a) into the estimate state vector; but the effect of the 
change of road friction on state estimation was not 
considered. RAY, et al[3–4], applied the extended 
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Kalman-Bucy filter to estimate the vehicle states as well as 
tire forces based on an 8-DOF vehicle model, and 
compared the estimation results of tire forces with the 
simulation results from the tire model to determine the road 
friction coefficient. However, this method calls for 
hardware with high computational ability due to the 
complication of the vehicle model. This may cause 
difficulty in real-time implementation. WENZEL, et al[5–6], 
accomplished the simultaneous estimation of vehicle states 
and parameters using dual extended Kalman filter (DEKF) 
technique based on a 4-DOF vehicle model. This approach 
utilizes two extended Kalman filter (EKF) working in a 
parallel with state and parameter estimation and it can be 
implemented as a single EKF estimator for state or 
parameter, by simply “turning off” the other estimator. 
Therefore, it tends to be more flexible than merging them 
together in one large-scale EKF, as per Best. Nevertheless, 
no consideration regarding road adhesion has been given. 
GAO, et al[7] and ZONG, et al[8], respectively put forward 
the linear and nonlinear estimator based on bicycle model, 
and compared the estimation results with the off-line 
vehicle test data. Both works showed good results but 
suffer to the neglect of the change of road adhesion 
condition. In conclusion, three essential elements, i.e., the 
real time performance, the accuracy of estimation and the 
effect of road friction are ought to be emphasized within 
the estimation of vehicle dynamics. 

In this paper, a DEKF estimator designed based on a 
three-DOF vehicle model coupled with HSRI tire model is 
proposed to realize the simultaneous estimation of vehicle 
states and road friction. Firstly, the 3-DOF vehicle model 
and HSRI tire model are described in sections 2 and 3, 
respectively. Then the structure and the detailed design 
procedure are presented in sections 4 and 5. In section 6, 
the estimation outcomes are compared with the numerical 
results from CarSim and driving simulator experiments. 
Finally in sections 7 and 8, discussions and conclusions are 
addressed.  

 
2  Vehicle Model 

 
In Fig. 2, the 3-DOF vehicle model to be used for the 

estimator design is illustrated. This model is capable of 
representing the essential dynamic properties of a road 
vehicle, incorporating the longitudinal, lateral and yaw 
dynamics[9].  

The differential equations with respect to the longitudinal, 
lateral, and yaw dynamics are expressed as Eqs. (1) – (3), 
respectively: 

 
,x x ya v rv                  (1) 

 
,y y xa v rv                  (2) 

 
1 ,z
z

r M
I

                  (3) 

where  ax—Longitudinal acceleration of CoG (ms2), 
       ay—Lateral acceleration of CoG (ms2), 
       vx—Longitudinal velocity of CoG (ms), 
       vy—Lateral velocity of CoG (ms), 

r—Yaw rate of CoG ((°)s), 
CoG—Centre of gravity, 

Iz—Moment of inertia about yaw axis, 
Iz 1 353 kg • m2, 

         Mz—Torque around the z axle (N • m), 
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where  a—Distance between the CoG and the front axle, 
       a1.04 m, 

     b—Distance between the CoG and the rear axle, 
     b1.56 m, 

      tf—Front wheel track, tf1.481 m, 
      tr—Rare wheel track, tr1.486 m, 

      Fx—Longitudinal tire force (N), 
      Fy—Lateral tire force (N), 
      fl—Front left wheel, 
      fr—Front right wheel, 
      rl—Rear left wheel, 
      rr—Rear right wheel, 
      δ—Front wheel angle. 
 

