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Abstract: The theory on synchronization of two exciters is more widely used in engineering, while that of more than two exciters is less 
considered. So it is of great significant to investigate synchronization of three exciters. Firstly by introducing the average method of 
modified small parameters, the dimensionless coupling equations(DCE) of three exciters are derived, which convert the problem of 
synchronization into that of existence and stability of zero solutions for the DCE and lead to the construction on criterions of 
synchronization and stability in the simplified form for three exciters. Then the synchronization criterion is discussed numerically, as 
well as the abilities of synchronization and stability, some results thereof indicate that the synchronization ability increases with the 
increase of the coupling moment among three exciters, but decreases with that of their phase differences. Finally, an experiment on 
synchronization with three exciters is carried out. Through the comparison and analysis of experimental data on phase differences 
among three exciters, responses of system, and phases of three exciters recorded by high-speed camera, the parameters of system 
satisfying the above two criterions can ensure the synchronous and stable operation of three exciters. As a result, the average method of 
modified small parameters can be used as a theoretical apparatus studying reasonably the synchronization mechanism of three exciters, 
it is also proved to be useful and feasible by numeric and experiment. The present research lays the foundation and guidance for the 
establishment of synchronization theory system with multi-exciter and engineering design. 
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1  Introduction ∗ 

 
Synchronization is a distinctive phenomenon in 

nonlinear system, it was first described more than three 
hundred years ago by HUYGENS. Synchronization is 
defined as the process of accommodation of the responses 
of two or more coupled nonlinear oscillators until a 
periodic steady state is achieved in which all oscillators 
lock in to a common period[1]. So far synchronization 
theory is well developed, such as synchronization of clocks, 
phase oscillators or oscillatory networks[2–5]. In mechanical 
engineering, especially, with the invention of a variety of 
vibrating machinery, synchronization theory of the 
vibrating machines with two or multiple exciters solved a 
number of practical problems, e.g., self-synchronous 
vibrating feeders, conveyors, vibrating coolers, and so on. 

For the origin of self-synchronization of two unbalanced 
rotors (exciters), about sixty years ago, in Leningrad, it was 
accidently discovered that two unbalanced rotors driven by 
two motors on a single base trended to operate 
synchronously, later Dr. BLEKHMAN, et al[1, 6–10], gave the 
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first theoretical explanations of this synchronization 
phenomenon. These remarkable facts stimulated greatly the 
interests of many researchers, one of the representative 
personages was Chinese scholar professor WEN, et al[11–14], 
who extended such synchronization theory and applied it to 
engineering successfully, so as to establish vibration 
utilization engineering, by considering adequately the 
damping effect of the vibrating system. Due to the 
complexity of the system structure, there are many factors 
to influence the index of synchronization, so controlled or 
hybrid synchronization[8, 9, 11, 15–16] is needed to meet the 
requirement in engineering. 

The main theoretical methods used on synchronization of 
exciters at present, are the method of direct separation of 
motions[1, 6–10] and the averaging method of small 
parameters[11–23]. In the former method, the effect of 
damping and dynamic characteristics of induced motors are 
less considered, which results in the absence of the effect of 
electric-mechanic coupling analysis. Overcoming the 
abovementioned imperfection, synchronization and 
vibratory synchronization transmission of two exciters on a 
single base were discussed in detail by authors[17–20], as well 
as the general dynamic symmetry for a vibrating system 
with two exciters[21–22]. 

Besides the cited publications, extensive literature is 
devoted to the investigation on synchronization of more 
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than two exciters, the corresponding results lies in the fact 
that synchronization of four identical exciters on 
double-base and some characteristics of selecting motion 
were proposed[23], and some comments on the numerical 
simulation of self-synchronization of four non-ideal 
exciters were also given by BALTHAZAR, et al[24]. 

The theoretical investigation on synchronization of 
multi-exciter aims at utilizing vibration or eliminating one, 
based on the principle of superposition of system. In light 
of the former, the properly positive superposition of the 
exciting forces is implemented to enhance the effective 
power of the vibrating system; while for the latter, the case 
is reverse. Generally in engineering, most researchers focus 
on synchronization for vibration utilization, i.e., the 
operation with zero phase difference for two or more 
exciters is implemented to improve the power of system. 
Although the significant theory achievements are emerged, 
the problem is far from being exhausted, such as that the 
coupling dynamics of more than two exciters should be 
understood perfectly, and the corresponding theoretical 
results are needed further verification by experiment or 
engineering application in practice. In order to both realize 
this purpose and keep the compact structure of system, we 
use three exciters instead of two on a single base, to analyse 
its coupling characteristics and verify whether the effective 
power of system is enhanced or not, thus lay a foundation 
for the establishment of synchronization theory system with 
multi-exciter and its engineering design supervision, by 
theoretical, numerical and experimental method. 

In this paper, our attentions are restricted to the 
far-resonant vibrating system of plane motion, the average 
method of modified small parameters is employed to 
investigate synchronization of three exciters. In the next 
section, equations of motion of the vibrating system are 
described. Section 3 is devoted to deriving the criterions of 
synchronization and stability of synchronous states. 
Numeric results and discussions are in section 4 and 
experimental results are in section 5. Finally, conclusions 
are provided. 

