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Abstract: The active magnetic bearing(AMB) suspends the rotating shaft and maintains it in levitated position by applying controlled 

electromagnetic forces on the rotor in radial and axial directions. Although the development of various control methods is rapid, PID 

control strategy is still the most widely used control strategy in many applications, including AMBs. In order to tune PID controller, a 

particle swarm optimization(PSO) method is applied. Therefore, a comparative analysis of particle swarm optimization(PSO) algorithms 

is carried out, where two PSO algorithms, namely (1) PSO with linearly decreasing inertia weight(LDW-PSO), and (2) PSO algorithm 

with constriction factor approach(CFA-PSO), are independently tested for different PID structures. The computer simulations are carried 

out with the aim of minimizing the objective function defined as the integral of time multiplied by the absolute value of error(ITAE). In 

order to validate the performance of the analyzed PSO algorithms, one-axis and two-axis radial rotor/active magnetic bearing systems 

are examined. The results show that PSO algorithms are effective and easily implemented methods, providing stable convergence and 

good computational efficiency of different PID structures for the rotor/AMB systems. Moreover, the PSO algorithms prove to be easily 

used for controller tuning in case of both SISO and MIMO system, which consider the system delay and the interference among the 

horizontal and vertical rotor axes. 
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1  Introduction 
 

Active1 magnetic bearings(AMBs) present a magnetic 
suspension technology which is used in a variety of rotating 
machines, such as turbo molecular pumps, flywheels, 
machine tool spindles etc. Their unique advantages, such as 
complete elimination of oil lubrication systems, absence of 
mechanical wear, low maintenance costs, programmable 
stiffness and damping, follow directly from their 
contactless suspension principle. However, these are 
multivariable systems which require properly tuned 
feedback loops in order to ensure stable rotor suspension.  

Although the development of process control 
methodologies is rapid, PID control still remains the most 
widely used feedback control strategy in industry and 
academia in many applications, including AMBs[1–2].  

Optimal control performances of PID controller can be 
achieved by identification of the set of the three adjustable 
gains, i.e. proportional gain, integral gain and derivative 
gain. For that purpose various tuning methods have been 
proposed, among which the most basic method is the 
Ziegler-Nichols method, developed by Ziegler and Nichols 
in 1942. It is an empiric method based on the well known 
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analytical tuning rules, but which are known to give poor 
results in many cases[3–4], especially when applied to 
systems which involve higher order components, 
nonlinearity and/or uncertainties. 

However, modern tuning methods based on artificial 
intelligence techniques, such as neural networks, 
fuzzy-logic[5–7] and neural-fuzzy, can also be applied. In 
addition, many methods based on evolutionary computation 
algorithm can be applied, such as genetic algorithm[8], 
particle swarm optimization(PSO)[9–13] and ant colony 
optimization[14].  

PSO has gained wide recognition since its development 
by KENNEDY and EBERHART in 1995, due to its ability 
to provide solutions efficiently, requiring only minimal 
implementation effort[15]. Also, the ability of PSO to adapt 
easily its components to a desired form, implied by the 
problem at hand, has placed PSO in a prominent position 
among other intelligent optimization algorithms[16]. Due to 
the good properties of the PSO algorithm, it has evolved 
nowadays as a new optimization approach, which can be 
applied in a variety of applications, such as in fault 
identification[17], in estimation of the filter parameters[18], in 
control engineering for PID controller gain tuning[9–13] etc. 
Although the PSO approach has been widely investigated 
in PID controller tuning, its direct application to 
rotor/AMB systems is scarce and rarely found in the 
published literature.  