 
Fig. 2.  Three-DOF vehicle model 

 
  The longitudinal acceleration ax and lateral acceleration 
ay are determined by Eqs. (5) and (6): 
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1 ( cos sin cosx x y xa F F F
m

δ δ δ          

_ fr _ rl _ rrsin ),y x xF F Fδ                (5) 
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_ fr _ rl _ rrcos ),y x xF F Fδ                  (6) 
 

where m is the vehicle mass, m1 231 kg. 
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3  Tire Model 

 
The choice of tire model would considerably influence 

the estimation of vehicle states and road friction 
coefficients in terms of accuracy and real-time property. 
The widely-used tire models, such as Magic Formula and 
Unitire, although possess high precision in representing tire 
dynamics, always involve relatively high computational 
effort due to the model complexity. This attribute would 
hinder the accomplishment of real-time estimation. The 
HSRI tire model, presented by Michigan Highway Safety 
Research Institute, is a semi-empirical nonlinear tire 
model[10–11]. Since the structure of this model is relatively 
simple, as Eqs. (7) and (8), less computational burden is 
likely to be introduced: 
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where  cs—Tire longitudinal stiffness coefficient, 

cα—Tire cornering stiffness coefficient, 
sx—Longitudinal slip rate of tire, 
sy—Lateral slip rate of tire, 
µ—Friction coefficient,  
Fz—Vertical tire force (N), 

 
1
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where  μ0—Limiting friction coefficient, 

As—Vehicle velocity factor,  
V—Wheel velocity contacting on ground (ms) 

Vx—Longitudinal component of wheel velocity 
(ms), 

Vy—Lateral component of wheel velocity (ms), 
Variables involved in the HSRI tire model are expressed 

as follows:  
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where  α—Side-slip angle, 

w—Wheel rolling rate (rads) 
R—Effective rolling radius, R0.310 8 m, 
l—Distance between the front and rare axle, 
l2.6 m, 
h—Hight of CoG, h0.375 m, 

δw—Steering wheel angle, 
iw—Ratio of steering wheel angle to front wheel 

angle. 
iw is the steering ratio, i.e. the ratio of steering wheel angle 
δw to the front wheel angle δ. It can be found that the 
variables aforementioned obviously depend on the 
longitudinal speed vx, lateral speed vv, and yaw rate r. The 
steering wheel angle δw and wheel speed wij can be 
measured using corresponding sensors and have been set up 
in most of the vehicles that equipped with ABS and ESP. 
The subscript i denotes the front tire (f) or rear one (r), and 
j denotes the left tire (l) or right one (r). 

The tire stiffness coefficients cs and cα are mainly 
influenced by tire vertical load Fz. In this paper, the tire 
stiffness coefficients to be used are identified based on the 
test data of Fx-s and Fy-alpha provided in CarSim. The 
interpolation method is employed to determine the stiffness 
values under specific vertical forces, as shown in Table 1.  
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Table 1.  Stiffness coefficient 

Vertical tire force FzN 1 200 2 400 3 600 4 800 
Stiffness coefficient  
cs(N • rad–1) 

26 500  53 570 84 060 110 230 

Stiffness coefficient  
cα(N • rad–1) 

35 400  70 500 104 000 125 350 

 
 

4  Structure of DEKF 
 

The DEKF adopts a “boot-strapping” procedure for 
combined estimation of vehicle state and parameter, using 
two EKFs operating and communicating in parallel, 
according to Refs. [12–13], and Refs. [5–6]. The working 
mechanism of DEKF incorporates the interactive 
“prediction” and “correction” between two sub-estimators, 
i.e., the state and parameter estimator, as shown in Fig. 3. 

 

 
Fig. 3.  Dual extended Kalman filter 

 
The state estimator fulfills the tasks of “prediction” and 

“correction” iteratively. The “prediction” for vehicle state, 
and error covariance of next time functions as follows: 

 
ˆ ( )s t x ˆ( ( 1), ( ),sf t u tx ˆ ( )),p tx         (22) 

 
T( ) ( ) ( 1) ( ) ,s s s s st t t t   J J QΦ Φ        (23) 

 
where the subscript s represents the vectors and matrices 
associated with vehicle states. ˆ ( )s tx and ( )s tΦ  
represent the prior estimate for the state and error 
covariance respectively, and sQ  is the process covariance 
matrix of the system. ( )s tJ  can be determined according 
to Eq. (24): 