 
2  Equations of Motion of System 

 
Fig. 1 shows the dynamic model of a considered 

vibrating system, which consists of a rigid frame and three 
exciters driven separately by three induction motors 
rotating in the same directions. The rigid frame is supported 
on an elastic foundation consisting of four springs installed 
symmetrically. The spin axis center of the middle exciter 2 
is in the vertical central line of the rigid frame, the other 
two exciters are installed symmetrically on both sides of 
the vertical center line of the rigid frame, and the three 
exciters’ pivots are all in a level line paralleling to x-axis, as 
shown in Fig. 1(a). The frame oxy is a fixed frame, and its 
origin o is the equilibrium point of centroid of the rigid 
frame; oxy is the non-rotating moving frame, which 
undergoes the translation motion and parallels to oxy; the 

moving frame oxy, is fixed to the rigid frame, as shown 
in Fig. 1(b). Three reference frames coincide with each 
other when the vibrating system does not operate. 

 

 

Fig. 1.  Dynamic model of a vibrating system             
with three exciters 

 
Because the rigid frame is supported by an elastic 

foundation, it exhibits three degrees of freedom. The mass 
center coordinates, x and y, and the angular rotation ψ are 
set as independent coordinates. Exciters 1, 2 and 3 rotate 
about their own spin axes, which are denoted by ϕ1, ϕ2 and 
ϕ3, respectively. 

The kinetic energy, potential energy and viscous 
dissipation function of system can be deduced, denoted by 
T, V, and D, respectively, which are substituted into the 
following Lagrange’s equation: 

 
d ( ) ( )
d i

i i i

T V T V D Q
t q q q 

    
  

  
.      (1) 

 
Here, we assume that three exciters are identical, i.e., 
m1m2m3m0. If q(x y ψ ϕ1 ϕ2 ϕ3)T is chosen as the 
generalized coordinates, the generalized forces QiTei (i1, 
2, 3) and the others are zero. According to Refs. [11–12], 
m0 is far smaller than m and ψ far smaller than 1. Hence, 
the inertia coupling stemming from asymmetry of three 
exciters can be neglected. The equations of motion of the 
vibrating system can be simplified as follows: 

 
3

2
0

1

( cos sin )x x i i i i
i

Mx f x k x m r ϕ ϕ ϕ ϕ  


    , 

 
3

2
0

1

( sin cos )y y i i i i
i

My f y k y m r ϕ ϕ ϕ ϕ  


    , 
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2
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1

[ sin( )

cos( )],

i i i i
i

i i i

J f k m rlψ ψψ ψ ψ ϕ ϕ β

ϕ ϕ β

  




    



        

2
0 e 0

2

[ cos sin

cos( ) sin( )],
i i i i i i

i i i i i i

m r f T m r y x

l l

ϕ ϕ ϕ ϕ

ψ ϕ β ψ ϕ β

   

 

    

  
   

1, 2, 3i  , 3 1 2 1 1, sinl l l l β  .         (2) 
 

where m —Mass of the rigid frame, 
m0—Mass of each exciter, 
Mm3m0, 

kx, ky, kψ—Constants of springs in x-, y- and ψ- 
directions, respectively, 

kψ (kylx
2kxly

2)2, 
fx, fy, fψ—Damping constants in x-, y-, and ψ-directions, 

respectively, 
fψ(fylx

2fxly
2)2, 

fi—Damping constant of rotor of the motor i, 
li—Distance between the rotational centre oi  

of exciter i and the mass centre o of the 
rigid frame, 

r —Eccentric radius of each exciter, 
le — Equivalent rotating radius of the vibrating 

system about the centroid of the rigid frame, 
Jm—Moment of inertia of the rigid frame, 
Tei—Electromagnetic torque of the motor i, 
( ) — d( )/d ,t  
( ) — 2 2d ( ) / d ,t  

3
2 2 2

e m 0 0
1

3 ,i
i

J Ml J m r m l


     

β1β1, β2π2, β3π–β1. 
 

3  Synchronization of Three Exciters and 
Stability of Synchronous States 

 
We assume that the average phase of three exciters is ϕ, 

the phase difference between exciters 1 and 2 is 2α1, and 
that between exciters 2 and 3 is 2α2, i.e., 

 
3

1

1
3 i

i

ϕ ϕ


  , 1 2 12ϕ ϕ α  , 2 3 22ϕ ϕ α  .   (3) 

 
Because the vibration of the vibrating system is periodic, 

the change of average angular velocity ϕ  of three exciters 
is also periodic. If the least common multiple period of 
three exciters is assumed to be TLCMP, the average value of 
the average angular velocity ϕ  over the time TLCMP must 
be a constant, i.e., 

 
LCMP

m0
LCMP

1 d constant
t T

t
t

T
ω ϕ




  .       (4) 

 
According to the modified average method of small 

parameters[18–23], we assume 
 

0 m0 m0(1 ) , , 1, 2,i i iϕ ς ω α ς ω             (5) 

where ς0, ςi (ς0, ςi are functions of time t, i1, 2) are the 
coefficients of the instantaneous change of ϕ  and iα  
around ωm0, respectively. 

