H Gao, L Liang, X Chen, et al. Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization. Chinese Journal of Mechanical Engineering, 2015, 28(1): 96–105.
G Chen, L Qie, A Zhang, et al. Improved CICA algorithm used for single channel compound fault diagnosis of rolling bearings. Chinese Journal of Mechanical Engineering, 2016, 29(1): 204–211.
M Riera-Guasp, J A Antonino-Daviu, G A Capolino. Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: state of the art. IEEE Transactions on Industrial Electronics, 2015, 62(3):1746–1759.
M H Drif, A J Cardoso. Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses. IEEE Transactions on Industrial Informatics, 2014, 10(2):1348–1360.
Y Wang, F Zhang, T Cui, et al. Fault diagnosis for manifold absolute pressure sensor (MAP) of diesel engine based on Elman neural network observer. Chinese Journal of Mechanical Engineering, 2016, 29(2): 386–395.
J Antonino-Daviu, S Aviyente, E G Strangas, et al. Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors. IEEE Transactions on Industrial Informatics, 2013, 9(1): 100–108.
J Faiz, V Ghorbanian, BM Ebrahimi. EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes. IEEE Transactions on Industrial Informatics, 2014, 10(2): 957–966.
P Karvelis, G Georgoulas, I P Tsoumas, et al. A symbolic representation approach for the diagnosis of broken rotor bars in induction motors. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1028–1037.
M Zhang, J Tang, X Zhang, et al. Intelligent diagnosis of short hydraulic signal based on improved EEMD and SVM with few low-dimensional training samples. Chinese Journal of Mechanical Engineering, 2016, 29(2): 396–405.
D Matić, F Kulić, M Pineda-sánchez, et al. Support vector machine classifier for diagnosis in electrical machines: Application to broken bar. Expert Systems with Applications, 2012, 39(10): 8681–8689.
Y Lei, F Jia, J Lin, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137–3147.
T Boukra, A Lebaroud, G Clerc. Statistical and neural-network approaches for the classification of induction machine faults using the ambiguity plane representation. IEEE Transactions on Industrial Electronics, 2013, 60(9): 4034–4042.
H Keskes, A Braham. Recursive undecimated wavelet packet transform and DAG SVM for induction motor diagnosis. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1059–1066.
C Chen, B Zhang, G Vachtsevanos. Prediction of machine health condition using neuro-fuzzy and Bayesian algorithms. IEEE Transactions on Instrumentation and Measurement, 2012, 61(2): 297–306.
Y L Murphey, M A Masru, Z Chen, et al. Model-based fault diagnosis in electric drives using machine learning. IEEE/ASME Transactions on Mechatronics, 2006, 11(3): 290–303.
J Wang, R X Gao, R Yan. Multi-scale enveloping order spectrogram for rotating machine health diagnosis. Mechanical Systems and Signal Processing, 2014, 46(1): 28–44.
B Boashash. Time-frequency signal analysis and processing: A comprehensive reference. Academic Press, 2015.
R Yan, R X Gao, X Chen. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 2014, 96: 1–15.
G E Hinton. Learning multiple layers of representation. Trends in Cognitive Sciences, 2007, 11(11): 428–34.
G E Hinton, R R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507.
I Arel, D C Rose, T P Karnowski. Research frontier: deep machine learning–a new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 2010, 5(4): 13–18.
Y Bengio. Learning deep architectures for AI. Foundations & Trends® in Machine Learning, 2009, 2(1): 1–55.
Y Jia, E Shelhamer, J Donahue, et al. Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international Conference on Multimedia, Orlando, Florida, USA, November 3-7, 2014: 675–678.
K He, X Zhang, S Ren, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, June 27-30, 2016: 770–778.
C Szegedy, W Liu, Y Jia, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June 7–12, 2015: 1–9.
Y Cai, H Wang, X Chen, et al. Vehicle detection based on visual saliency and deep sparse convolution hierarchical model. Chinese Journal of Mechanical Engineering, 2016, 29(4): 765–772.
G E Hinton. To recognize shapes, first learn to generate images. Progress in Brain Research, 2007, 165(6): 535–47.
Q V Le. Building high-level features using large scale unsupervised learning. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013: 8595–8598.
L Deng, G Hinton, B Kingsbury. New types of deep neural network learning for speech recognition and related applications: An overview. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013: 8599–8603.
Y LeCun, Y Bengio, G Hinton. Deep learning. Nature, 2015, 521(7553): 436–444.
L Deng, D Yu. Deep learning: methods and applications. Foundations and Trends® in Signal Processing, 2014, 7(3–4): 197–387.
C Xiong, S Merity, R Socher. Dynamic memory networks for visual and textual question answering//Proceedings of the International Conference on Machine Learning, New York City, NY, USA, June 19-24, 2016: 2397–2406.
K S Tai, R Socher, C D Manning. Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv: 1503.00075, 2015.
[34] F Jia, Y Lei, J Lin, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing, 2016, 72: 303–15.
P Tamilselvan, P Wang. Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & Systems Safety, 2013, 115(7): 124–135.
V T Tran, F Althobiani, A Ball. An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Systems with Applications, 2014, 41(9): 4113–4122.
J Guo, X Xie, R Bie, et al. Structural health monitoring by using a sparse coding-based deep learning algorithm with wireless sensor networks. Personal and Ubiquitous Computing, 2014, 18(8): 1977–1987.
A Steinecker. Automated fault detection using deep belief networks for the quality inspection of electromotors. tm - Technisches Messen. tm - Technisches Messen, 2014, 81(5): 255–263.
J Sun, A Steinecker, P Glocker. Application of deep belief networks for precision mechanism quality inspection. Precision Assembly Technologies and Systems, 2014: 87–93.
W Sun, S Shao, R Zhao, et al. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement, 2016, 89: 171–178.
X W Chen, X Lin. Big data deep learning: challenges and perspectives. IEEE Access, 2014, 2: 514–525.
A R Mohamed, D Yu, L Deng. Investigation of full-sequence training of deep belief networks for speech recognition. Proceedings of the International Speech Communication Association Annual Conference, Makuhari, Chiba, Japan, September 26-30, 2010: 2846–2849.
R Salakhutdinov, G Hinton. Deep Boltzmann Machines. Journal of Machine Learning Research, 2009, 5(2): 1967–2006.
G E Hinton. A practical guide to training restricted Boltzmann machines. Momentum, 2010, 9(1): 599–619.
B Schölkopf, J Platt, T Hofmann. Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 2007, 19: 153–160.
G E Hinton, S Osindero, Y W Teh. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527–1554.
X Yang, R Yan, R X Gao. Induction motor fault diagnosis using multiple class feature selection. Proceedings of 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Pisa, Italy, May 11-15, 2015: 256–260.