 
( )s t J exp ( ( ) ) ( ) ,s st T t T∆ ∆ F I F        (24) 

 
where ( )s tF is the Jacobian matrix of ( )f  with respect to 

the state vector xs. T∆ is the sampling time of the system. 
The “correction” functionality comprises of three 

equations respectively for the calculation of Kalman gain, 
the correction of sate estimation and the correction of error 
covariance as expressed by Eqs. (25)–(27): 

 
T T 1( ) ( ) [ ( ) ] ,s s s s s s sK t t t   H R H HΦ Φ      (25) 

 
ˆ ( )s t x ˆ ( ) ( )[ ( )s st K t y t  x ˆ ( )],s s tH x       (26) 

 
( ) [ ( ) ] ,s s s st I K t   HΦ Φ             (27) 

 
where matrix ( )s tH  is the Jacobian matrix of ( )h  , i.e., 
the measurement equation, with respect to xs; sR  is the 
measurement covariance. 

The procedure for the design of parameter estimator is 
similar to that of the state estimator, which also consists of 
the prediction and correction functionalities, as shown in 
Eqs. (28)–(32):  

 
ˆ ( )p t x ˆ ( 1),p tx                (28) 

 
( ) ( 1) ,p p pt t   QΦ Φ             (29) 
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( ) [ ( ) ] ( ),p p p pt I K t t  HΦ Φ           (32) 

 
where subscript p represents the vectors and matrices 
associated with vehicle parameter. Hp is the Jacobian 
matrix of ( )h   with respect to the parameter xp, and Rp is 
the measurement covariance for the parameter estimator. 

 
5  Algorithm Design of DEKF 

 
Since there is the possibility that the tire-road adhesion 

condition might change during driving, the friction 
coefficient can be regarded also as a vehicle parameter, and 
thus to be estimated using the parameter estimator 
introduced above. In view of this attribute, the two 
sub-estimators involved in this paper are designed for 
vehicle state and road friction estimation, respectively. 

 
5.1  State and measurement equations 

Eqs. (1)–(17) are used to define the filter system 
equation sets f (•) and h (•), as shown in Eqs. (33) and (34): 

 
( ) ( ( ), ( ), ( ), ( )),s s pt f t t u t w tx x x        (33) 

  
( ) ( ( ), ( ), ( )),s py t h t t v t x x            (34) 

 
where the elements in state vector xs are carefully chosen as 
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T
_ _( , , , , , , , , ) ,s x y z x y ij x ij z ijv v r M a a s Fαx and the 

parameter vector is set to be fl fr rl rr( , , , ).p µ µ µ µx  
Here, ijα indicates fl fr rl rr( , , , ),α α α α and _x ijs denotes 

_ fl _ fr _ rl _ rr( , , , ).x x x xs s s s  For the convenience of estimator 
computation, the yaw moment zM  and the vertical forces 
of four tires _z ijF  are included in the state vector. It 
should be noticed that in this algorithm each tire-road 
friction is considered as an independent parameter. This 
feature makes it possible to treat the tire-road friction at 
different wheels independently when proceeding on an 
inhomogenous road surface.  

The choosing of measurement output for the Kalman 
filter is greatly depending on the structure of vehicle model 
and the states to be estimated. In this paper, 

1( ) ( , )yy t a r  and 2 ( ) ( , )x yy t a a are defined as the 
measurement outputs for the two sub-estimators 
respectively.  

 
5.2  Calculation of Jacobian matrix 

The Jacobian matrices sF , 1sH 2sH pH are computated 
using ( )f  and ( )h  , as shown in Eqs. (35)–(38):  
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where 1sH  represents the Jacobian matrix of 1( )y t  with 
respect to state xs, while 2sH  is the matrix of 2 ( )y t with 
respect to xs. The index m denotes the number of the states 
to be estimated (m18) and n the number of parameters 
(n4). 