Differentiating Eq. (3) with respect to time t and 
considering Eq. (5) yield 

 
1 1 2 14 /3 2 /3ϕ ϕ α α ϕ υ     , 

2 1 2 22 /3 2 /3ϕ ϕ α α ϕ υ     , 

3 1 2 32 / 3 4 / 3ϕ ϕ α α ϕ υ     , 

1 0 1 2 m0 1 m0(1 4 / 3 2 / 3) (1 )ϕ ς ς ς ω ε ω       , 

2 0 1 2 m0 2 m0(1 2 /3 2 /3) (1 )ϕ ς ς ς ω ε ω       , 

3 0 1 2 m0 3 m0(1 2 / 3 4 / 3) (1 )ϕ ς ς ς ω ε ω       , 

1 1 m0ϕ ε ω  , 2 2 m0ϕ ε ω  , 3 3 m0ϕ ε ω  .      (6) 
 

If the average values of ε1, ε2 and ε3 over the single 
period (T02πωm0) are zero, i.e., 1 0,ε  2 0ε   and 

3 0,ε  the three motors operate synchronously. When the 
vibrating system operates in the steady-state, the angular 
accelerations of the three motors change very little (close to 
zero), so 1,ϕ 2ϕ  and 3ϕ  can be neglected in the first 
three formulae of Eq. (2). 

According to Refs. [18–23], in a far-resonant vibrating 
system with small damping, the responses of the 
steady-state in x-, y- and ψ-directions can be expressed in 
the form: 

 
3

m

1
3

m

1

m
1 1 1 2 2

e

2 1 3 3

cos( ),

sin( ),

[ sin( ) sin(

) sin( )],

i x
x i

i y
y i

l l

l

r rx

r ry

r r r r
l

r

ψ
ψ

ψ ψ

ϕ υ γ
µ

ϕ υ γ
µ

ψ ϕ υ β γ ϕ υ
µ

β γ ϕ υ β γ





                  



 (7) 

 
where  ωni—Natural frequency of the vibrating system in 

i-direction, ix, y, ψ, 
2
n /x xk Mω  , 2

n /y yk Mω  , 2
n /k Jψ ψω  , 

ξni—Corresponding damping ratio of spring, 

n 2
x

x
x

f
k M

ξ  , n 2
y

y
y

f
k M

ξ  , n 2
f
k J
ψ

ψ
ψ

ξ  , 

2 2
n m01 /i iµ ω ω  , n n m0

2
n m0

2 ( / )arctan ,
1 ( / )

i i
i

i

ξ ω ωγ
ω ω




 

rmm0M, 
πγi—Phase angle in i-direction, 

rljlj /le, 1, 2, 3j  . 
Differentiating Eq. (7) to obtain ,x ,y ,ψ and ,ψ  

inserting them into the differential equations of three 
exciters in Eq. (2), then integrating them over ϕ0–2π, the 
average differential equations of three exciters are deduced 
as follows: 

 
2

0 m0 m0 e(1 )  ,i i i i lim r f T Tω ε ω ε     i1, 2, 3,   (8) 
 

with 



 
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 

 

·749· 

3
2

0 m0 f a
1

( ) ,li ij j ij j i i
j

T m r ω χ ε χ ε χ χ



 
     
  
  i1, 2, 3, 

  (9) 
 

where  f1 m0 s1 sc12 1 s12

sc13 1 2 s13

[ cos(2 )
cos(2 2 )] 2,
W W

W
χ ω α θ

α α θ
   

  
 

a1 m0 cc12 1 c12

cc13 1 2 c13

[ sin(2 )
sin(2 2 )] 2,
W

W
χ ω α θ

α α θ
  

  
 

f2 m0 2 sc12 1 s12

sc23 2 s23

[ cos(2 )
cos(2 )] 2,

sW W
W

χ ω α θ
α θ

   

 
 

a2 m0 cc12 1 c12

cc23 2 c23

[ sin(2 )
sin(2 )] 2,

W
W

χ ω α θ
α θ

   

 
 

f3 m0 s3 sc23 2 s23

sc13 1 2 s13

[ cos(2 )
cos(2 2 )] 2,
W W

W
χ ω α θ

α α θ
   

  
 

a3 m0 cc23 2 c23

cc13 1 2 c13

[ sin(2 )
sin(2 2 )] 2,

W
W

χ ω α θ
α α θ

   

  
 

c 2ii iWχ    , 1, 2, 3,i   

12 21 cc12 1 c12cos(2 ) 2Wχ χ α θ     , 

13 31 cc13 1 2 c13cos(2 2 ) 2Wχ χ α α θ      , 

23 32 cc23 2 c23cos(2 ) 2Wχ χ α θ    , 

m0 sii iWχ ω , 1, 2, 3,i   

12 21 m0 cc12 1 c12sin(2 )Wχ χ ω α θ   , 

13 31 m0 cc13 1 2 c13sin(2 2 )Wχ χ ω α α θ    , 

23 32 m0 cc23 2 c23sin(2 )Wχ χ ω α θ   , 
2

s m
sin sinsin y ljx

j
x y

r
W r ψ

ψ

γ γγ
µ µ µ

        
, j=1, 2, 3, 

2

c m
cos coscos y ljx

j
x y

r
W r ψ

ψ

γ γγ
µ µ µ

        
, j=1, 2, 3, 

sc
sin sinsin cos( )y li ljx

ij i j
x y

r r
a ψ

ψ

γ γγ β β
µ µ µ

    , 

1, 2; 3,i i j    

sc
sin

sin( )li lj
ij i j

r r
b ψ

ψ

γ
β β

µ
  , 1, 2, 3,i i j    

cc
cos coscos cos( )y li ljx

ij i j
x y

r r
a ψ

ψ

γ γγ β β
µ µ µ

    , 

1, 2; 3,i i j    

cc
cos

sin( )li lj
ij i j

r r
b ψ

ψ

γ
β β

µ
  , 1, 2; 3,i i j    

2 2
sc m sc scij ij ijW r a b  , 1, 2; 3,i i j    

2 2
cc m cc ccij ij ijW r a b  , 1, 2; 3,i i j    

1 3l l , 2 1 1sinl l β , 1 3 2 1 1, sinl l l lr r r r β  , 

sc sc sc
s

sc sc sc

arctan( / ),        0,

arctan( / ),  0,
ij ij ij

ij
ij ij ij

b a a

b a a
θ

π

     
 

cc cc j cc
c

cc cc cc

arctan( / ),        0,

arctan( / ),  0,
ij i ij

ij
ij ij ij

b a a

b a a
θ

π

   
 

1, 2, 3i i j   . 