In this paper the performance analysis of the PSO 
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algorithms for PID controller tuning for a rotor/AMB 
system is carried out. Two PSO algorithms, namely PSO 
with linearly decreasing inertia weight(LDW-PSO) and 
PSO algorithm with constriction factor approach(CFA-PSO), 
are independently implemented and tested on three PID 
controller structures. In section 2 fundamental theoretical 
derivations and variants of the PSO algorithm are presented. 
Section 3 briefly elaborates the one-axis and two-axis 
Rotor/AMB system models, in conjunction with the 
following three PID control structures: (1) conventional 
parallel PID structure(PID-P), (2) PID controller structure 
with set point on only I-controller(I-PD), and (3) series PID 
structure(PID-S). Section 4 outlines their implementation 
and gain tuning using the PSO algorithms. Simulation 
results for considered examples are elaborated in section 5, 
which contains the transient performance response analyses 
and the convergence curves for the investigated controller 
structures. Finally, section 6 is the concluding section, in 
which the obtained results as well as the applied modeling 
and control procedures are summarized. 

 
2  PSO Algorithm and Its Variants 

 

PSO is a stochastic optimization algorithm based on 
social simulation models, whose development was based on 
concepts and rules of collision-free, synchronized moves 
that govern socially organized populations in nature, such 
as bird flocks, fish schools and animal herds. In recent 
years, PSO has attracted a lot of attention because of its 
numerous advantages, such as (i) the ease of 
implementation, (ii) the algorithm does not use the gradient 
information of the objective function, but its values, (iii) it 
can be applied for solving nonlinear, multiple optimum and 
high dimensional problems, and (iv) its solution hardly 
depends on initial states of the particles, which can be a 
significant advantage in engineering design problems based 
on optimization approaches. 

PSO is a computational technique based on the 
movement and intelligence of swarms. A “swarm” can be 
defined as an apparently disorganized collection of moving 
particles(population) that tend to cluster together, while 
each particle seems to be moving in a random direction. 
Consider a population containing N independent particles 
that move around in d-dimensional search space looking for 
the best solution. The initial positions and velocities of the 
particles are chosen randomly, usually in the interval [0, 1].  

The i-th particle at the k-th iteration has the position ( )k
ix =  

( )T
1 2, , ,i i idx x x and the velocity ( ) ( )T

1 2, , , .k
i i i idv v v v=   

The best position of the particle achieved so far by itself is 

given as  ( )T
1 2, , ,i i i idp p p p=   and the global best 

position, i.e. the position with the lowest function value 

achieved so far by any particle of the entire swarm is 

  ( )Tg g g g
1 2, , , dp p p p=  , where the letter “g” designates 

the global best.  

Each particle tries to modify its current position and 
velocity according to the distance between its current 
position and its own best position, and the distance between 
its current position and the global best position. If d 
variables are optimized, particles move randomly over a 
d-dimensional search space in order to optimize an 
objective function f(x), which is used as the criterion of 
fitness of each particle. Therefore, for the search space 
defined by 1, 2, , ,j d=   the velocities and positions of the 
particles updated for the next iteration(k + 1) can be written 
in the following form: 

 
( ) ( ) ( ) ( ) ( ) ( )1 g

1 1 2 2 ,k k k k k k
ij ij ij ij j ijv w v c R p x c R p x+ é ù é ù= + - -ê ú ê úë û ë û

 

( ) ( ) ( )1 1 ,k k k
ij ij ijx x v+ += +                           (1) 

 
where w is the inertia weight, c1 and c2 are the weighting 
factors known as the cognitive learning parameter and the 
social learning parameter, R1 and R2 are two uniformly 
distributed random numbers from the interval [0, 1]. The 
algorithm defined in Eq. (1) is repeated iteratively until a 
predefined number of iterations are reached. Moreover, it 
was found out that larger inertia weights facilitate global 
exploration and prolong the convergence time and that 
smaller inertia weights facilitate local exploitation and 
ensure faster convergence, but possibly lead to local optima. 
Therefore, some approaches were considered to improve 
the performance of the presented PSO concept by variable 
inertia weight. 