In order to make the computation of Jacobian matrix Hp 
more efficient, the longitudinal slip stiffness cs and lateral 
slip stiffness cα are transformed into: 
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Therefore, the following expression can be established 

according to Eq. (9): 
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As a result, the relation between the tire force F and road 

friction µ of the HSRI tire model becomes obvious, as 
shown below: 
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5.3  Selection of measurement and process covariances 

Usually the measurement covariance R is obtained by 
taking some off-line sample measurements to represent the 
sensor noise while the process covariance Q is often used to 
delineate the uncertainty of the model. Empirically, the 
performance and convergence of the estimation algorithm 
are influenced by the selection of the parameters involved 
in these covariance matrices[14–15]. Therefore, some 
pre-simulation was conducted to determine a suitable set of 
measurement and process covariances. Detailedly, it was 
found the process covariance for the state estimator Qs need 
to surpass 10 000 18 18I  to guarantee decent estimation. 
While due to fact that the friction coefficient is no more 
than 1.2, the selection of covariance Qp turns out to be 
much smaller than Qs. The measurement covariances Rs, Rp 
and process covariances Qs, Qp are finally determined as 
follows: 
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where , ,x ya a rs s s represent the noise level of the sensors, 
which are regarded as 1% range of the measured data of 
white noise in this paper.  

0  0  0  0  0      
0  0  0  0  0      
0  0  0  0  0      

  
  
  
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6  Algorithm Simulation and Validation 

 
The designed DEKF algorithm is firstly implemented in 

Matlab/Simulink in CarSim enviroment. Here the CarSim 
vehicle model is regarded as a real test vehicle which 
provides the control inputs and measurement outputs for 
the DEKF. The numerical values of vehicle states from 
CarSim are compared with the estimation results delivered 
by the DEKF algorithm in three typical road adhesion 
conditions, i.e., the high-friction, low-friction and joint- 
friction road. The vehicle and tire parameters refer to a 
B-Class Hatchback which is provided in the above. 

 
6.1  Vehicle states estimation 

Before considering the performances of the DEKF 
algorithm which involves two estimators operating together, 
the validity of the state estimator is investigated in the first 
place. For this purpose, the road friction coefficient is set to 
be known while the parameter estimator for road friction 
evaluation is temporarily “turned off”. Detailedly, a 
“Double lane change” maneuver at 80 kmh on a road with 
friction coefficient 0.85 is chosen. The initial values of the 
EKF algorithm 0ˆx and 0̂

P are set as 0ˆx (803.6, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 000, 1 000, 1 000, 1 000), 

0̂
P I1818. The estimation results of longitudinal velocity 

vx, lateral acceleration ya and front tire slip angle fα shows 
good coherences with the outputs fromCarSim(Fig. 4). And 
the rear left(RL) tire forces calculated by HSRI tire model 
using the estimated vehicle states also presents excellent 
consistence with CarSim. These graphical results are 
believed to be able to confirm the validity of the state 
estimator in the DEKF structure. 

 
6.2  High friction road estimation 

On the basis of section 6.1, both of the state and 
parameter estimators in the DEKF are “turned on” in this 
section to perform the combine vehicle state and road 
friction estimation. An 80° steering wheel step input test 
with the initial speed of 80 kmh and 50% acceleration 
pedal is selected. This driving scenario involves both the 
variation in lateral and longitudinal dynamics and thus 
believed to be adequately general in representing normal 
driving conditions. The road friction coefficient in CarSim 
was set to be 0.8. The input signals of DEKF 

fl fr rl rr( ) ( , , , , )u t w w w wδ  are provided in Fig. 5, and the 
measurement outputs are set to be 1( ) [ , ]yy t a r  and 

2 ( ) [ , ].x yy t a a  
The initial values of DEKF algorithm 0ˆx and 0̂

P are set 
as 0ˆ s

x  (80/3.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 000,  
1 000, 1 000, 1 000), 0ŝ

P  I1818, 0ˆ p
x (1, 1, 1, 1), 

0
ˆ

p
P 0.02I44. Fig. 6 shows the estimation values of the 

tire-road friction coefficients at four wheels. It can be 
observed that the self-defined initial value set converges to 
0.8 quickly. Since the validation of the algorithm on joint 
friction road (will be presented in section 6.4) will 
incorporate both state and parameter estimation results on 

high and low friction road, the comparison between CarSim 
outputs and the DEKF algorithm is omitted here for brevity, 
so does that in section 6.3. 

