Skip to main content

Table 1 Solution

From: Trajectory Tracking of Autonomous Vehicle with the Fusion of DYC and Longitudinal–Lateral Control

\(\frac{{k_{rl} S_{1} }}{{k_{fl} + k_{rl} }} \in m_{1}\) \(F_{xfl} = \frac{{k_{rl} S_{1} }}{{k_{fl} + k_{rl} }}\), \(F_{xrl} = \frac{{k_{fl} S_{1} }}{{k_{fl} + k_{rl} }}\) \(\frac{{k_{rr} S_{2} }}{{k_{fr} + k_{rr} }} \in m_{2}\) \(F_{xfr} = \frac{{k_{rr} S_{2} }}{{k_{fr} + k_{rr} }}\), \(F_{xrr} = \frac{{k_{fr} S_{2} }}{{k_{fr} + k_{rr} }}\)
\(\frac{{k_{rl} S_{1} }}{{k_{fl} + k_{rl} }} \notin m_{1}\) \(F_{xfl}\) is the closer one between two of the borders, \(F_{xrl} = S_{1} - F_{xfl}\) \(\frac{{k_{rr} S_{2} }}{{k_{fr} + k_{rr} }} \notin m_{2}\) \(F_{xfl}\) is the closer one between two of the borders, \(F_{xrr} = S_{2} - F_{xfr}\)