Compared with the change of ϕ ( m0ϕ ω  ) with respect 
to time t, that of α1, and α2 are very small, so εi (i1, 2, 3) 
are considered to be slow-changing parameters. According 
to the method of direct separation of motions[1, 6], αj (j1, 
2), εi and iε  are assumed to be the middle values of their 
integration ,jα iε  and ,iε respectively, during the 
aforementioned integration. On the other hand, the 
damping of the vibrating system is very small[11–12], so the 
terms in the expressions of ,ijχ′ χij, χfi and χai related to 
sinγx, sinγy and sinγψ can be neglected. 

When the vibrating system operates in a steady-state, the 
electromagnetic torque of an induction motor in the vicinity 
of ωm0 can be expressed as[19] 

 
e e0 e0i i i iT T k ε  , 1, 2, 3,i           (10) 

 
where Te0i and e0ik  are respectively electromagnetic 
torque and stiffness coefficient of angular velocity when an 
induction motor operates steadily at the angular velocity 
ωm0, i1, 2, 3. 

Inserting Eqs. (9) and (10) into Eq. (8) yields the 
dimensionless coupling equations of three exciters as 

 
 A B uε ε ,               (11) 

 
with 
 

T
1 2 3( )�ε ε εε , T

1 2 3( )u u uu , 

1 12 13

21 2 23

31 32 3

ρ χ χ
χ ρ χ
χ χ ρ

A
              

, 

11 12 m0 13 m0

m0 21 m0 22 23 m0

31 m0 32 m0 33

/ /
/ /
/ /

κ χ ω χ ω
ω χ ω κ χ ω

χ ω χ ω κ
B

         

, 

c1 ,
2

i
i

W
ρ    e0

s2 2 2
0 m0 0 m0

i i
ii i

k f W
m r m r

κ
ω ω

   , 

e0
a f2 2

0 m0 0

i i
i i i

T fu
m r m r

χ χ
ω

    , 1, 2, 3,i   

 
where  A—Dimensionless inertia-coupling matrix, 

B—Dimensionless stiffness-coupling matrix 
of angular velocity, 

u—Dimensionless load torque coupling. 
 

3.1  Criterion of synchronization 
When three exciters operate synchronously, we have 

0ε   and 0ε   in Eq. (11). So u0, i.e., 
 

2
0 e0 m0 0 m0 f a( )i i i i iT T f m rω ω χ χ    , 1, 2, 3,i   (12) 

 
where T0i is called as the output electromagnetic torque of 
the motor i, which is the difference between the 
electromagnetic torque of one motor and the damping 
torque of its rotor. 
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During the process of synchronous operation, the vibrating 
system transmits electromagnetic torque among three exciters 
to overcome the output torque difference between arbitrary 
two motors by virtue of adjusting their phase differences. 
Dimensionless rearrangement of Eq. (12) yields 

 
0 u s s c 1 2/ ( ) ( , )ij i j ijT T W W τ α α∆    , 12, 23, 31ij  ,  (13) 

 
with 

 
c12 1 2 cc12 1 c12 cc23 2 c23

cc13 1 2 c13 sc23 2 23

( , ) 2 sin(2 ) sin(2 )
sin(2 2 ) cos(2 )s

W W
W W

τ α α α θ α θ
α α θ α θ

    

    

 sc13 1 2 13cos(2 2 ) ,sW α α θ             (14) 
 

c23 1 2 cc23 2 c23 cc12 1 c12

cc13 1 2 c13 sc12 1 12

( , ) 2 sin(2 ) sin(2 )
sin(2 2 ) cos(2 )s

W W
W W

τ α α α θ α θ
α α θ α θ

    

    
 

 sc13 1 2 13cos(2 2 ),sW α α θ   (15) 
 

c31 1 2 c12 1 2 c23 1 2( , ) [ ( , ) ( , )],τ α α τ α α τ α α       (16) 
 

where Tu—Kinetic energy of each exciter, 
Tum0r2ωm0

22, 
ΔT0ij—Difference of output torque between the 

motors i and j, 
T0ijT0i –T0j, ij12, 23, 31. 

It should be noted that the left-hand sides of Eq. (13) 
represent the difference of the dimensionless residual 
torque between the motors i and j; while c 1 2( , )ijτ α α  
(ij12, 23, 31) describes the dimensionless coupling torque 
between exciters i and j. c 1 2( , )ijτ α α  is limited function of 

1α  and 2α , i.e., 
 

c 1 2 c max( , )ij ijτ α α τ , 12, 23, 31ij  .       (17) 
 
When the structural parameters of the vibrating system 

satisfy the following criterion 
 

0 u s s c max/ ( )ij i j ijT T W W τ∆    , 12, 23, 31ij  ,   (18) 
 

Eq. (12) can be solved for ωm0, 1α  and 2 ,α which are 
denoted by *

m0 ,ω 10α  and 20 ,α respectively. The 
left-hand sides of Eq. (18) are referred to as the 
dimensionless residual torque difference between arbitrary 
two motors. Therefore, the synchronization criterion of 
three exciters is that the absolute value of dimensionless 
residual torque difference between arbitrary two motors is 
less than or equal to the maximum of their dimensionless 
coupling torque. 