 

 
Fig. 4.  Vehicle state estimation values 
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Fig. 5.  Input and output of DEKF on high friction road 

 
Fig. 6.  Estimation values of the tire-road friction    

coefficients at four wheels 
 
 

6.3  Low friction road estimation 
An 80° steering wheel step input test with the initial 

speed of 60 kmh is selected while the road friction 
coefficient is set 0.2 in CarSim. The initial values of 0ˆx  
and 0̂

P are set as 0ˆ s
x  (603. 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1 000, 1 000, 1 000, 1 000), 0ŝ
P  I1818, 0ˆ p

x (1, 
1, 1, 1), 0

ˆ
p
P 0.02I44. Fig. 7 illustrates the input and 

output for the DEKF estimator. The estimation results for 
the four wheel friction coefficients are presented in Fig. 8. 
Again, quick convergence from initial value 1 to 0.2 can be 
captured, which demonstrates the effectiveness of the 
DEKF algorithm. 

 
6.4  Joint friction road estimation 

A steering wheel step input maneuver with the 
acceleration pedal held at 100% and the initial speed set to 
be 60 kmh is simulated on a joint adhesion road to deliver 
a more comprehensive verification towards the DEKF 
algorithm. Here, the road property is specified as Fig. 9. 
For a virtual test section with a whole length of 200 m, the 
adhesion coefficient of the first 40 m section is fixed at 0.8, 
while the rest at 0.2. Fig. 10 shows the vehicle general 
trajectory subjecting to this driving scenario. The 
inconsistency fashion exhibited in the wheel speed time 
histories is due to the automatic shifting, as shown in Fig. 
11. The input and output values for the DEKF are shown in 
Fig. 12. It also can be observed that the measurement 
output of the DEKF in “jumps” when the vehicle proceeds 
from the low friction section to the high one (Fig. 12).  

The initial values of 0ˆx  and 0̂
P are set as 0ˆ s

x  
(603.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 000, 1 000,    
1 000, 1 000), 0ŝ

P  I1818, 0ˆ p
x (1, 1, 1, 1), 

0
ˆ

p
P 0.02I44. Fig. 13 shows the estimated values of the 

vehicle states and four wheel road friction coefficients. To 
study the impact of the measurement output on estimation 
results, the parameter estimator applies *

2 ( ) [ ]yy t a  
instead of 2 ( ) [ , ].x yy t a a  The road friction estimation 
results using the measurement output of *

2 ( ) [ ]yy t a  
shown in Fig. 14 are not as sound as Fig. 13. This is 
because that 2 ( ) [ , ]x yy t a a  denotes a mixed 
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measurement of both longitudinal and lateral movements 
while *

2 ( ) [ ]yy t a  only represents the lateral dynamics 
of the vehicle which tends to provide inadequate 
information for estimating. The deviation of the estimation 
value of the road friction coefficient from the real value 
from CarSim is chiefly due to the limitation of the HSRI 
tire model in terms of capture vehicle dynamics more 
accurately, but the results is fairly acceptable. 

 

 
Fig. 7.  Input and output of DEKF on low friction road 

 
Fig. 8.  Road friction coefficient estimation value 

 

 
Fig. 9.  Road friction coefficient property 

 

 
Fig. 10.  Vehicle general trajectory  

 

 
Fig. 11.  Shift gears 
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Fig. 12.  Input and output of DEKF on joint friction road 

 
Fig. 13.  Estimated values of the vehicle states               

and four wheel road friction coefficients 
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Fig. 14.  Road friction coefficient estimation value 

 
The same test was then performed on a more 

complicated road on which the friction coefficient is set to 
be 0.8 from 0 to 20 m; 0.2 from 20 m to 40 m; 0.8 from 40 
m to 60 m; 0.2 from 60 m to 80 m and 0.8 for the rest. 
Some of the measurement outputs for the DEKF estimator 
are provided in Fig. 15. Fig. 16 shows the estimation results 
of the tire-road friction at front wheels, which trace the 
change of real road swiftly. Therefore, it can be concluded 
that the DEKF estimator is also available on friction- 
quick-change road surfaces. 