 

2.1  Linearly decreasing inertia weight(LDW-PSO) 
The concept of linearly decreasing inertia weight was 

introduced by EBERHART and SHI in 1998 resulting in an 
improved PSO variant[19], using which the effect of velocity 
fades linearly during the execution of the algorithm. It is 
implemented as follows: 

 

( ) max min
max

max

,k w w
w w k

k

-
= -            (2) 

 
where wmax and wmin are the desirable maximum and 
minimum bounds of w and kmax is the total number of 
iterations. At an early optimization stage a larger inertia 
weight factor is applied to promote global exploration, after 
which it is linearly decreased in order to facilitate local 
exploitation. A very common choice is to set wmax to a 
value of 1.2 and wmin to a value of 0.1.  

 
2.2  Constriction factor approach(CFA-PSO) 

By a thorough investigation provided by CLERC and 
KENNEDY(2002), who considered different generalized 
PSO models, default contemporary PSO variant has been 
introduced[20]. This variant introduces the constriction 
factor, which ensures better convergence. In this model, the 

( )k

( )k
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velocity equation is calculated as follows: 
 

( ) ( ) ( ) ( ){
( ) ( ) }

1
1 1

g
2 2              ,

k k k k
ij ij ij ij

k k
j ij

v v c R p x

c R p x

+ é ù= + - +ê úë û
é ù-ê úë û

      

(3)

 

 
where  is the constriction factor defined by 

 

1 2
2

2
,  4.

2 4
c c 

  
= = + >

- - -
    (4) 

 
Commonly, both c1 and c2 are set to 2.05. Obviously, this 

PSO model is algebraically equivalent with the inertia 
weight model described in equation Eq. (2). However, in 
literature it is distinguished due to its theoretical properties 
that point out the explicit selection of its parameters. 

 
3  Model of the Rotor/AMB System 

 

AMBs consist of an array of electromagnets, sensors, a 
set of power amplifiers and a controller. They operate on 
the principle of active magnetic suspension. Fig. 1 
illustrates a most common radial AMB structure with four 
pole pairs, in which each AMB actuator consists of two 
pairs of electromagnets which operate in a differential 
driving mode. This means that one electromagnet in the 
pair is driven with the sum of the bias current i0 and the 
control current(designated as ix in the x-direction and iy in 
the y-direction) and the opposite one with their difference[21].  

Although rotations and transverse motions of the real 
rotor cannot be controlled by one pair of AMB electromagnets, 
the basic properties of a magnetic bearing control loop can 
easily be investigated using only one degree of freedom 
(one-axis) or two degrees of freedom(two-axis) rotor models.  

 

This implies that the rotor is reduced to a single 
concentrated mass suspended in the magnetic field, which 
is an appropriate simplification for a preliminary study.  

 

 

Fig. 1.  Cross-section of a typical radial AMB 

 
Therefore, in this study two separate analyses are carried 

out. In the first, the rotor is modeled as a one degree of 
freedom system, i.e. as a SISO system. In the second, the 
interference among the x- and y- axes is additionally 
introduced and the rotor is modeled as a two degree of 
freedom system, i.e. as a 2´2 MIMO system. 

 
3.1  One-axis AMB suspension system model 

Fig. 2 shows the block diagram of a one-axis rotor/AMB 
system in a feedback loop, where ym is the sensor output, u 
is the control signal(voltage) applied to the plant, i is the 
coil current and y is the actual rotor displacement. Each 
component of the system is briefly elaborated in the 
following subsections. 

 

Fig. 2.  Block diagram of a one-axis rotor/AMB system in a feedback loop 

 
 

3.1.1  Magnetic actuator, power amplifier  
and sensor models 

For magnetic actuators of the differential type, the 
following dynamic equation of motion applies: 

 

m ,my f=                   (5) 

 
where m s if k y k i= +  is the linearized magnetic force, 
using which Eq. (5) can be easily transformed into the 
transfer function form: 

( ) i
2

s

,
k

G s
ms k

=
-

               (6) 

 
where ki is the force-current coefficient, ks is the negative 
force-displacement coefficient and m is the rotor mass. 
Power amplifiers and sensors are modeled as simple gains 
Kamp and Ksn, respectively, since its dynamics can be 
neglected. 

