Skip to main content

Table 1 Rule of changing under scenario 2

From: A Novel Integrated Stability Control Based on Differential Braking and Active Steering for Four-axle Trucks

Conditions ← Right first wheel (if) Left first wheel (if)
a1 \(B_{br1} > 0,\) \(A_{br1} > 0,\) \(\delta_{i} > 0\) \(B_{bl1} < 0,\) \(A_{bl1} < 0,\) \(\delta_{i} \ge 0\)
a2 Impossible under \(\delta_{i} \ge 0\) \(B_{bl1} < 0,\) \(A_{bl1} \ge 0,\) \(\delta_{i} \ge 0\)
a3 \(B_{br1} \le 0,\) \(A_{br1} > 0,\) \(\delta_{i} \ge 0\) Impossible under \(\delta_{i} \ge 0\)
a4 Impossible under \(\delta_{i} \ge 0\) Impossible under \(\delta_{i} \ge 0\)
Conditions ← Right wheel i = 2, 3, 4 (if) Left wheel i = 2, 3, 4 (if)
a1 A) \(l_{i - 1} - l_{v} > 0,\) \(B_{bri} > 0,\) \(A_{bri} > 0,\) \(\delta_{i} > 0\)
B) \(l_{i - 1} - l_{v} < 0,\) \(B_{bri} > 0,\) \(A_{bri} > 0,\) \(\delta_{i} > 0\)
C) \(l_{i - 1} - l_{v} > 0,\) \(B_{bri} > 0,\) \(A_{bri} > 0,\) \(\delta_{i} = 0\)
D) \(l_{i - 1} - l_{v} = 0,\)\(\delta_{i} > 0\)
A) \(l_{i - 1} - l_{v} > 0,\) \(B_{bli} < 0,\) \(A_{bli} < 0,\) \(\delta_{i} > 0\)
B) \(l_{i - 1} - l_{v} < 0,\) \(B_{bli} < 0,\) \(A_{bli} < 0,\) \(\delta_{i} > 0\)
C) \(l_{i - 1} - l_{v} < 0,\) \(B_{bli} < 0,\) \(A_{bli} < 0,\) \(\delta_{i} = 0\)
D) \(l_{i - 1} - l_{v} = 0,\) \(\delta_{i} > 0\)
a2 \(l_{i - 1} - l_{v} > 0,\) \(B_{bri} > 0,\) \(A_{bri} < 0,\) \(\delta_{i} > 0\) \(l_{i - 1} - l_{v} < 0\) \(B_{bli} < 0\) \(A_{bli} > 0\) \(\delta_{i} > 0\)
a3 A) \(l_{i - 1} - l_{v} < 0,\) \(B_{bri} \le 0,\) \(A_{bri} > 0,\) \(\delta_{i} > 0\)
B) \(l_{i - 1} - l_{v} < 0,\) \(B_{bri} < 0,\) \(A_{bri} > 0,\) \(\delta_{i} = 0\)
C) \(l_{i - 1} - l_{v} = 0,\) \(\delta_{i} = 0\)
A) \(l_{i - 1} - l_{v} > 0,\) \(B_{bli} \ge 0,\) \(A_{bli} < 0,\) \(\delta_{i} > 0\)
B) \(l_{i - 1} - l_{v} > 0,\) \(B_{bli} > 0,\) \(A_{bli} < 0,\) \(\delta_{i} = 0\)
C) \(l_{i - 1} - l_{v} = 0,\) \(\delta_{i} = 0\)
a4 \(B_{bri} = 0,\) \(A_{bri} = 0\) (Cannot use this wheel to brake) \(B_{bli} = 0,\) \(A_{bli} = 0\) (Cannot use this wheel to brake)