Adding T01, T02 and T03 in Eq. (12) up and rearranging 
the result thereof, we have 

 
3 3

a 1 2 0 u s
1 1

sc12 1 12 sc13 1 2 13

1( , ) 3
3

1[2 cos(2 ) 2 cos(2 2 )
3

i i
i i

s s

T T W

W W

τ α α

α θ α α θ

 

  

    

 
 

sc23 2 232 cos(2 )],sW α θ           (19) 
 

where a 1 2( , )τ α α  describes the average dimensionless 
loading torque of the three motors and it is a limited 
function, i.e., 
 

a 1 2 amax( , )τ α α τ ,             (20) 
 

τamax is the maximum of average dimensionless loading 
torque of the three motors. 

According to Refs. [21–22], the synchronization of the 
vibrating system stems from the coupling dynamic 
characteristics of exciters. The greater the coupling moment 
of two exciters, the stronger the synchronization ability of two 
exciters. Hence, from Eq. (12) and considering Eqs. (14)–(16), 
one can see that c 1 2( , )ijτ α α  (ij12, 23, 31) represents the 
relationship among three exciters, that is, c 1 2( , )ijτ α α  
describes the vibrating system’s ability of adjusting the 
loading torque of each motor to reach synchronization. Here 
we define the coefficient of synchronization ability between 
arbitrary two exciters i and j as 
 

c max amax/ , 12, 23, 31ij ij ijζ τ τ  .      (21) 
 

The larger the coefficient of synchronization ability ,ijζ  
the easier the vibrating system can achieve synchronization. 
Since c 1 2( , )ijτ α α  and a 1 2( , )τ α α  are transcendental 
functions of 1α  and 2α  and depend on the parameters of 
the vibrating system, their expressions of maximum are 
founded difficultly. In next section of the paper, we will 
numerically discuss them in detail. 
 
3.2  Criterion of stability of synchronous states 

When u0, Eq. (11) is the generalized system[25], i.e., 
 

 A Bε ε ,                (22) 
 
where 3 3( )ij ija  A  and 3 3( )ij ijb  B  denote the values 
of A and B for 1 10 ,α α 2 20α α  and m0 m0ω ω . As 
shown in Eq. (11), the matrix A' is symmetrical and the matrix 
B is antisymmetrical, so when the matrix A is positive 
definite and all its elements are positive, i.e., the parameters of 
the vibrating system satisfy the following criterion: 
 

0ija  , 2det( ) 0A  , det( ) 0A  , 
1, 2, 3, 1, 2, 3.i j             (23) 

 
A and B satisfy the generalized Lyapunov equations[25]: 
 

T T
m0 11 22 33diag{ , , },ω κ κ κ  I B B I       (24) 

 
T 0A I IA   ,               (25) 

 
where I is unit matrix. 

Because the generalized system Eq. (22) is concessional 
and without pulse, Eq. (22) is stable if 

lim
0

t
 A ε [22]. 

lim
0

t
ε


  means that the electromagnetic torques of the 
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three motors are stably balanced with the load torques that 
the vibrating system acts on them, i.e., 

 
2

e0 m0 0 m0 f a( )i i i iT f m rω ω χ χ   , 1, 2, 3.i     (26) 
 
Linearizing Eq. (26) around 10α , 20α and *

m0 ,ω and 
neglecting Ws0, Wscij (i 1, 2; i j 3), f1, f2 and f3

 [19, 23], 
we have 

 
2

a1
11 m0 0 1 2

1 0

4 2
3 3 i

ii

χ
κ ω ς ς ς α

α
∆



              
 ,   (27) 

 
2

a2
22 m0 0 1 2

1 0

2 2
3 3 i

ii

χ
κ ω ς ς ς α

α
∆
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where  0( ) —Values for 1 10α α , 2 20α α , 

0i i iα α α∆   , i1, 2. 
Summing Eqs. (27)–(29), yields 
 

0 1 1 2 2ς δ ς δ ς  ,              (30) 
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. 

It should be noticed that m0 1 1ω ς α∆  and 
m0 2 2.ω ς α∆   In other words, Eqs. (27)–(29) are the 

differential equations of Δα(Δα1 Δα2)T. Subtracting Eq. 
(28) from Eq. (27), subtracting Eq. (29) from Eq. (28), and 
rewriting them in a matrix form: 

 
∆ ∆  Dα α ,                (31) 
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Exponential time-dependence of the form Δανexp(λt) 
is now assumed, and inserted into Eq. (31), then solving the 
determinant equation det(DλI)0, the characteristic 
equation for eigenvalue λ is obtained as 

 
2

11 22 11 22 12 21( ) ( ) 0d d d d d dλ λ     .     (32) 
 

The zero solutions of Eq. (31) are stable if and only if all 
the roots of λ in Eq. (32) have the negative real parts. Using 
the Routh-Hurwitz criterion, Eq. (33) can satisfy the above 
requirements[26], 

 
11 22 11 22 12 210, 0.d d d d d d           (33) 

 

lim
0

t
∆


α  means 
lim

0i
t
ς


 , i=0, 1, 2. Using Eq. 