 
3.1.2  Delay model   

In actual magnetic suspension systems, the phase lag 



 
 
 

CHINESE JOURNAL OF MECHANICAL ENGINEERING 

 

·931·

delay is always present. It can be caused by many reasons, 
such as: iron losses in the actuator iron core, flux delay 
caused by eddy currents, voltage saturation in the current 
driver, limited sensor and power amplifier frequency 
response, the sampling period of the digital controller, etc. 
In order to simplify the analysis, but also to take into 
account such influences, all possible phase lags will be 
included in the form of a single first order transfer function 

 

( )delay

delay

1
,

1
2π

G s
s

f

=
æ ö÷ç ÷ç + ÷ç ÷ç ÷çè ø

             (7) 

 
where fdelay is the cut-off frequency measured in hertz(Hz). 

 

3.1.3  PID controller structures 

Three PID controller structures will be examined. The 

first is the parallel PID controller structure(PID-P controller) 

whose mathematical representation is given as 

 

( )PID-P p int d
d ( )

( ) ( )d ,
d

e t
u t K e t K e t t K

t
= + +ò      (8) 

 

where Kp is the proportional gain, Kint is the integral gain 

and Kd is the derivative gain. One disadvantage of this 

configuration is that a sudden change of the rotor position 

(and hence a large error e between the reference input r and 

the measured position ym) will cause the derivative term to 

become very large, causing large control signals as well. 

Accordingly, an alternative implementation is  

 

m
I-PD p m int d

d ( )
( ) ( ) ( )d ,

d

y t
u t K y t K e t t K

t
=- + -ò     (9) 

 

where the proportional and derivative parts act on the 

measured value and not on the error, i.e. only the 

I-controller acts on the set point, giving an I-PD controller. 

The third controller is obtained as a series connection of the 

PD and PI controllers, giving a series PID structure(PID-S), 

whose model can be presented as follows:  

 
s s

PID-S p 1 int 1

s
1 d

( ) ( )+ ( )d ,

d ( )
( ) ( )+ ,

d

u t K e t K e t t

e t
e t e t K

t

=

=

ò
      (10) 

 

where s
pK , s

intK  and s
dK  are the proportional, the 

integral and derivative controller gains of the series 

controller structure, respectively. The outlined controller 

structures are presented in Figs. 3–5.  
In order to tune the presented controllers(PID-P, I-PD, 

PID-S) and to achieve the desired responses, they will be 
independently implemented and configured by using the 

PSO algorithms.  
 

 

Fig. 3.  PID-P controller structure 

 

 
Fig. 4.  I-PD controller structure 

 

 

Fig. 5.  PID-S controller structure 

 
3.2  Two-axis AMB suspension system model 

The generated radial magnetic forces are mostly aligned 
in two perpendicular axes which usually coincide with the 
geometrical x and y axes. Under some circumstances 
(misalignment of the displacement sensor and the 
electromagnet, flux due to eddy currents, the gyroscopic 
effect, etc.) misalignment of the radial force can occur, i.e. 
the direction of the generated radial force can have an 
angular error. As a consequence, force interference between 
the two axes is induced. Fig. 6 shows two perpendicular 
axes x and y and two radial magnetic forces fmx and fmy 
inclined by a small angle , wherefrom the total magnetic 
forces can be calculated as follows: 

 

m m m d m

m m m d m

cos sin ,

sin cos .

xt x y x x

yt x y y y

f f f f f

f f f f f

 

 

= + = +

=- + = +
     (11) 

 
Due to the small value of angle , cos can be 

approximated by unity. The additional(interfering) forces 
caused by the angular error are designated as fdx and fdy. 

Finally, dynamic equations of motion of a rotor 
suspended by linear magnetic actuators in xy-plane are 

 

m

m

,

.

xt

yt

mx f

my f

=

=




                  (12) 
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Fig. 6.  Angular error of the radial AMB force 

 
 

4  Implementation of PID Controller  
Structures Tuned by PSO 

 
Three PID controller structures tuned with LDW-PSO 

and CFA-PSO algorithms were developed for a magnetic 
suspension system. The algorithms are used to determine 
the three PID gains(Kp, Kint, Kd), independently for each of 
the controller structures. Therefore, a three dimensional 
search space is defined, in which each of the controller 
gains corresponds to one dimension, i.e. each particle in the 
search space represents a particular combination(Kp, Kint, 
Kd) for which a unique response can be obtained.  