 

 
Fig. 15.  Measurement output for complicated road surface 

 
Fig. 16.  Estimation results of the tire-road friction           

at front wheels 
 
 

6.5  Discussion on significance for considering              
the change of road friction 

It has been reviewed in section 1 that the extended 
Kalman filter (EKF) was traditionally applied to vehicle 
states estimation without thorough consideration into the 
effect of the change road friction coefficient. Assume the 
real road condition was similar to that shown in Fig. 9, the 
estimation method of traditional EKF subjecting to constant 
road friction coefficient would cause grave errors. 
Corresponding simulation is performed and shown in Fig. 
17. It can be seen that the estimated vehicle longitudinal 
velocity and acceleration based on a constant friction of 0.8 
deviate far away from the real values. On the other hand, 
only small deviation between the estimated longitudinal 
velocity and the CarSim outputs is found when using DEKF. 
This state estimation error is mainly caused by the road 
friction estimation error exhibited in Fig. 13.  

 

 
Fig. 17.  State estimation comparisons 
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7  Driving Simulator Experiments 

 
For the purpose of investigating the application of the 

DEKF in real world situations, the ADSL driving 
simulator[16] developed by the State Key Laboratory of 
Automotive Simulation and Control is used to perform 
simulator experiments. The simulator is assembled partly 
using real vehicle components such as steering wheel, 
brake pedal, accelerator pedal, as Fig. 18 shown. The 
simulator provides a real driving environment for the driver, 
and meanwhile all the vehicle states and parameters can be 
exported in real time. Therefore, the validation of the 
DEKF algorithm on this simulator is believed to be able to 
represent the potential for its practical application.  

 

 
Fig. 18.  ADSL driving simulator 

 
A braking while curving test on the same joint friction 

road as Fig. 9 with an initial velocity of 100 kmh was 
designed and performed on the simulator by the test driver. 
The travel of steering wheel angle and brake pedal were 
restricted using some position-limiting block to ensure the 
repeatability of the experiment. The amplitude of the 
steering angle input was 60°, and the maximum travel of 
brake pedal was set to be 10%. Fig. 19 shows the input and 
output of the DEKF estimator.  

The estimated values of the longitudinal velocity, yaw 
rate and road friction are presented in Fig. 20 which 
indicate that the DEKF estimator works well with the 
driving simulator vehicle model. Since there is filtering 
programs inserted inside the simulator data acquisition 
system, the signals here are exhibited to be much smoother. 
The performance of the DEKF estimator currently has not 
been tested on real vehicles. Nevertheless, due to the 
real-time dynamics that the driving simulator possesses, the 
validation of the algorithm on such devices is believed to 
be able to well predict the application of the estimator on 
the real vehicles. 
 
8  Conclusions 

 
(1) For the purpose of reducing the computation effort, 

the estimator is designed based on a 3-DOF dynamic 
vehicle model coupled with HSRI tire model. The precision 

of the tire model has been validated. 
(2) The key matrices of DEKF are derived from the 

dynamic equations of vehicle model, and the model 
parameters are set the same to the vehicle model of CarSim 
software for simulation validation. 

(3) The algorithm is implemented in the Matlab/ 
Simulink environment within the CarSim software. The 
CarSim provides the input and output variables for the 
DEKF estimator, and the numerical values for algorithm 
validating as well. 

(4) To interpret the effectiveness of the application of the 
algorithm on real vehicle, the driving simulator has been 
used to test the estimation result.  

(5) The vehicle state and road friction estimation values 
show favorable consistency with the data from both of the 
CarSim and driving simulator, which indicates the 
effectiveness of the estimation algorithm and the potential 
for application in real vehicle system. 

 

 
Fig. 19.  Input and output of DEKF estimator 
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Fig. 20.  Estimated values of the longitudinal velocity,      

yaw rate and road friction  
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