(6), we have 
lim

0
t
ε


 , i.e., 
lim

0
t
Aε


 . 

In engineering, the parameters of the three induction 
motors are usually chosen to be similar[11–14], i.e., 

 

0 e1 e2 e3, ,ii T T Tκ κ    i1, 2, 3.     (34) 
 

We assume that 
 

12 cc12 10 c12cos(2 )p W α θ  , 23 cc23 20 c23cos(2 ),p W α θ   

13 cc13 10 20 c13cos(2 2 )p W α α θ   . 
 

From Eq. (23), we have 
 

12 13 230, 0, 0.p p p              (35) 
 

Substituting Eq. (34) into Eq. (33) and considering Eq. 
(35) yield 
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Hence, Eq. (33) can also satisfy Routh-Hurwitz criterion 
of Eq. (31) when Eq. (23) satisfies the generalized 
Lyapunov criterion of Eq. (22), i.e., when the parameters of 
three motors are similar, the stability criterion of 
synchronous states is also Eq. (23), which describes that the 
dimensionless inertia-coupling matrix of the generalized 
system is positive definite and all its elements are positive. 

According to the stability criterion, Eq. (23), the 
intervals of the stable phase differences among three 
exciters can be expressed as 
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4  Numeric Results and Discussions 

 
In this section, the parameters of the three motors are 

assumed to be the same (three-phase squirrel-cage). The 
parameters of the vibrating system are: M152 kg, m04 
kg, Jm17 kg • m2, kxky79 kNm (µxµy0.95), 
kψ8.8 kNrad (µψ0.95), fxfy0.485 kN • sm, 
fψ0.054 kN • srad (ξnxξnyξnψ0.07). 

 
4.1  Criterion of synchronization and general dynamic 

symmetry characteristics 
As aforementioned section 3.1, we can see that 

c12 1 2( , )τ α α  and c23 1 2( , )τ α α  are limited functions of 1α , 
2α , µx, µy, µψ, β1, rm and rl1. In addition, µx, µy and µψ less 

change (0.9–0.99) in a far-resonant vibrating system[20–22]. 
As a result, according to Eqs. (14)–(16), we can confine 
rm0.026 to find the values of τcijmax (ij12, 23, 31) versus 
rl1 and β1, as illustrated in Fig. 2. 

 

 
Fig. 2.  Values of τcijmax versus rl1 and β1 (ij12, 23, rm0.026) 

 
It should be noticed that rl1 has a maximum value, and 

based on its expression, we have 
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where le0

2Jm m. 
For a given value rm0.026, according to the second 

formula of Eq. (39), we have that rl1max value is 4.4, 4.3 and 
3.9 when β1 value is 0°, 15° and 45°, respectively. 

In Fig. 2, τc12maxτc23max, rl1 arranges from 0 to its 
maximum (as well as the following discussions), and the 
greater the value of τcijmax, the easier three exciters 
implement synchronization. 

In order to clearly reflect the synchronization ability of 
the vibrating system, the coefficients of synchronization 
ability among three exciters should be presented. As shown 
in Eq. (21), the coefficient of synchronization ability 
between exciters i and j, is the ratio between the maximum 
of the dimensionless coupling torque of exciters i and j, 
τcijmax, and the maximal average dimensionless loading 
torque of the three motors, τamax. It is independent on the 

parameters of the three motors, and is also called the 
coefficient of the general dynamic symmetry (CGDS)[21]. 
The better the CGDS is, the stronger the synchronization 
ability is. 

Fig. 3 shows the CGDSs versus rl1 for different β1 and rm. 
Here, according to Eq. (39), l1 is in the range from 0 m to 
30 m. 

 

 
Fig. 3.  CGDSs among three exciters 

 
In Fig. 3(a), β10°, so l20 m, and three exciters are 

identical, which means that the structure of the vibrating 
system is complete symmetry. In this case, the coefficients 
of synchronization ability between adjacent two exciters 
are the same, i.e., ζ12ζ23, and all decrease with the 
increasing rl1; while that between separated two exciters, 
ζ31, firstly decreases, and followed by increasing, with the 
increasing rl1. Additionally, synchronization ability between 
separated two exciters is greater than that between adjacent 
two exciters for rl1 being more than a certain value (at the 
intersections of lines in Fig. 3(a)), under which the absolute 
value of phase difference between exciters 3 and 1 should 
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be smaller than that between exciters 1 and 2 (or exciters 2 
and 3). As for the reason, we can find it in Refs. [21–22], 
i.e., the greater the coupling moment between arbitrary two 
exciters, the smaller the absolute value of their phase 
difference, it can be verified in the next discussions of 
section 4.2. 

In Figs. 3(b) and 3(c), β1 0° has l2 0 m, i.e., the 
structure of the vibrating system is not complete symmetry. 
Herein, CGDSs among three exciters all present a down 
and up trend with the increase of rl1. The others are similar 
to the above discussions in Fig. 3(a). 

 
4.2  Synchronization stability 

According to the balanced equation of three exciters, Eq. 
(13), and considering the stability criterion of the vibrating 
system, Eq. (23), the stable phase difference-value among 
three exciters (SPDATE) can be solved approximately by 
numeric method, as shown in Fig. 4 (the synchronous speed 

*
m0ω  changes in the interval of 102.3–104 rads versus rl1). 
 