In the framework of PSO, the quantities that need to be 
initialized prior to the execution of the algorithm are the 
initial positions and velocities of each of the N particles in 
the population. In this study the initial combination of gains 
(Kp0, Kint0, Kd0) is generated as a set of random values 
within the interval [0, 1]. These values were then scaled 
with the corresponding magnitudes obtained from the 
Ziegler-Nichols tuning rules applied to one-axis AMB 
system. This procedure gives the following values:  

 

p0 int0 d03,   50   0 01K K , K . .= = =          (13) 

 
The initial velocities are set to zero for all particles in all 

three dimensions. For the case of a two-axis magnetic 
suspension model the aforementioned procedure is 
extended with the additional controller(two PID 
controllers). It is assumed that the gains of both controllers 
are the same. 

Evaluation of a given set of controller gains is achieved 
by simulating a unit step response of the resulting closed 
loop system. In order to obtain a measure of the transient 
response performance of the system, the integral of time 
multiplied by the absolute value of error(ITAE) is taken as 
the objective function as follows: 

 

ITAE
1 0

( ) d
Tp

i
i

J t e t t ,
=

=åò            (14) 

 
where p is the number of controllers(p=1 for a one-axis 

system and p=2 for a two-axis system) and T is the time of 
integration. The required PID gains minimize the objective 
function in the time domain, i.e. the performance indicators 
(overshoot, settling time, rise time and steady state error). 

 
5  Simulation Results and Discussion 

 

To identify the gains of the presented PID structures and 
to study the performances of the LDW-PSO and CFA-PSO 
algorithms the simulation experiments were carried out on 
the two AMB suspension systems. The input data for these 
systems are presented in Table 1.  

 
Table 1.  Characteristics of the rotor/AMB system 

System property Value

Mass m / kg 12

Force-current coefficient ki / (N • A–1) 190

Force-displacement coefficient ks / (kN • m–1) 680

Power amplifier gain Kamp / (V • A–1) 1

Sensor gain Ksn / (kV • m–1) 8

 
The system delay is modeled by the cut-off frequency 

fdelay=500Hz. In order to ensure convergence, the 
maximum number of iterations kmax is set to 200 for 
LDW-PSO and to 250 for CFA-PSO. Unit step is applied as 
a rotor position reference(r=1). The final time T is set to 
0.1 s and each algorithm was repeated for 10 independent 
trials. In LDW-PSO, weighting factors c1 and c2 are defined 
as c1=c2=1 and w is linearly decreasing from wmax=1.2 to 
wmin=0.3. To study the performances of PID structures, the 
one-axis(example 1) and the two-axis AMB system 
(example 2) are investigated.  

 
5.1  Example 1: One-axis rotor/AMB model 

The one-axis rotor/AMB model is considered in this 
example. The best results, with respect to the transient 
response performances, among the 10 independent trials are 
registered and presented as follows. The convergence 
curves of the objective function are shown in Fig. 7. The 
gain convergence curves for each of the PID structures are 
presented in Figs. 8 and 9. Finally, the performance 
indicators in time domain are given in Table 2 and the 
corresponding unit step responses are illustrated in Fig. 10. 

 
5.2  Example 2: Two-axis rotor/AMB with interference 

Analogous analyses are carried out for the two-axis 
rotor/AMB model including three PID structures. The 
angular error   is defined as 5°.  

Simulation results were repeated for 10 independent 
trials and LDW-PSO and CFA-PSO were employed. The 
convergence curves of the objective function are given in 
Fig. 11. The PID gain convergence curves for each control 
structure are presented in Figs. 12 and 13, while the 
corresponding unit step responses are illustrated in Figs. 14 
and 15. By examining the obtained results some general 
conclusions can be drawn. The PSO algorithms can be 
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successfully applied, regardless of the controller structure 
and perform well in gain tuning of the presented systems. 
This means that various controller structures can be easily 
tuned using the presented PSO algorithms, which have 
shown ease of the tuning in case of both SISO and MIMO 
AMB systems. By analyzing the convergence curves it is 

noticed that PID gains converge more steadily and in a less 
number of iterations in the case of the LDW-PSO approach 
(Figs. 8, 12) then in the case of the CFA-PSO approach 
(Figs. 9, 13). Moreover, PSO is identified as a robust 
method in terms of its searching capabilities, computational 
efficiency and convergence properties. 

 

 

Fig. 7.  Convergence curves of objective functions(example 1) 

 

 

Fig. 8.  Convergence curves of the PID control gains for the LDW-PSO algorithm(example 1) 

 

 

Fig. 9.  Convergence curves of the PID control gains for the CFA-PSO algorithm(example 1) 

 
Table 2.  Comparison of the obtained performance indicators in time domain(example 1: one-axis rotor/AMB model) 

Parametre 
LDW-PSO CFA-PSO 

PID-P I-PD PID-S PID-P I-PD PID-S 

Settling time ts / s 0.005 6 0.006 9 0.006 8 0.005 0 0.004 2 0.004 3 

Rise time tr / s 0.000 5 0.003 2 0.004 3 0.000 4 0.001 8 0.001 3 

Overshoot Mp / % 44.47 2.03 1.75 40.77 2.72 0.45 
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Fig. 10.  Comparison of the step responses(example 1) 

 

 

Fig. 11.  Convergence curves of objective functions(example 2) 

 

 

Fig. 12.  Convergence curves of the PID control gains for the LDW-PSO algorithm(example 2) 

 

 

Fig. 13.  Convergence curves of the PID control gains for the CFA-PSO algorithm(example 2) 
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Fig. 14.  Comparison of the step responses along the x- axis(example 2) 

 

 

Fig. 15.  Comparison of the step responses along the y- axis(example 2) 

 

From Figs. 7 and 11, the same tendency of the objective 
function can be observed in both examples. Although the 
rise time and the settling time is smaller when using the 
CFA-PSO approach, the LDW-PSO algorithm ensures 
faster convergence and almost aperiodic(i.e. non-oscillatory) 
response(Figs. 10, 14, 15). 

Regarding to the controller structure, the PID-P structure 
provides the undesirably large overshoot values in each of 
the considered cases, while the I-PD and PID-S structures 
perform almost equally well and ensure much better results 
in comparison with the PID-P controller. As expected, this 
is a direct consequence of the inherent properties of the 
implemented controller structures, which additionally 
proves the efficiency of the presented PSO approaches. 

 
6  Conclusions 

 

A comparative performance analysis of two PSO 
algorithms for PID controller tuning of a rotor/AMB 
system is presented. The two PSO algorithms, the 
LDW-PSO and the CFA-PSO, are independently 
implemented and tested for three PID structures(PID-P, 
I-PD and PID-S), for one-axis and two-axis rotor/AMB 
models. The PID controllers are designed considering 
minimization of the ITAE criterion. The main simulation 
conclusions are outlined as follows: 

(1) The PSO algorithms show ease of the controller 
tuning in case of both SISO and MIMO rotor/AMB 
systems, which consider also the system delay and the 
interference among the horizontal and vertical rotor axes. 

(2) PSO is identified as a robust method both in terms of 
its searching capabilities and computational efficiency. 

(3) The CFA-PSO approach ensures faster rise time, 
while the LDW-PSO algorithm provides almost non- 
oscillatory system responses. 

(4) ITAE objective function is proved to be suitable for 
the optimal design of PID controllers. 

(5) Better performance of I-PD and PID-S controllers 
over PID-P controller is observed, what is in direct 
correlation with the nature of the implemented controller 
structure. 

In future research, these investigations will be extended 
to more complex rotor/AMB systems which involve rigid 
and, preferably, flexible rotors.  
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