 
Fig. 4.  Stable phase difference versus rl1 for different β1 

It should be noticed that, for convenient discussion, if the 
parameters of the three motors are identical, the first term 
on the left-hand sides of Eq. (13), ∆T0ijTu (ij12, 23, 31), 
might be assumed to be zero, i.e., ∆T0ijTu0 (in 
engineering, although the parameters of the three motors 
are completely identical, the output electromagnetic torque 
difference between arbitrary two motors, ∆T0ij, is not 
completely equal to zero). Hence, the structural parameter, 
rm, has no effect on the synchronous phase difference 
solutions because it can be eliminated in Eq. (13). But rm 
plays an important role in adjusting the stability of the 
vibrating system, which can be seen in Refs. [16–20]. 

In Fig. 4(a), β10°, SPDATEs have two groups values in 
the interval of 0rl11.414 ( 2 ). It indicates that the 
vibrating system has two equilibrium points in this interval, 
which is called the diversity of nonlinear system[27]. *

1-I2α  
( *

1-II2α ) denotes the I-group (II-group) stable phase 
difference between exciters 1 and 2; *

2-I2α  ( *
2-II2α ) that 

between exciters 2 and 3, as well as what are shown in Figs. 
4(b) and 4(c). One can see that the interval of 
double-equilibrium is 0rl11 in Fig. 4(b), while the 
vibrating system always has the state of double-equilibrium 
for β145° in Fig. 4(c). Moreover, in Fig. 4(a), if 
rl11.414( 2 ), the SPDATE between exciters 3 and 1, 
( *

1-I2α  *
2-I2α ), nears zero (or 360°), which is smaller 

than that between exciters 1 and 2 (or exciters 2 and 3), this 
fact coincides with the discussions in section. 4.1. 

As we known, the motion type of the vibrating system is 
the result of mutual compensation of the three exciting forces, 
and such mutual compensation principle depends on 
SPDATEs. Taking Fig. 4(a) for example, SPDATEs among 
three exciters all near gradually 120° with the decrease of rl1. 
For rl10, the rigid frame implements no vibration for the 
sake of the mutual cancel of the three exciting forces; while 
for rl11.414, SPDATE between exciters 1 and 3 nears 0, 
and that between exciters 1 and 2 (or 2 and 3) nears π, thus 
the exciting force of exciter 2 is always opposite to that of 
the other two exciters, that is, exciter 2 can’t play a role of 
enhancing the effective power of system, but decrease it. 

On the basis of the above analysis, we know that the 
double-equilibrium state of the considered vibrating system 
is related to the structural parameters, β1 and rl1. In 
engineering, to guarantee the reliability of the vibrating 
machine, it should be designed to have single-equilibrium 
state by adjusting its structural parameters. In addition, 
using three exciters instead of two, can not improve 
actually the effective total power of machinery. 

Considering the criterion of synchronization stability of 
the vibrating system, Eq. (23), we assume 

 

2 2

3

det( ),
det( ).

H
H

  

A
A

              (40) 

  
Inserting SPDATEs in Fig. 4 into Eq. (23), and confining 

rm0.026, we obtain the coefficients of ability of 
synchronization stability for β10°, 15°, and 45°, 
respectively, as shown in Fig. 5.   



 
 

ZHANG Xueliang, et al: Theoretical, Numerical and Experimental Study on Synchronization 
of Three Identical Exciters in a Vibrating System 

 

·754· 

 

 
Fig. 5.  Coefficient of synchronization stability ability for different β1 (rm=0.026) 

 
In Fig. 5, -I ,ija H2-I and H3-I denote the values for 

inserting 10 1-I2 2α α   and 20 2-I2 2α α   (in Fig. 4) into 
Eqs. (23) and (40), as well as -II ,ija  H2-II and H3-II denote 
that for 1-II2α   and 2-II2 .α  As illustrated in Fig. 5, all 
elements are positive, in other words, the generalized 
system, Eq. (22), is stable. By the comparison among 
various coefficients of ability of synchronization stability in 
Fig. 5, the values of 12 ,a 13 ,a  and 23a  are smaller than 
the others, that is, the critically decided factors of 
synchronization stability are as follows: 12a 0, 13a 0 
and 23a 0. 

 
5  Experiment Results and Discussions 

 
In this section we address the validity of the above 

theoretical and numerical results, by comparing to 
experimental results for a laboratory model. 

 
5.1  Experiment description 

Fig. 6 shows the setup schematically, the three exciting 
motors (exciters) rotating in the same directions are 
installed on the main rigid body. Three acceleration sensors 
and three Hall-sensors are used to measure the 
accelerations of experimental system in x-, y-, ψ-directions 
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and the phases of three exciting motors, respectively, by 
Multifunctional Resistance to Mix Filter Amplifier (INV-6) 
and Intelligent Signal Acquisition and Processing Analyzer 
(INV306DF). The measured data are transferred to 
computer, after the software procedure, imaged by 
Originpro-8 lastly. In the meantime, the instantaneous 
phases of three exciting motors with synchronous operation 
are continuously recorded by high-speed camera. 

 

 
Fig. 6.  Vibrating synchronization bedstand 

 
Each exciting motor has two pairs eccentric lumps  

distributing symmetrically on both ends of axis. The 
included angle θ between two eccentric lumps can be 
adjusted to accommodate a certain exciting force. Three 
exciting motors are identical, model VB-326-W (380 V, 50 
Hz, 6-pole, Y-connected, rated speed 980 rmin, 0.2 kW), 
β115°, l10.437 m, rl11.25, rm0.026. Equivalent mass 
of eccentric lumps for each exciting motor, m04 kg; and 
its equivalent rotational radius, r0.05 m. The other 
parameters of system are the same as that in section 4. 

 
5.2  Experiment results 

Fig. 7 shows some experimental results of three identical 
exciters rotating in the same directions. During the starting 
few seconds, when three exciters are supplied with electric 
source at the same time, their angular velocities pass 
through the resonant region of system, and excite the 
resonant responses in x-, y- and ψ-directions, in the 
meanwhile, the angular accelerations of the three motors 
are the same with each other because their moments of 
inertia are identical, as shown in Figs. 7(a)–7(f). In this 
case, the high frequency vibration of the system is not 
excited and the load torques of the motors that the vibrating 
system acts on them is very small. 

 

 
Fig. 7.  Experimental results of three identical exciters rotating in the same directions 

 
When the angular velocities of the three motors reach the 

operation value, the high frequency vibrations are excited 
and beat phenomenon occurs. This moment, the coupling 
torques occur and play a role of adjusting the loading 
torque of each motor to reach synchronization by regulating 
SPDATEs, which results that SPDATEs stabilize rapidly. 
The rotational velocity of synchronization is 996.6 rmin. 
SPDATEs are illustrated in Figs. 7(b), 7(c), 7(d): 2α1  
159.02°, 2α2 154.93° and 2α1 + 2α246.05° (or 
313.95°), which are approximately coincident with the 

point J (rl11.25, 1-I2α  157.9°, 2-I2α  152.8°) in 
Fig. 4(b). It should be noted here that, since SPDATEs are 
not equal to zero, the three exciting forces are not be 
positively superimposed, which results in decreasing the 
effective power of the vibrating system. Above facts can be 
also shown in Figs. 7(e), 7(f), the accelerations in x- and 
y-directions all near roughly 0.3 ms2, which is smaller 
than the tested accelerations (0.5 ms2) in x- and 
y-directions excited by only two exciters operating with 
zero phase difference in practice. Meanwhile, the mutual 
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superposition of the exciting forces gives rise to the 
occurrence of swing, and such swing is not the desire in 
engineering. 

There are some errors by comparing the SPDATEs in 
experiment with that in Fig. 4(b), as for the causes, 
obviously, in section 4.2, although the parameters of the 
three motors are completely identical, their output 
electromagnetic torques are not absolutely equal to each 
other in fact. So such errors don’t affect the investigation 
on synchronization of three exciters too much. 

In addition, before 32 s, rotational velocity of 
synchronization and SPDATEs present some small 
fluctuations in Figs. 7(a)–7(d). As for the reasons, 
according to Ref. [11], in a vibrating system with 
multi-motor drives, due to the complexity of the 
mechanical structure, there are many factors influencing the 
synchronization: (1) from the mechanical system point of 
view, the disturbance in speed or phase difference is caused 
by the uneven loads among the motors that the vibrating 
system acts on them, such as the coupling effect of the 
mechanical system which makes the loads of the motors 
vary with a certain rule, the variation of mass and media 
characters and uneven distribution of media mass in a 
mechanical system cause the redistribution of the external 

loads of the motors, and so on; (2) from the motor aspect, 
the fluctuation in supply voltage, and the changes in motor 
parameters with humidity and temperature also cause 
certain disturbances. After 32 s, the vibrating system 
operate synchronously and stably with the best state. The 
other plots versus time t  are shown in the relevant figures 
of Fig. 7, respectively. 

To further give some visual results, during the above 
process of synchronous and stable operation in experiment, 
we recorded continuously the phases of three exciters 
within one cycle by high-speed camera, high-speed camera 
shooting frequency is 62s, the horizontal x-axis positive 
direction is set as the reference line, as shown in Fig. 8: 
2α1ϕ1ϕ2–156.5°~153°, 2α2ϕ2ϕ3161.5°~ 
157°, which are roughly the same as that of in Figs. 7(b), 
7(c), 7(d) by comparing with each other. These facts verify 
that three exciters operate synchronously and stably, as well 
as the feasibility of the above test method. Additionally, 
from Fig. 8, we can also see that the phase of the middle 
exciter 2 always opposites approximately to that of the 
other two exciters 1 and 3, which shows visually that the 
total effective power of the vibrating system is decreased. 
The reasons related to the fluctuation for phase differences 
have been discussed previously, it need not to illustrate. 

 

 
Fig. 8.  Phases of three exciters recorded continually by high-speed camera in the steady-state 

 
 

6  Conclusions 
 

(1) To guarantee the synchronous and stable operation of 
three exciters, the parameters of system should satisfy both 
the criterion of synchronization and that of stability of 
synchronous states. 

(2) Synchronization of three exciters stems from the 
coupling dynamic characteristics of system, the greater the 
coupling moment among three exciters, the smaller their 
phase differences, and the stronger the synchronization 
ability. 

(3) In the far-resonant vibrating system with small 
damping, using three exciters instead of two on a single 
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base can not improve the effective power of system, duo to 
the mutual compensation of the exciting forces. To 
overcome the above defect, it is only by controlled 
synchronization that three exciters can operate 
synchronously with zero phase difference, this is the desire 
of our future work. 

(4) Strong Background and design supervision are 
provided for the further theory investigation on 
synchronization of multi-exciter and its engineering 
application. 
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